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Abstract: The COVID-19 virus exhibits pneumonia-like symptoms, including
fever, cough, and shortness of breath, and may be fatal. Many COVID-19
contraction experiments require comprehensive clinical procedures at medical
facilities. Clinical studies help to make a correct diagnosis of COVID-19,
where the disease has already spread to the organs in most cases. Prompt
and early diagnosis is indispensable for providing patients with the possibility
of early clinical diagnosis and slowing down the disease spread. Therefore,
clinical investigations in patients with COVID-19 have revealed distinct pat-
terns of breathing relative to other diseases such as flu and cold, which are
worth investigating. Current supervised Machine Learning (ML) based tech-
niques mostly investigate clinical reports such as X-Rays and Computerized
Tomography (CT) for disease detection. This strategy relies on a larger clinical
dataset and does not focus on early symptom identification. Towards this end,
an innovative hybrid unsupervised ML technique is introduced to uncover
the probability of COVID-19 occurrence based on the breathing patterns and
commonly reported symptoms, fever, and cough. Specifically, various metrics,
including body temperature, breathing and cough patterns, and physical activ-
ity, were considered in this study. Finally, a lightweight ML algorithm based
on theK-Means and Isolation Forest technique was implemented on relatively
small data including 40 individuals. The proposed technique shows an outlier
detection with an accuracy of 89%, on average.

Keywords: COVID-19; symptoms identification; machine learning; isolation
forest; k-means

1 Introduction

The global outbreak of COVID-19 witnessed an overall spread across 190 countries caus-
ing a death toll of over 2 million people worldwide [1]. Initial clinical observations reported
fever and dry cough as the most common early symptoms in all the reported cases [2–4]. It
is believed that early symptoms identification can be a vital point of consideration for early
COVID-19 detection, which can help to prioritize patients for management to reduce the risk of
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mortality [5,6]. Although a comprehensive medical examination is required for an accurate diag-
nosis of the disease, it is important to consider the role of early detection [7]. This can be
achieved by identifying the most common symptoms to detect patients who may be consistent
with developing COVID-19.

Breathing is a vital physiological process for all living beings. The cyclical process involves
inhalation and exhalation, which correlates to a person’s health, mood, and stress levels
[8–10]. The study of breathing patterns can identify normal, fatigued states and underlying acute
respiratory disorders. However, specialized diagnostic tests, including respiratory rhythm, depth,
blood oxygen saturation, and heart-rate are typically required to identify various breathing pat-
terns [11,12]. This relies on not only access to specialized healthcare facilities but also the presence
of trained medical professionals for an accurate diagnosis. In a normal breathing activity, clinically
referred to as Eupnea, a healthy adult shows 12 to 20 respiratory cycles per minute [12–14]. In
this study, comparisons to Eupnea cycles were used to detect anomalies in all the test cases.

Several research studies included contact-based human activity recognition for respiratory rate
measurements. In most studies, machine learning (ML), Convolutional Neural Networks (CNNs),
and Deep Neural Networks (DNN) techniques have been utilized to perform feature extraction
and pattern recognition. However, these branches of supervised ML techniques require very large,
labeled datasets to achieve high accuracy [15–17]. Besides, the required experimental setup is
complex, costly, and does not support self-diagnostic capability. In comparison to these systems,
this research focused on developing a wearable prototype device with commercial off-the-shelf
(COTF) components to reduce the price and provide flexibility to apply symptoms recognition
algorithms to existing platforms. The current smart wearable market has exceeded 440 million
active consumers, thus chosen as a natural preference and motivation for prototype design [18,19].

In this study, we concentrate on contact-based physiological features identification, where con-
tactless infrared thermometers are used for body temperature measurements and motion detection
accelerometers for breathing and various physical activity. The wearable device records observa-
tions, processes signals, which are then analyzed in IBM Watson Studio for anomaly detection
using the K-Means and Isolation Forest techniques [20,21].

Some of the major contributions of this research are:

• Design of a wearable prototype device for physiological feature measurement (such as body
temperature, and activity recognition).
• Design of breathing pattern recognition algorithm, that identifies normal breathing, and

cough patterns.
• The design of hybrid anomaly detection technique using K-means and Isolation Forest

algorithms, for anomaly detection and symptom identification.

The rest of this article is organized as follows. In Section 2, a detailed literature review is
presented that investigates the current research trends on anomaly detection. Section 3 explains
the research methodology by describing the research environment, feature extraction, and the
application of the proposed algorithms. In Section 4, a comprehensive analysis of experimental
observations is presented. Finally, Section 5 concludes this research and provides directions to
enhance the proposed technique and integrate it with currently available wearable platforms.

2 Related Works

William et al. [22] presented a comprehensive review on non-contact-based state-of-the-
art sensing for COVID-19. Several sensing techniques such as X-ray, CT scan, Radar, and
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high-frequency THz techniques were investigated. The research concludes that although the non-
contact-based sensing techniques were more accurate. In addition, the cost and complexity of
implementation were very high and required administration by highly skilled technicians. Similarly,
Carlo et al. [23] presented a comprehensive analysis on contact-based sensing techniques for
respiratory pattern measurement. The study compared various contact-based sensing techniques
including chest movement, air-flow movement, breathing sounds as well as cardiac activity to
detect respiratory patterns. A pronounced common trend was reported where an increase in
accuracy often required sensing techniques that were obtrusive and could only be implemented in
clinical settings.

Hyun et al. [24] investigated an unsupervised machine learning technique based on the K-
Means algorithm to cluster the patient data from intensive care units (ICU). Nine laboratory
tests on ICU patients were carried out and the clustering was independently tested. The technique
featured three clusters grouping nine characteristics based on the similarities of clinical results.
The data set was examined for the development of treatment strategies for the individual patient
groups in the unit. However, the clusters were based on the provided features in the proposed
model and may not scale. Furthermore, unsupervised ML techniques are also extensively used
for anomaly detection. In this regard, Naidoo et al. [25] implemented an unsupervised Generative
Adversarial Network (GAN) model to detect fraud in the health care industry. Health care records
from two health care providers were investigated to detect fraudulent activities.

Furthermore, Kaczmarek et al. [26] deployed a K-means based Isolation Forest technique
to detect anomalies. Unlike other isolation schemes, their technique provided a greater number
of decision trees arbitrations that helped to identify many sparse anomalies. Similarly, Farzad
et al. [27] suggested a hybrid approach for log message detection where isolation forest algo-
rithm predicted the positive samples from the dataset. In addition, autoencoder networks were
implemented for feature extraction, model training, and anomaly detection. The developed scheme
is a classic case of unsupervised learning where the accuracy of the model can be improved
through training of positive samples using a Isolation forest. However, in real-world health-care
environment, labeling multi-feature and highly correlated physiological data is a laborious and
expensive task.

On the other hand, anomaly detection using supervised ML techniques are also prevalent.
Hauskrecht et al. [28] presented an outlier detection model that generated activity alerts based on
patient’s health. The proposed technique utilized supervised support vector machine (SVM) learn-
ing model for high accuracy outlier detection. However, due to its limitation for univariate nature
as well as offline processing, it may not be applicable for scalable complex real-time anomaly
detection. Along the same veins, several techniques implemented CNN and DNN strategies for
human activity recognition (HAR) and respiratory pattern recognition by implementing advanced
sensors such as ultra-wideband radars and depth sensors [29–31].

In health-care environments, the data is heavily correlated with its underlying physiological
properties. Each set of observations can belong to a multi-variate subset, that requires sophisti-
cated methods to extract its characteristics. This unbalanced nature of datasets affects the overall
accuracy of the ML models. It is both costly and time consuming to construct a balanced dataset
by labelling all features. In addition, another factor to consider is the response time for anomaly
detection. The sensors constantly push the data to the cloud for analysis, which further inhibits
real-time feature labeling. Therefore, unsupervised machine learning models are preferred to detect
anomalies, especially when diagnosis or predictions are not needed.
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3 Methodology

This study follows three stages including physiological features measurement, processing, and
anomaly detection. To this end, first, the physiological data was recorded using the chest-worn
prototype device. Next, the physiological features were analyzed to categorize various activity types
and breathing patterns. Finally, a comprehensive exploratory analysis was performed using the K-
means algorithm for optimal clustering that further implemented the Isolation Forest technique for
anomaly detection. 40 healthy adults volunteered to participate in the data collection. Individuals
with chronic illnesses or health conditions (such as diabetes, heart disease, tuberculosis), smokers,
expecting mothers, and adults over the age of 50 were excluded. Tab. 1 provides the subject
demographics involved in this research.

Table 1: Volunteer information including, gender, age, weight, and body mass index (BMI)

Gender No. of participants Avg. BMI Avg. Age Avg. Weight

Male 22 26 31 73
Female 18 25 27 61

The complete process flow from data acquisition to processing and validation is described in
Fig. 1.

Figure 1: Complete system flow diagram of the proposed technique
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3.1 Experiment Environment
Some of the key design goals mandated reduced equipment expense, complexity, size, and

obtrusiveness. Therefore, a low-cost, small-sized development platform ESP8266 [32] was chosen
for the prototype design as given in Fig. 2.

Figure 2: An illustration of the designed chest-worn prototype device

A contactless infra-red thermometer MLX90614 [33] was used to measure the body temper-
ature, whereas LSM303DLHC [34] module to detect the changes in 3-axis. The programmable
interrupts for free-fall and motion detection were used to model the cough patterns. The position
of the accelerometer is extremely important for accurate reading, where its position and orienta-
tion could influence the outcome. Hung et al. [35] estimated the accuracy of accelerometer data
in various orientations. The study exhibited the selection of sagittal plane for improved accuracy,
therefore, adopted in this research. The volunteers were instructed by research staff to perform
the following initial activities to identify baseline characteristics:

a. Two minutes of normal breathing while communicating with the research staff.
b. Two minutes of normal breathing without any activity.
c. Ten simulated deep breathing.
d. Ten simulated coughs.
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During this interval, the chest-worn device automatically logged the temperature readings at
a one-minute interval. The initial tests were conducted to identify the normal breathing patterns
that were used to later detect anomalies. Finally, the devices were handed over to the volunteers
that automatically recorded the physiological features over a period of eight hours each.

3.2 Feature Selection
In a typical accelerometer score, the individual changes at the x, y, and z-axis are normally

observed as static acceleration. Therefore, dynamic accelerometer measurements were performed
to estimate the cough patterns. In addition, the angular velocity components helped to identify
workout modes that were used to set various thresholds to accommodate the rise in body temper-
ature and breathing patterns. The frequency (f ) of the accelerometer was set to 25 Hz, whereas
the data windows size (W) was set to be 10 s. The observation windows size is a critical factor
that can change the signal resolution. Smaller window size can lack essential features, whereas
no additional information can be returned to larger window sizes. Therefore, a total of (N = 6)
accelerometer observations (following the window size W) were collected every minute.

Therefore, the nth data samples for a window’s size (W) can be given as

Ak = {an, an+1,an+2+ . . . aW } (1)

where 1 ≤ n ≤W yielding a total of 250 data units per W.

The total number of observations was averaged to produce a score of (Navg) per minute. The
overall length of experiments was sliced into (T = 8 h), yielding a total average accelerometer
observation to (NTotal = 1 × 60 × 8 = 480 ) observations, or (DTotal = 1× 60× 8× 250 = 120,000)
data points.

Therefore, each accelerometer sampling data point can be represented as

Xr= {arx, ary,arz} (2)⎧⎨
⎩
ax = arx/nax
ay= ary/nay
az = arz/naz

(3)

where, (ax,ay,az) gives the total change in each axis, (arx,ary,arz) are raw data samples per win-

dows size (W), and (nax,nay,naz) are the sensitivity coefficients. In Eqs. (1)–(3), the Nth degree of
change in the accelerometer measurements was estimated and further transformed (using Eq. (4))
into a single compound activity value to estimate the change rate.

aTotal =
√
ax2+ ay2+ az2 (4)

On the other hand, the human body temperature does not fluctuate abruptly, therefore a
temperature reading at every 10th minute was recorded, yielding a total of 48 observations per
set of experiments. The experimental observations involved data collection, threshold detection,
cluster formation, followed by anomaly detection in independent clusters, as given by Algorithm 1.

The observations revealed that five volunteers (referred to as Case 1, Case 2 . . . Case 5)
exhibited continuous variations in breathing and temperature patterns, therefore, were analyzed for
anomaly detection. Tab. 2 describes the extracted parameters from the above-mentioned sub-set.
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Algorithm 1: Data Collection, activity recognition, and cluster formation
Inputs Raw accelerometer data Xr= {arx, ary,arz}, T
Output Compound activity score aTotal, �T, K-means clusters Cn

k+1
1 Initialize ( )
2 for i = 1 to W do
3 axi = {axi+ axi+1+ . . .+ axi+W }
4 ayi = {ayi+ ayi+1+ . . .+ ayi+W }
5 azi = {azi+ azi+1+ . . .+ azi+W }
6 nr←{|naxi− naxi+1|+|nayi − nayi+1|+

|nazi− nazi+1|}
7 Xr ← {axi+ ayi+ azi}
8 aTotal = Xr/nr;
9 end for
10 //Extract the normalized features
11 aTotal ∈ {aX |i= 1 . . .W}
12 for i = 1 to N do
13 //Compute temperature range
14 ΔT = {Ti+Ti+1+ . . .+ Ti+N}
15 end for
16 ΔT ∈ {Ti |i= 1 . . .N}
17 //Calculate Euclidean distance using Eq. (5)
18 for t = 1 to T do
19 Assign aTotal, ΔT samples to the cluster.
20 Compute SSE using Eq. (6)
21 if no change;
22 Break;
23 else
24 Update Kth centroid.
25 end if
26 end for
27 end

Table 2: Recorded dataset with mean and standard deviation scores

Parameters Case 1 Case 2 Case 3 Case 4 Case 5

Temp (x̄) 37.6 37.9 38.1 36.7 37.3
Temp (σ ) 1.03 1.07 1.18 1.01 1.09
Accelerometer (x̄) 5.52 5.39 5.75 5.63 4.60
Accelerometer (σ ) 7.45 5.12 4.81 5.14 4.7

3.3 K-Means Clustering Algorithm
The K-means clustering algorithm is a common unsupervised ML technique in which input

data similarities are considered to form clusters. In a classic K-means operation, the Mean values
of data points are calculated that initially forms a centroid in a cluster. By computing the
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Euclidean distance between the data points, clusters can be formed in an m-dimensional space, as
given by Eq. (5).

d(x,y)2−
m∑
j=1

(xi− yj)2 = ‖x− y‖22 (5)

where, i and j correspond to sample and cluster indices, respectively. Once the target number
of clusters are identified, an integer number k is selected. Every iteration further reduces the
number of sum of squares, and assigns the data points with a minimum distance to the respective
centroids. This iterative process helps to identify the nearest neighbor. The stable values of
centroid determination is an optimization problem, which calculates the sum of squared errors
(SSE) or inertia in each iteration to calculate the deviance by which sample sets are assigned to
each cluster centroid. SSE can be computed by Eq. (6).

SSE=
n∑

i=1

k∑
j=1

w(i,j)‖xi− μj‖22 (6)

where,
[µj is the centroid for cluster j]

[w(i,j)
1
0

{
feature sample is in cluster j

feature sample is outside cluster j ]

The K-Means algorithm is an effective technique for cluster formation of larger datasets.
However, it is very sensitive to dataset variations near cluster boundaries which can produce
additional clusters. As a result, it is important to determine the cluster size that matches the
sample data and is equidistant from the centroids. A smaller cluster size selection may group the
entire dataset into a single cluster, while larger cluster numbers may have overlapping features.
The inertia score was calculated with the Elbow curve approach in order to identify optimum
computations of clusters as seen in Fig. 3. Roughly, the equilibrium between SSE and the number
of clusters was determined around value three.

The patient data from all five test cases were grouped into three clusters according to spa-
tial dispersion. The multivariate feature distribution for temperature and accelerometer data is
presented in Fig. 4.

3.4 Isolation Forest
Isolation Forest performs on a similar approach by dividing the dataset into several decision

trees that logically separates anomalies by random attribute selection. The iterative process gener-
ates multiple decision trees with various depths. The decision trees start at the parent or internal
nodes and split the data based on a defined anomaly score towards external or leaf nodes. The
decision process is normally less complex at the higher nodes, whereas the complexity of the tree
increases as its depth increases, as given by Fig. 5.
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Figure 3: An elbow curve that gives the optimum number of clusters for the dataset

Figure 4: A clustered scatter plot of sample data based on the K-Means algorithm

Ideally, the accuracy and computational efficiency of isolation forests increase with the sub-
sampled datasets that form multiple dense internal nodes. The decision process at higher node
levels is mostly binary, which improves the computational efficiency of the algorithm. In our
proposed approach, first, the K-Means algorithm forms highly correlated dense clusters of features
that serve as the sub-sampled dataset input for isolation forest. Therefore, the logical division
facilitates the faster isolation of anomalies. As the sub-set contains dense clusters of observations,
the anomalies likely reside closer to the roots of the decision tree. Therefore, an iterative process
is performed to calculate the threshold over which the split is performed.
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Figure 5: An Illustration of a decision tree-based isolation forest

Assume a training dataset X with (n) number of data points having (y)-dimensional features
as given by Eq. (7).

Xy = {Xy1,Xy2 , . . . . . . .Xyn} (7)

where each data point represents (y= 3) the number of features resulting from K-means clustering
and sub-sampling the dataset. The formation of an isolation forest initially begins with the
calculation of several isolation trees used to split the sub-sampled dataset by choosing random
split scores at each instance. The isolation tree generation process is given in Algorithm 2.

Algorithm 2: IsolationTree (X , d, l)
Inputs X – input dataset, d – tree depth, l – depth limit
Output iTree

1 if d ≥ l or |X| ≤ 1 then
2 return externalNode [30]
3 else
4 Let m be features in X
5 random feature selection, such that q ∈m
6 compute max and min points in q

random split points p in dataset X
7 return
8 internalNode {Left← iTree (Xleft, d+1, l),

Right← iTree
(Xright, d+1, l),

SplitFeatures← q,
SplitLength← p}

9 endif
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The dataset X is split into several decision trees by splitting the data points based on
randomly chosen feature points. The iterative process follows a depth (d) to create decision trees
until no further leaf nodes are left. By combining the range of individual decision trees, an
isolated forest is formed, as given in Algorithm 3.

Algorithm 3: IsolationForest (X, n, ψ)
Inputs X – input dataset, n – number of trees, ψ – sampling size
Output Collection of n number of iTrees.

1 Init ( )
2 depth limit l= from smallest ceil {log2ψ}
3 for i = 1 to n do,
4 Xnew ← subset (X, ψ)
5 Forest ← Forest ∪ iTree (Xnew, 0, l)
6 return Forest
7 end

Several factors affect the performance of isolation forest both during training as well as the
testing phase. Some critical factors such as tree depth, depth limit, and sampling size directly
affect the logical partitioning accuracy and the number of generated trees. On the other hand,
factors such as threshold values and contamination ratios (β) directly affect the probability of
false-positive detections, which may reduce the overall anomaly detection accuracy. Therefore, an
anomaly score is computed at each iteration that helps the decision tree split the dataset towards
the leaf nodes. The recursive anomaly score is usually computed at the leaf nodes by estimating
the average H(X) for each logical partition and can be given as,

c(m)=

⎧⎪⎨
⎪⎩
2H(m− 1)− 2

m− 1
n

for m> 2

1 for m= 2
0 otherwise

where n is the testing data size, m is the size of the sample set, H is the harmonic number.

The value of H can be computed by Eq. (8),

H(i)= ln(i)+ γ (8)

where, γ = 0.5772156 is Euler-Musheronic constant [36].

Furthermore, the average of all instances of H(x) is computed to generate a normalized
anomaly score which is directly used as a probability of anomaly detection. The anomaly score
can thus be computed as given in Eq. (9),

s(x,m)= 2
−E(H(x))

c(m)
(9)

where,
{
s closer to 1 is likely to be an anomaly
s closer to 0 is a normal value
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4 Results and Discussion

The results show that the changes in temperature values follow a linear pattern, where a
sudden spike in human body temperature is more unlikely. The temperature of the human body
gradually changes over time, resulting in a less skewed distribution. This linear change helps to
quickly spot anomalies. However, the change in accelerometer values was rapid and resulted in
multiple skewed data bins. The overall distribution of accelerometer values is given in Fig. 6.

Figure 6: A histogram of accelerometer data distribution

The distribution is skewed which results in a larger number of isolation trees to account
for all the feature values. The differences in dataset spread for both features are an important
consideration to model the total contamination density that is required to fit the number of
outliers in the training data. Tab. 3 described some of these statistical parameters to investigate
the nature of our selected features.

Table 3: Skew and Kurtosis of temperature and accelerometer sensor data

Features Skew Kurtosis

Temperature 0.0892 −1.218
Accelerometer 0.7135 0.3947

The skewness gives a measure of asymmetries of the probability distribution of data around
its mean value. The accelerometer probability distribution as given in Fig. 6 also explains that the
distribution is not unimodal, meaning the distribution has multiple bins skewed towards the right.
The negative kurtosis value for temperature readings indicates that its central peak is flatter with
flatter tails. Negative kurtosis also indicates that more data values are located near its peak, thus
making it less prone to outliers. However, in accelerometer readings, the values are also spread
across its tails, which is evident from multimodal distribution. The anomaly regions calculated
from this distribution are presented in Fig. 7.
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Figure 7: Computed anomaly scores for features data, highlighting outlier regions

The anomaly score is used to predict the outlier regions in the dataset where there are max-
imum occurrences of anomalies. As shown in Fig. 7a, the accelerometer outlier region indicates
a probability of outliers mostly in the positive trend of accelerometer data (a positive change in
all 3-axes). On the other hand, in Fig. 7b, the outlier regions for temperature sensor data follow
a sudden change in value distributions. Fig. 8 depicts the average time-series based temperature
anomaly scores for the test cases. In addition, the isolation forest has a varied impact on the
accelerometer data due to its skewed nature. One of the most sensitive parameters in an isolation
forest is the contamination factor (β) that controls the number of anomalies to be included in



760 CMC, 2021, vol.69, no.1

every sub-dataset. In a typical time-series-based anomaly detection using isolation forest, it is very
significant to train the model with a varying score of contamination factor as it has an overall
effect on the outlier detection.

Figure 8: Time series-based anomaly detection for temperature sensor data

A very low contamination factor may neglect true positives making the model less prone to
anomalies detection. Whereas a very high contamination factor (β) may include all the anomalies
of the dataset and then fits it to smaller subsets, thus, resulting in a larger number of false
positives. The isolation forest model was trained with varying contamination scores from (1% to
5%) for all five test cases and are reported in Tab. 4.

Table 4: Contamination factor and its effect on isolation forest outlier detection

β (1%) β (2%) β (3%) β (4%) β (5%)

Subjects Accuracy (%)

Case 1 16 33 46 86 66
Case 2 20 26 50 86 70
Case 3 13 30 46 63 53
Case 4 16 30 53 89 66
Case 5 10 23 46 79 62
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The accuracy score gives a generic viewpoint of the model performance based on selective
threshold levels. An accuracy score was computed for the test cases at various contamination
thresholds using Eq. (10).

Accuracy= Number of correct predictions
Total number of predictions made

× 100 (10)

Table 5: Definition of classification outcome terms

Terms Explanation

True Positive (TP) When the disease is present and the
corresponding test results in a positive detection

False Positive (FP) When the disease is not present but the
corresponding test results in a positive detection

True Negative (TN) When the disease is absent and the
corresponding test results in a negative detection

False Negative (FN) When the disease is present but the
corresponding test results in negative detection

Sensitivity/TPR Probability of Test and Disease detection
P(N+ | D+), calculated as TPR = TP/TP+FN

Specificity/FPR Probability of Test and Disease detection
P(N- | D-), calculated as FPR = FP/FP+TN

Figure 9: ROC curves for model accuracy at various thresholds
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Figure 10: (Left to right – Case 1 to Case 5) Plotted anomalies with various contamination factors
on Time series-based accelerometer variations score
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The results show a clear pattern that by increasing the contamination factor the isolation
forest was able to detect over 80% anomalies in most of the cases, as given by Fig. 10. The
accuracy score helped to identify the best threshold values for the isolation forest. However, model
selectivity and sensitivity are often used to accurately evaluate model performance. In this regard,
the receiver operating characteristics (ROC) curves allowed to study the balance between sensitivity
and specificity for all possible thresholds. Classification modeling may exhibit different require-
ments, including independent threshold selection, thus making ROC curves a suitable measure
for independent performance analysis. Therefore, multiple ROC curves were plotted by increasing
the threshold, resulting in deterministic analysis illustrating the precision of the model and its
ability to detect the anomalies. ROC curves were contrasted with True Positive Rate (TPR) and
False Positive Rate (FPR), implying sensitivity and selectivity of a model, respectively. ML and
classification problems rely heavily on binary classification, where the accuracy of a detection or
prediction outcome is defined by the value of (0, 1). The outcomes are typically identified as False
Positive (FP), False Negative (FN), True Positive (TP), and True Negative (TN). Tab. 5 describes
these parameters in detail.

where, P, N, and D represent Probability, Normal values, and Deviations, respectively. The error
matrix applies the cumulative event distribution to one point in the ROC space. A trapezoidal
method was used for the calculation of area under the curve (AUC). The AUC between the FPR
and adjacent TPR values was calculated using Eq. (11).

AUC = N
k=1Σ (Xk− Xk−1) ×

(Yk+Yk−1)
2

(11)

As shown in Fig. 9, the ROC curves indicate the variation in model performance. The
likelihood of false positives is also increased with the increase in sensitivity. A model must also
be calibrated to maintain a balance between its precision and false events.

The average change in accelerometer data (i.e., cumulative change in all 3-axis) was used to
train and predict the isolation forest outcome. With a lower (β) value, the model struggles to
accurately identify outliers. With a gradual increase in (β) value, the models match the data set
which increases the outlier detection efficiency considerably. However, a further increase in isola-
tion forest sensitivity contaminates the sub-sampled dataset and reduces the detection accuracy.
A close inspection of cumulative change in accelerometer values for this iteration reveals that
outliers are mostly detected below the threshold value which translates to a stationary position
or no movement. On average, a (β) value of 4% accounts for the most accurate outlier detection
that provided an average accuracy of around 89%.

5 Conclusion

In this research, two of the most common early symptoms of COVID-19, temperature,
and cough were studied. The human body is a complex architecture where a network of
systems performs in harmony to conduct its daily tasks. Disease detection normally requires
detailed investigation of several underlying physiological factors that are correlated and demand
a clinical investigation. These correlated physiological features generate very large and highly
complex datasets that are normally used for early detection and in some cases medicine or
treatment prediction. This research focused on an unsupervised machine learning-based technique
to loosely uncouple these correlated factors to identify outliers that are critical for early detection.
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A hardware-based wearable prototype was designed to test 40 subjects for temperature and dry
cough, out of which five test cases exhibited clear signs of underlying respiratory problems. The
above-mentioned multivariate features were clustered using the K-means algorithm that groups
the datapoint similarities in 3 clusters ranging from (normal to high deviation). An isolation
forest algorithm was implemented on the real-time time-series data to detect outliers. Together,
with temperature and accelerometer variations, the anomaly detection provides a very promising
insight into a patient’s physiological behavior and can be used as a viable metric to raise critical
alarms for early detection. The data exploratory model can also be implemented on other datasets
representing physiological features that help diagnose other diseases. COVID-19 must be taken
seriously, and detailed clinical investigations must be performed for diagnosis. At the same time,
a predictor, in the form of an early detection can raise critical alarms that can help for early
screening and may prevent the disease spread.
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