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Abstract: Wireless sensor networks (WSNs) are considered promising for
applications such as military surveillance and healthcare. The security of these
networks must be ensured in order to have reliable applications. Securing such
networks requires more attention, as they typically implement no dedicated
security appliance. In addition, the sensors have limited computing resources
and power and storage, which makes WSNs vulnerable to various attacks,
especially denial of service (DoS). The main types of DoS attacks against
WSNs are blackhole, grayhole, flooding, and scheduling. There are two pri-
mary techniques to build an intrusion detection system (IDS): signature-based
and data-driven-based. This study uses the data-driven approach since the
signature-based method fails to detect a zero-day attack. Several publications
have proposed data-driven approaches to protect WSNs against such attacks.
These approaches are based on either the traditional machine learning (ML)
method or a deep learning model. The fundamental limitations of these meth-
ods include the use of raw features to build an intrusion detection model,
which can result in low detection accuracy. This study implements entity
embedding to transform the raw features to a more robust representation that
can enablemore precise detection and demonstrates how the proposedmethod
can outperform state-of-the-art solutions in terms of recognition accuracy.

Keywords: Wireless sensor networks; intrusion detection; deep learning;
entity embedding; artificial neural networks

1 Introduction

With the variety of applications of wireless sensor networks (WSNs) in areas such as envi-
ronmental observation, smart cities, military surveillance, and healthcare [1], there have been an
increasing number of security breaches in such networks. A primary factor is limited computing
resources such as processing, storage, memory, and power, enabling such denial of service (DoS)
attacks as blackhole, scheduling, grayhole, and flooding. DoS attack detection is considered a
machine learning task, i.e., a supervised classification problem. Such methods include traditional
machine learning and deep learning.
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Deep learning often outperforms traditional machine learning on unstructured data problems
such as image and audio recognition and natural language processing, and is increasingly regarded
as the ideal solution for such data. This has led to the question of whether these methods can be
similarly successful with structured (tabular) data, such as is used in this study. Structured data
are organized in a tabular format whose columns and rows represent features and data points,
respectively. Current state-of-the-art solutions for structured data are ensemble methods such as
random forest [2] and gradient boosted tree [3], and deep learning with entity embedding [4] has
performed at least as well on tabular data.

The present study proposes an end-to-end ANN architecture with entity embedding that
outperforms recent state-of-the-art intrusion detection models for WSNs on a public WSN-DS
dataset [5]. The proposed model does not depend on a complex ensemble model and hand-
crafted feature engineering. It considers features as categorical variables and maps them into
m-dimensional vectors of continuous variables that transform a raw feature in a more robust
representation. The mapping is automatically learned through supervised learning of standard
neural networks.

The remainder of this paper is organized as follows. Section 2 examines related studies.
Section 3 explains materials and methods used in the proposed solution. Section 4 discusses
experiments using the proposed model on the WSN-DS dataset. Section 5 presents conclusions
and suggested future research.

2 Related Work

Applications of WSNs include recognizing climate changes, monitoring habitats and envi-
ronments, and other surveillance applications [6]. Several security-based methods for WSNs have
been proposed, including key exchange protocol, authentication, secure routing protocol, and
security solutions targeting a specific type of attack [7,8]. The intrusion detection system (IDS) is
a promising solution to identify and defend against WSN attacks [9]. When detecting an attack,
the IDS raises an alarm to notify the controller to take action [9,10]. However, WSNs are exposed
to numerous security threats, such as DoS, which can degrade their performance. DoS attacks can
target the protocol stack, or different layers of sensors [11–13]. To detect attacks, network traffic
is examined, and an appropriate security mechanism is used [14].

IDSs use two main approaches. Rule- or signature-based IDS [15] can accurately detect well-
known attacks, but not a zero-day attack whose signatures do not exist in intrusion signature data.
Anomaly-based (data-driven) IDSs detect intrusions by matching abnormal resource utilization
and/or traffic patterns against normal behavior. Although anomaly-based IDSs can detect both
well-known and zero-day attacks, they have more false positives and false negatives [15]. The
present study lists related work using anomaly-based IDSs for WSNs, as they are more closely
related to the proposed method. Current IDS methods for WSNs include genetic algorithms and
fuzzy rule-based modeling [16], support vector machine (SVM) [17], artificial neural networks [18],
Bayesian networks and random tree [19], and random forest [20]. Their limitations were evaluated
on the KDD dataset [21] that was collected for computer networks such as local area networks
(LANs) and wide area networks (WANs), but not for WSNs with special characteristics. Some
work has used self-made WSN datasets [22–24] that are not publicly available. We used the
publicly available WSN-DS dataset [5].

Some work has been evaluated on the WSN-DS dataset [5], which was collected specifically
for WSNs. An artificial neural network was used [5] to build the classifier; feature selection



CMC, 2021, vol.69, no.1 1345

using the information gain ratio and a bagging algorithm was proposed [25]; and naive Bayes,
SVM, decision tree, k-nearest neighbor (KNN), and a convolutional neural network (CNN) were
utilized [26]. The limitation of these methods is that they use raw features directly. This can be
addressed by transforming raw features to a more robust representation using entity embedding.

We used entity embedding to develop a more accurate classification, and experimentally
demonstrated how the proposed method can outperform state-of-the-art solutions.

3 Materials and Methods

This section has six subsections. Subsection 3.1 describes the dataset. Subsection 3.2 explains
the artificial neural network (ANN) model primarily used in this work. Subsection 3.3 examines
the entity embedding of categorical variables [4], the essential technique used in this study.
Subsection 3.4 illustrates the proposed architecture. Subsection 3.5 explains the evaluation of the
model. Subsection 3.6 presents hyperparameter selection strategies.

3.1 Dataset
We used the WSN-DS simulated dataset [5] to build and evaluate the proposed model. The

dataset was created to recognize several types of DoS attacks as well as normal traffic. It contains
four DoS attack types: blackhole, grayhole, flooding, and scheduling, with 17 features, describing
the state of each sensor in WSN, extracted from the Low Energy Aware Cluster Hierarchy
(LEACH) routing protocol. These and the target variables (label) are shown in Tab. 1. Fig. 1
shows the data distribution over normal and different types of attacks from the WSN-DS dataset.
It should be noted that such extreme imbalances in the class distribution require a specific type
of metric to evaluate model performance, as the accuracy is dominated by the majority class
(normal).

3.2 Artificial Neural Network
We explore the ANN, the main model used in this paper. The multilayer perceptron (MLP)

is the primary ANN architecture [27]. As shown in Fig. 2, MLP has three types of layers: one-
input layer, one/more-hidden layer, and one output layer. As these layers are densely connected,
many weights (parameters) must be configured. These are fine-tuned during the backpropagation
algorithm [28], as shown in Algorithm 1. The input of the algorithm is a set of input-output
(Xi,yi) pairs, called training examples. The algorithm outputs the optimized network weights.

The goal of backpropagation is to fine-tune a network’s weights through a sequence of
forward and backward iterations to minimize the cost function until the error stops improving
or the maximum number of epochs is reached. The algorithm first initializes the weights of the
network using a statistical initializer.

A forward step finds the network output for randomly selected training examples e = (x,y)
by finding each layer output, starting at the input layer and moving toward the output layer. The
output of each layer (say layer k) is computed by finding the output of each neuron in the layer.
The output of neurons j in layer k is calculated as

aj = g

(
n∑
i=1

wi,jai

)
, (1)
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Table 1: List of features with abbreviation, description, and number of levels

Seq.# Feature # of levels Description

1 Time 196 Present time for current sensor node
2 Is-CH 2 Set 1 if the node is cluster head, and 0 otherwise
3 Who-CH 7088 Cluster head ID in present round
4 Dist-To-CH 13956 Distance between each sensor node and its cluster

head in current round
5 Consumed Energy 69352 Consumed energy by each sensor in prior round
6 ADV-S 85 # of advertise broadcast messages sent through

cluster head
7 ADV-R 31 # of advertise messages received by cluster head
8 JOIN-S 2 # of joint request messages sent by nodes to cluster

head
9 JOIN-S 101 # of joint request messages received in cluster head

node by its belonging sensor nodes
10 SCH-S 95 # of advertise broadcast messages sent to sensor

nodes during time division multiple access (TDMA)
schedule

11 SCH-R 2 # of advertise broadcast messages received in sensor
nodes by cluster head for TDMA schedule

12 Rank 100 Order of sensor during TDMA schedule
13 Data-S 192 # of data packets sent by each sensor node to its

cluster head
14 Data-R 1345 # of data packets received by node from its cluster

head
15 Data-Sent-BS 237 # of data packets sent from sensor node to base

station
16 Dist-CH-BS 305 Distance between cluster head and base station
17 Send-code 16 Send code for cluster
18 Attack-Type 5 Label or traffic class (normal, DoS, blackhole,

grayhole, flooding, scheduling)
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Figure 1: Data distribution over normal and different types of attacks deduced from WSN-DS
dataset
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Figure 2: Basic ANN architecture [29]

where aj is the output for neuron j in layer k; n is the number of neurons in the previous layer (k−
1); a1 . . .an are the outputs of neurons in the previous layer (k−1); wi,j is the weight (parameter)
from neuron j and the corresponding neurons i in the previous layer (k−1); and g is the activation
function.

Algorithm 1: Backpropagation
1: Input: network, training set(x, y)
2: Output: optimized network weights
3: Initialize weights (typically random)
4: while the error stops improving or reach max epochs do
5: Randomly pick e from training data
6: // forward pass
7: Output= FindNetworkOutput(network, e.x)
8: Error= e.y – output
9: OuputGradient = ComputeOutputGradients(e.x, Error)
10: // backward pass
11: for each hidden layer
12: Error = ComputeHiddenError(Error)
13: HiddenGradient = ComputeHiddenGradients(e.x, Error)
14: UpdateNetworkWeights(OuputGradien, HiddenGradient)
15: end while
16: List of Functions:
17: function FindNetworkOutput(network, input)
18: output = [ ]
19: for each layer
20: input = FindLayerOutput(layer, input)
21: output = input
22: return output
23: end function
24: function FindLayerOutput(layer, input)
25: Output = [ ]

(Continued)
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26: for each neuron in the layer
27: output[i]= FindNeuronOutput(Neuron[i], input)
28: return output
29: end function
30: function FindNeuronOutput(neuron, input)
31: output = 0
32: W = getNeuronWeights( )
33: X = DotProduct(input, W)
34: output = ActivationFunction(X)
35: return output
36: end function

After applying the forward step, we get hw(e.x), the output vector generated by the net-
work when given the input vector e.x. Therefore, the square error (error) can be computed by
subtracting the correct output e.y from the predicted value of the network hw(e.x),

error= (e.y− hw(e.x))2. (2)

Then the gradient of error is calculated by computing the partial derivative of error with
respect to each weight.

The second step is backward, and calculation is performed from the output layer toward the
first hidden layer. The gradient and error are computed using the chain rule [28] for each hidden
layer. All network weights are updated according to the gradient of the output and all hidden
layers.

3.3 Entity Embedding of Categorical Variables
Entity embedding of categorical variables [4] is the primary technique used in this paper,

which maps them into m-dimensional vectors of continuous variables. Supervised learning of a
standard neural network is used to learn the mapping, as explained previously.

As an example, assume that entity embedding is applied over a day of the week as a
categorical variable of the neural network model. This leads to the development of a K × m
matrix to map the day of the week to an m-dimensional vector. K is the number of distinct
levels of the categorical variable (Monday, Tuesday, etc.), and m is the desired mapping dimension,
which is considered a hyperparameter with a 2: K − 1 range. In this example, K is 7 (days of
the week), and we assume m is 4. To find the 4-dimensional mapping of specific levels (days),
1× 7 one-hot encoding of Sunday is multiplied by the mapping matrix of 7× 4. The mapping
matrix values can be learned using supervised learning of standard neural networks, adding an
embedding layer on top of each one-hot encoding input feature, as shown in Fig. 3. The matrix
of weights connects the one-hot encoding layer, and the embedding layer is the mapping matrix.
The weights of this matrix are learned during training of the neural network by backpropagation.
It is clear in Fig. 3 that the input features are represented as one-hot encoding; then the weights
(embedding matrix) that connect the one-hot encoding layer with the embedding layer are used
to extract m-dimensional vectors of continuous variables. This continuous representation places
categorical values with related effects near each other in the feature vector space.

For the above example, the one-hot encoding input layer includes seven neurons that indicate
the number of levels of the categorical variable, and the embedding layer has four neurons,
corresponding to the desired mapping dimension, as shown in Fig. 3.
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Figure 3: Proposed model architecture

3.4 Proposed Model
In this work, a multi-layer ANN-based architecture is proposed for a WSN intrusion detection

system, as shown in Fig. 4. Tab. 2 provides details about the notation. Multi-layer ANNs (deep
model) enable us to effectively learn nonlinear decision boundaries for more accurate classification.
Entity embedding automatically learns a robust representation of the raw features with the help of
the deep model. This work shows how to determine the optimal architecture (number of hidden
layers, number of neurons in each layer, and embedding size) and investigate the optimal value
for other model hyperparameters, such as the activation function and learning rate.
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Figure 4: Proposed model architecture

As most input features for WSN intrusion detection have a limited number of levels, as shown
in Tab. 1, we treat them as categorical variables. It can be noticed that the proposed architecture
represents most input features using the concept of entity embedding explained above. Entity is
not used directly for some input features (Who_CH, Dist_To_CH, and Consumed Energy) because
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the large number of unique values (# of levels) is very large, which requires the learning of a
large number of parameters.

Table 2: Notation used in Fig. 4

Seq.# Notation Description

1 n # of categorical input features (14).
2 m Size of continuous embedding vector for categorical features,

equal to 10 in proposed model
3

∑n
i=1Ki× 1 n Ki-dimensional vectors, where Ki is # of levels for ith

categorical feature (one-hot encoding).
4

∑n
i=1m× 1 n m-dimensional vectors, where m is the embedding size

learned using entity embedding for each corresponding
feature.

5 (n∗m+ 3)× 1 Obtained by concatenating the learned embedding vectors of
all features plus the three binary features (with two levels
only).
As shown in Tab. 1, the binary features are Is_CH, JOIN_S,
and SCH_R.

6 One-hot Encoding Produces Ki-dimensional vector for ith categorical features.
Component of current level of feature has value 1, and all
other components have value 0.

7 Embedding matrix Weights connecting one-hot encoding and embedding vector.
This matrix is learned during training.

8 || Concatenation between neurons of all embedding vectors and
other binary features.

9 W Weights connecting layers in classification phase to learn
optimized classification parameters.

As most input features for WSN intrusion detection have a limited number of levels, as shown
in Tab. 1, we treat these as categorical variables. The proposed architecture represents the majority
of the input features using the concept of entity embedding explained above. Entity embedding is
not used directly for some input features (Who_CH, Dist_To_CH, and Consumed Energy) with a
very large number of unique values (# of levels), which require a large number of parameters to
be learned. For example, Dist_To_CH features have 13956 values, which need 139560 weights to
learn an embedding vector of size 10. However, when we used entity embedding for these values,
we realized that the model was over-fit. Therefore, we performed discretization (binning) on these
features before passing them to the model. Discretization is accomplished by decomposing each
feature into a set of bins. In the present study, we use 300, 100, and 100 bins for Consumed
Energy, Dist_To_CH, and Who_CH, respectively.

Then, in the first layer, each categorical input feature is transformed to a one-hot represen-
tation. The embedding layer of size 10 is added on top of it. This layer is used to learn the
embedding matrix that maps each input feature to a 10-dimensional continuous vector. This layer
helps place values with similar effects near each other in the vector space, thus exposing the
fundamental continuity of the data to ensure a robust representation of the input features.
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Next, all learned embedding vectors and the binary features (which only include two levels)
that are not required for learning its embedding are concatenated together.

Then, two fully-connected layers (256–256 neurons) are added on top of the concatenated
layer and used to learn the classification weights. A softmax layer of five neurons is added on top
of these layers, which helps compute the probability distribution over the attack labels. Intuition
regarding the selected values of the hyperparameters (# of layers, # of neurons in each layer,
embedding size, learning rate, and activation function) is related in Subsection 3.6.

Finally, the training data are fed into the network, whose parameters (weights) are optimized
using an adjusted version of stochastic gradient descent (Adam) and a backpropagation algorithm.
Algorithm 2 presents the steps used to train the proposed architecture.

Algorithm 2: Proposed model
1: Input: WSN-DS
2: Output: optimized intrusion detection model
3: Preprocessing phase:
4: Discretize Who_CH, Dist_To_CH, and Consumed Energy features
5: Transform the input features to one-hot encoding
6: Divided the dataset into training and testing sets
7: Training phase:
8: //Model Hyperparameters:
9: num_epochs =100
10: batch_size= 4096
11: optimizer= Adam
12 loss= categorical_crossentropy
13: learning rate= 0.001
14: Network= Initialize the network architecture as in Fig. 4 with random weights
15: for i= 1 to num_epochs do
16: Sample randomly from the training set batch_size data points
17: Apply backpropagation (Algorithm 1) on network to fit the training data
18: // backpropagation with Adam optimizer (lr= 0.001) and categorical_crossentropy loss
function.
19: Testing phase:
20: for i= 1 to size_of_testing_set do
21: Perform forward propagation FindNetworkOutput(Network, input(i.x))
22: Return the class label with the highest probability

3.5 Model Evaluation
Different measures are available to compute evaluation scores for the classification problem.

For intrusion detection systems, significant metrics include detection rate, recall, true positive rate
(TPR), precision, false alarm rate/false positive rate (FPR), and F-score, defined as follows:

Recall (Detection rate)= TP
(TP+FN)

(3)

Precision= TP
(TP+FP)

(4)
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False positive rate(FPR)= FP
(FP+TN)

(5)

F-score= 2 ∗ (Precision ∗ Recall)
(Precision + Recall)

, (6)

where TP, FP, FN, and TN are the numbers of true positives, false positives, false negatives, and
true negatives, respectively.

In terms of a multi-class classification problem, the evaluation measures for all classes can be
averaged as either a micro- or macro-average to obtain the general performance of a model. A
micro-average is dominated by the majority class, as it treats each data point (instance) equally,
whereas a macro-average gives equal weight to each class. We study an intrusion detection dataset
with significantly more data points of a normal class than of abnormal classes. We use macro-
averaging to prevent the majority (normal) class from dominating the performance of the model.
To accelerate decision-making during model optimization and compare the proposed model to
state-of-the-art methods, we use a macro-average F-score. In addition, a micro-average F-score is
calculated to compare certain related work that uses a micro-average as a metric. Metrics such
as recall, precision, and false-alarm rate are also used to obtain detailed information about the
model’s performance.

3.6 Hyperparameter Selection
The proposed ANN architecture has several hyperparameters that must be selected carefully,

as they impact the model’s performance. A grid search technique is implemented to select the
optimal combination of hyperparameters. We adjust the embedding size, number of hidden layers,
and number of neurons in each layer, activation function, and learning rate.

Embedding size: Fig. 5 illustrates the dependency between different embedding sizes and the
macro-avg. F-score. It can be observed that the performance was slightly improved with an
increase in the embedding size, reached a peak when the embedding size was between 10 and
20, declined slightly when the embedding size was greater than 20, and was consistent until the
embedding size reached 120, when it started to diminish as the embedding size increased, as the
model was over-fit with a large number of weights (parameters).
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Figure 5: Dependency between embedding size and macro-avg. F-score
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Number of hidden layers and number of neurons in each layer: It is important to tune these two
hyperparameters concurrently to determine the best combination. Initially, only a single hidden
layer spanning a range of (64, 128, 256, 512, 1025) neurons was used. Another layer was added,
and the same range was applied to both layers. The process was repeated for a third layer, and it
was concluded that the best macro-average F-score is achieved when there are two hidden layers,
each with 256 neurons.

Activation Function: Fig. 6 shows the dependency between the type of activation function
and the macro-average F-score. These functions are applied for each neuron so that the model
can distinguish between the nonlinear decision boundaries of the data. Three types of activation
functions, ReLU, hyperbolic tangent (tanh), and sigmoid, are usually used in ANN:

ReLU: f (x)=
{
0 for x< 0
x for x≥ 0

(7)

tanh: f (x)= 2
1− e−2x − 1 (8)

sigmoid: f (x)= 1
1+ e−x

. (9)

The best performance was achieved with the ReLU activation function, which is computation-
ally more efficient, as it uses only a threshold as an input value.
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Figure 6: Dependency between activation function type and macro-avg. F-score

Learning rate: The learning rate was altered over a range of (0.0001–0.1024), with each time
increment calculated by multiplying the previous value by 2. It was determined that the best
macro-average F-score can be achieved when the learning rate is between 0.0008 and 0.0016. This
range was further examined, and the best performance was observed to occur when the learning
rate was 0.001.

Tab. 3 summarizes the tuned hyperparameters used in this work.

4 Experiments

Subsection 4.1 presents the experimental settings used in this study. Subsection 4.2 shows
the effectiveness of the proposed feature representation using entity embedding. Subsection 4.3
compares the proposed model to state-of-the-art solutions.
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4.1 Experimental Settings
To ensure precision in comparisons, settings for comparative methods were those of the work

in which they were proposed. The holdout technique was used to split the dataset into 60%
training and 40% testing, with stratified sampling to ensure a consistent ratio of classes. Fig. 7
shows the data distribution over normal and different types of attacks for the training and test
sets.

Table 3: Summary of hyperparameters used in this work

Hyperparameter Value

Embedding size 10
Learning rate 0.001
Activation function ReLU
Number of hidden layers 2
Number of neurons in each hidden layer 256
Optimizer Adam
Loss Categorical cross-entropy
Batch size 4096
Dropout rate 0.5
Epochs 100
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Figure 7: Data distribution over normal and different types of attacks for training and test sets

4.2 Effectiveness of Proposed Feature Representation Method
To demonstrate the power of the proposed feature representation method, its performance

was compared using two approaches.

In the first approach, the feature representation methods were varied and the network archi-
tecture was unchanged. Tab. 4 compares the performance of the proposed feature representation,
ordinal encoding (original feature values), and binary encoding. It is seen that the proposed
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feature representation outperforms other types in the macro F-score. However, binary encoding
delivers performance comparable to that of the proposed method, and outperforms the state-of-
the-art methods, as shown in Subsection 4.3. We believe that binary encoding performs better, as
it works well with categorical features with high cardinality (# of levels).

In the second approach, the proposed method was evaluated using varying network architec-
tures to demonstrate its effectiveness.

Table 4: Micro- and macro-avg. F-score of proposed WSN intrusion detection approaches using
WSN-DS dataset

Feature
representation

Description Micro F-score (%) Macro F-score (%)

Ordinal encoding Transform
nonnumeric labels
to numeric labels
with order

99.50 97.20

Binary encoding Transform ordinal
encoding to binary
code; digits from
binary string are
split into separate
columns.

99.60 97.90

Proposed (Entity
embedding)

Explained in
Subsection 3.3

99.60 98.30

Tab. 5 presents the performance of the proposed feature representation through several net-
work architectures. It is evident that the performance changes little as layers are added, or the
number of neurons in each layer increased. This stability in performance reflects the effectiveness
of the method. While 256–256 and 512–256 achieved similar performance, we selected 256–256,
as it was more computationally efficient.

Table 5: Micro- and macro-avg. F-score of proposed feature representation with several network
architectures

Number of
hidden
layers

# Neurons
in each
layer

Micro
F-score
(%)

Macro
F-score
(%)

1 128 99.60 97.90
1 512 99.60 98.20
1 1024 99.60 98.20
2 512–256 99.60 98.30
2 (proposed) 256–256 99.60 98.30
3 512–256–128 99.60 98.20
3 256–256–256 99.60 98.20
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4.3 Comparison with State-of-the-Art
We show how the proposed model can outperform the state-of-the-art in terms of micro and

macro F-score. It can be observed that the proposed method significantly outperforms all in terms
of macro F-score, and slightly outperforms in terms of micro F-score. The slight difference in the
micro-average is due to the domination of its result by the majority class (normal). Fig. 7 presents
the extreme difference in the number of instances between the normal class and other abnormal
classes.

Table 6: Micro- and macro-avg. F-score of proposed WSN intrusion detection approaches using
WSN-DS dataset

Ref. Year Approach Micro
F-score
(%)

Macro
F-score
(%)

[26] 2020 Naive Bayes 88.00 51.20
[26] 2020 SVM 90.00 41.20
[26] 2020 Decision Tree 93.00 49.80
[26] 2020 K-Nearest Neighbor 96.00 78.80
[26] 2020 CNN 97.00 82.40
[5] 2016 ANN with one hidden

layer
98.60 91.40

[25] 2019 Feature selection using
information gain ratio
Bagging algorithm using
C4.5

99.40 96.30

Proposed model 2020 Entity Embedding-ANN 99.60 98.30

It is evident from Tab. 6 that the methods used in [5] and [25] had the highest accuracy, and
the results of their solutions and that of the proposed method are given in Tabs. 7–9, respectively.
The proposed method delivers better performance in terms of recall, precision, and FPR, as
shown in Tabs. 6–8.

Table 7: Recall, FPR, and precision of work in [5]

Attack type TPR (Recall) FPR Precision

Normal 0.998 0.018 0.998
Flooding 0.994 0.001 0.904
Scheduling 0.922 0.000 0.995
Grayhole 0.756 0.003 0.911
Blackhole 0.928 0.009 0.730
Micro Avg. 0.985 0.017 0.987
Macro Avg. 0.920 0.006 0.908
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Table 8: Recall, FPR, and precision of work in [25]

Attack type TPR (Recall) FPR Precision

Normal 0.998 0.021 0.998
Flooding 0.982 0.001 0.902
Scheduling 0.924 0.000 0.976
Grayhole 0.961 0.002 0.963
Blackhole 0.982 0.001 0.965
Micro Avg. 0.994 0.019 0.994
Macro Avg. 0.965 0.005 0.961

Table 9: Recall, FPR, and precision of proposed model

Attack type TPR (Recall) FPR Precision

Normal 0.999 0.002 0.998
Flooding 0.989 0.000 0.996
Scheduling 0.936 0.000 0.995
Grayhole 0.981 0.000 0.978
Blackhole 0.987 0.000 0.978
Micro Avg. 0.997 0.000 0.996
Macro Avg. 0.978 0.000 0.989

5 Conclusion and Future Work

We proposed a deep learning architecture that uses ANNs with categorical entity embedding,
and sought to demonstrate that it can produce an effective intrusion detection system for WSNs.
Entity embedding was proven able to create a robust representation for raw features that can
lead to better performance compared to the state-of-the-art. In future work, entity embedding
representation will be used with ensemble classification instead of classical ANN to take advantage
of the classification power of ensemble methods such as random forest and gradient boosted tree.
This work was limited to a single dataset because of a lack of publicly available datasets collected
for WSN DoS attacks. In future work, we intend to obtain another dataset to detect different
DoS attacks.
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