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Abstract: Wireless sensor networks (WSNs) have gotten a lot of attention as
useful tools for gathering data. The energy problem has been a fundamental
constraint and challenge faced by manyWSN applications due to the size and
cost constraints of the sensor nodes. This paper proposed a data fusion model
based on the back propagation neural network (BPNN) model to address the
problem of a large number of invalid or redundant data. Using three layered-
based BPNNs and a TEEN threshold, the proposed model describes the
cluster structure and filters out unnecessary details. During the information
transmission process, the neural network’s output function is used to deal with
a large amount of sensing data, where the feature value of sensing data is
extracted and transmitted to the sink node. In terms of life cycle, data traffic,
and network use, simulation results show that the proposed data fusion model
outperforms the traditional TEEN protocol. As a result, the proposed scheme
increases the life cycle of the network thereby lowering energy usage and
traffic.
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1 Introduction

Sensing technology, wireless communication technology, and embedded computing technology
have all advanced in recent years, resulting in the rapid development of low-power, multi-function
sensors that can combine data collection, processing, and wireless communication in a small
volume [1]. The use of this form of miniature sensor network (Wireless Sensor Network, WSN)
has become a crucial part of the Internet of Things (IoT) growth [2]. A wireless sensor network is
a multi-hop self-organizing network system made up of a large number of inexpensive miniature
sensor nodes placed throughout the detection region. Sensor, sensing object, and observer are the
three components of a wireless sensor network [3].

The wireless sensor network (WSN) is a large-scale distributed network of sensor nodes.
Its aim is to detect, capture, and process information from sensing objects in the sensor nodes’
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deployment area [4]. WSN nodes are often distributed at random, resulting in an unequal distri-
bution of nodes in the monitoring region. The monitoring areas of multiple nodes will overlap
as the deployment density increases, resulting in duplication of the sensing data of neighbouring
nodes [5]. Sensing data transmission to the sink node alone would waste a lot of communication
bandwidth, consume too much energy, and reduce the network’s communication performance,
lowering perception data collection efficiency [6]. In response to the aforementioned issues, the
use of fusion technology in WSNs will effectively save network resources, improve perception data
accuracy, and improve perception data collection efficiency [7]. With the continued advancement
of WSNs, an increasing number of researchers have focused on fusing neural networks into WSNs.
The optimization of data collection based on mobile sink nodes is currently one of the most
important issues in WSN research. The WSN implemented not only a mobile sink node traffic
load-balancing node, but also a node that can manage power consumption, effectively avoiding
“hot spots” and extending the network’s survival time. However, using mobile sink nodes to
collect data introduces new challenges: first, the sink position update problem, where constant
flooding of sink location information consumes too much node energy; second, the network
topology changes frequently due to sinking movement, which increases the overhead of network
topology construction. As a result, academic and application fields have focused on optimising
routing protocols based on mobile sink nodes and algorithms for planning mobile sink trajectories.
The authors of [8] suggested a fusion approach focused on the use of a rough set and neural
network combination. Rough sets are used to simplify network input, reduce the amount of data
that the network processes, and improve the network’s training speed. However, the accuracy
of the original decision table is critical to this process, and an incorrect original decision table
would result in incorrect fusion results. The LEECH-F clustering algorithm is combined with
a neural network by the authors in [9]. The cluster structure does not change after the cluster
is created, which reduces the energy consumption of each round of sensor network clustering,
but it ignores the cluster. The issue of header parameter handover wastes the network’s local
resources. The authors of [10] use genetic algorithms to optimise the weights and thresholds of
the neural network, which increases the network’s data collection accuracy to some degree, but
the algorithm’s limited processing scale and low stability are issues. The authors of [11] use neural
networks to interpret the wireless sensor network’s signal changes in order to assess if there
is an emergency, but the network’s energy resource limitation is not taken into account when
it is built. The authors implemented a self-organizing mapping network in the routing decision
of the wireless sensor network in [12], which effectively improved the neural network’s training
performance, but this approach has high network hardware requirements and a limited application
range.

To address the aforementioned issues, this paper proposes the Balance Privacy-Preserving Data
Aggregation BPDA model, which is a WSN data fusion model focused on TEEN clustering and
BP neural networks. The TEEN clustering protocol is used by the BPDA model to build a cluster
structure in the wireless sensor network. The cluster head selection now includes TEEN threshold
control. In the cluster structure information transmission, the BP neural network is used to fuse
the sensing data. via the cluster head, the eigenvalues are sent to the sink node. The related
parameters of the BPDA model are moved to the next cluster head when the cluster head is
replaced.
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2 Network Clustering Based on TEEN Protocol

The BPDA model necessitates the use of a specific clustering routing protocol by the wireless
sensor network. The TEEN clustering protocol [13] is used in this article. Fig. 1 portrays the
TEEN network model. The TEEN protocol is based on the LEACH protocol, and its clustering
approach is exactly the same as the LEACH protocol [14]: the cluster head is chosen regularly
and with equal probability, and the non-cluster head nodes join the corresponding cluster nearby,
except that in TEEN, after the protocol re-establishes the cluster region each time, the cluster head
must broadcast. The TEEN protocol applies a hard threshold (HT) and a soft threshold (ST) to
the data transmission, unlike the standard LEACH protocol [15]. The absolute threshold of the
controlled data’s characteristic value is referred to as the hard threshold. The node transmitter will
send the data to the cluster head when the characteristic value controlled by the node reaches the
absolute threshold. The soft threshold refers to the tracked characteristic value’s small-range shift
threshold. The node transmitter is activated to report data to the cluster head when the change
of the characteristic value is greater than or equal to the change threshold. The parameter value
that the user is interested in is the characteristic value, which is manually set by the user. HT &
ST processing refers to the method of combining hard and soft threshold processing to produce
a characteristic value. The HT & ST protocol is as follows: Next, the sensor node receives sensing
data from the outside world on a continuous basis. The node will start the transmitter to send the
characteristic value in the next time slot when the characteristic value of the sensing data crosses
the hard threshold for the first time. This characteristic value, also known as the sensing value
(SV), is saved in the node’s external variable. Following the completion of the first transmission,
the next data transmission will begin if and only if two conditions are met simultaneously:
the current characteristic value is greater than the hard threshold, and the difference between the
characteristic value and the SV is greater than or equal to the soft threshold. Fig. 2 illustrates the
operation.

Figure 1: Network model of the TEEN protocol
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Figure 2: Proposed HT & ST algorithm

The addition of hard thresholds to the network will allow it to filter out unnecessary data
based on demand, reducing the amount of data transmitted over the network. Soft thresholds
may be used to avoid the transmission of perception data with minimal modification. The network
avoids unwanted data transmission, purposefully transmits data that is of interest to users, and
with large improvements, thanks to the control of double thresholds.

2.1 WSNModel
In this paper, there are S sensor nodes in the wireless sensor network N, and each node is

represented by sn (n= 1, 2, . . . ,S), N has the following characteristics:

(a) The sink node is a one-of-a-kind device that is placed outside of the sensing field. Both
sensor and sink nodes can communicate with one another, and the sink node has an
endless supply of energy.

(b) The sensor nodes are placed in the sensing region at random, and after that, they are set.
The sensor nodes’ initial energy is the same, and the energy cannot be replenished. The
node dies after the energy is absorbed, and all sensor nodes are identical.

(c) The communication channel between nodes consumes the same amount of energy.
(d) In the data transmission process, the TDMA method is used.

2.2 Cluster Establishment
Each node in the wireless sensor network is assigned a random number when the cluster head

is chosen. If the number generated by the node is less than the threshold T (n), the node sends a
message to the surrounding nodes that it is the cluster head. The threshold T (n) is expressed as

T (n)= p

1− p∗
[
rmod

(
1
p

)] n ∈G (1)
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where p is the probability of the election cluster head being elected, usually set to 5% [16];
r represents the current number of rounds in the election cycle; n represents a node; G is a
collection of nodes that have not been elected cluster heads before round r. In each cluster
construction process, assuming that there are k cluster heads elected in each round, the expression
for calculating p is

p= k
S

(2)

After running 1
p round, it means that all nodes have been elected as cluster heads, and 1

p

round is a fusion cycle of the BPDA model.

2.3 Improved Cluster Head Election Algorithm
After completing a cluster structure calculation, any node can be elected as the cluster head

since the TEEN protocol has a high level of randomness in the selection of cluster heads [17]. If
the wireless sensor network’s node with the least amount of energy is elected, it will hasten the
death of nodes due to energy depletion, reducing the network’s service life. This paper proposes
a cluster head selection algorithm based on the residual energy influence factor in light of the
TEEN algorithm’s unequal distribution of cluster heads (RECH). In the first round of TEEN
protocol clustering, since the sensor nodes have the same energy, the default TEEN clustering
algorithm will be used. When the TEEN protocol progresses to the second round, because the
energy consumption of each sensor node is different, the previous round of energy consumption
must be eliminated because a large number of nodes reduces the probability of a successful
election. The selection formula of the RECH algorithm threshold T(n) is as follows

T (n)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p

1− p∗
[
rmod

(
1
p

)] n= 1

pE

1− p∗
[
rmod

(
1
p

)] n ∈ (1,G]
(3)

where E denotes the influence factor.

Nodes send election messages with different influence factors in the same cluster structure,
and the influence factors of nodes in the second round are calculated according to the following
expression:

E =max
(
p+ er

enew
,M

)
(4)

where p is the probability of TEEN cluster head being elected; er is the remaining energy of the
node at the beginning of the current round; enew is the initial node energy value; M is a constant.
The value of M is set to 10−4 in this article according to different application settings [18]. The
proposed RECH algorithm has a certain enhancement in the clustering speed. The remaining
energy in the cluster is introduced into the algorithm, and the selected cluster head is more
representative of the cluster members, making the energy consumption of the entire network more
balanced.
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3 Data Fusion Model Based on Neural Network

3.1 Model Structure
The BPDA model describes a cluster structure in a wireless sensor network using a three-layer

BP neural network. Fig. 3 illustrates the model’s structure. This clustered structure is assumed to
have a cluster node for the sake of discussion. The BP neural network that corresponds has m
input neurons. The cluster head of the cluster structure corresponds to the neural network’s output
node. Let the perceptual data source be Y , and there are n parallel output neurons according to
the RECH algorithm.

Figure 3: The proposed architecture of the BPDA model

The three-layer BP neural network has been shown in studies to be capable of simulating
any nonlinear mapping under the right conditions of the right number of hidden layer nodes and
hidden layer layers [19]. There is no relation between nodes in the same layer in the BP neural
network. There is an activation mechanism between each layer, and adjacent nodes are linked in
pairs. The activation mechanism processes the input of each layer, and the output of each layer
is the input of the next layer. In neural networks, there is currently no clear theoretical guidance
on the selection of hidden layer nodes. A “trial algorithm” is used in this paper to determine
the appropriate number of hidden layer nodes. First, the hidden layer is created using an existing
empirical expression for node selection intervals, and then a three-layer BP neural network with
variable hidden layers is created, and the influence of the number of hidden layer nodes on
network accuracy and network convergence speed is compared using the same experimental sample
training to determine the best-hidden layer numeric value.

In the existing empirical expression [20], Eq. (5) can be used as the best reference expression
to determine the number of hidden layer nodes

n1 =
√
n+m+ a (5)

where n1 is the number of hidden layer nodes; m,n denotes the number of output neurons; a is
the natural number of (1, 10).
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The BPDA model processes information transmission in the cluster structure using a three-
layer BP neural network. It filters out unnecessary data using the HT & ST threshold and sends
the resulting perception data to the cluster head after the first calculation. The cluster head repeats
the second calculation and obtains a set of characteristic values that represent the network data’s
characteristics, which it then sends to the sink node.

3.2 Data Fusion Model Based on BP Neural Network
The BPDA model must be initialised after the wireless sensor network has completed cluster-

ing and cluster head selection. The initialization of the BPDA model is done in the sink node due
to the limited energy of cluster member nodes. The neural network decides certain parameters of
itself during the initialization process of the BPDA model, which can be obtained by training,
learning, and optimising. The initialization of the BPDA model is also the mechanism of neural
network training and learning. The BPDA model first forms a cluster structure in the wireless
sensor network using the TEEN clustering protocol, then selects cluster heads using the RECH
algorithm. The sensor nodes in this clustering structure accumulate a huge number of sensing
data, so the BPDA model normalises the perception data in the cluster member nodes to speed
up the fitting of the BP neural network. The linear function conversion approach is used in this
article.

y= (Y −minY )

(maxY −minY )
(6)

where y is the value after preprocessing, Y is the sensor node’s perception data source, minY ,
and maxY are the minimum and maximum values in the data source, respectively. The TEEN
protocol’s HT & ST threshold processing is triggered when normalised perception data enters the
neural network’s input layer. Only perception data that passes the HT & ST threshold processing
is allowed to reach the first layer of calculation using the BP algorithm. Neuron functions are
used to process perception data in the first layer of computation, which is the classification of
neurons. Fig. 4 depicts the first layer of measurement logic.

Figure 4: Determination of the first layer of perception data in a neural network

In Fig. 4, wi is the weight of the input neuron; bi is the threshold; F is the activation function,
and the activation function processes the output of the input layer. In the first layer of calculation,
tansig is selected as the activation function of the network, which is defined as

f (x)= 1− e2x

1+ e−2x (7)

The output of the first layer calculation is xj, which is expressed as

xj = f

(
m∑
i=1

wixi− bi

)
(8)
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In the second-layer calculation, the input of the network is the output value of the first-layer
calculation. That is, the second-layer calculation and the first-layer calculation of xj belong to
the processing calculation of neuron functions. The methods are similar, and this article will not
explain in detail. The expression for the output xk of the layer is

xk = f

⎛
⎝ n∑
j=1

wjxj − bj

⎞
⎠ (9)

where wj is the weight of the hidden layer neuron and bj is the threshold. The activation function
selected for the second layer calculation is

f (x)= ax+ b (10)

where a and b are constants, and the value is related to specific research applications.

After the BPDA model processes the perception data, it forwards the characteristic value xk
representing the characteristics of the sample data to the sink node. At this time, the BPDA model
pauses the input of the sample and starts to calculate the weight error of the network. The weight
error is carried out in two steps. The output errors of the output layer neurons and hidden layer
neurons are calculated separately as δk and δj which are expressed as

δk = (ck−xk)xk (1−xk) (11)

δj =
q∑
i=1

δkwjxi (1−xi) (12)

where q is the number of hidden layer nodes and ck is the expected output of the sample. We
use the weight error to update the weight threshold of the BP neural network, and the updated
weight threshold of the output layer is

wi (N+ 1)=wi (N)+αδkxi (13)

bi (N + 1)= bi (N)+βδj (14)

where α and β are constants, and the value is related to specific application research.

After completing the weight threshold update, the sink node inputs the next sample and
cyclically trains until all of the database samples have been completed, completing the BPDA
model’s initialization operation. The weights and thresholds of each layer of the neural network
have been calculated when the BPDA model completes the initialization process, and the sink
node sends these parameters to the corresponding cluster member nodes. These parameters can
be used by cluster member nodes to monitor and measure the network’s performance in order
to achieve the goal of fusion processing. Since the RECH algorithm selects cluster heads on a
regular basis to prevent nodes from dying prematurely due to individual cluster heads’ excessive
energy consumption, and because the BPDA model will continuously record relevant parameters
and data in order to minimise network energy consumption in the next iteration. As a result, once
the next cluster head election is efficient, the BPDA model must transfer the previous iteration’s
parameters. When the cluster head is removed, the BPDA model’s parameters are moved. The
parameters of the output layer neuron are moved to the new cluster head when the cluster head
is replaced. The output layer neuron function is not changed in this article; only the output layer
neuron’s weight and threshold are transferred
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4 Experiment Analysis

The BPDA model is simulated and evaluated in this paper using the NS-2 network simulation
programme [21]. Using real-time temperature monitoring in a wireless sensor network as an
example, each sensor node continuously collects the surrounding ambient temperature, and the
characteristic value representing the perception data is forwarded from the cluster head to the
sink node after the BPDA model’s fusion processing. The experimental results are compared to
the TEEN protocol to illustrate the efficacy of the BPDA model, and the actual performance
of the BPDA model is measured from three perspectives: the network’s data transmission volume,
the number of nodes surviving in the network, and the network’s energy consumption. There are
200 nodes in the simulation system, each with 2 J of energy. The monitoring area is a 100×100 m2

square area and 200 sensor nodes are randomly deployed in the monitoring area. The convergence
node is deployed outside the monitoring area. Each evaluation algorithm deploys five different
network topologies at random, runs a BPDA model simulation test in each topology, and then
averages the five test results as the final simulation test results to avoid the effect of network
topology on the experimental results. Each evaluation algorithm deploys five different network
topologies at random, runs a BPDA model simulation test in each topology, and then averages
the five test results as the final simulation test results to avoid the effect of network topology on
the experimental results.

The network traffic is compared in Fig. 5 using the BPDA model and the TEEN clustering
algorithm. The amount of contact in this paper is measured by the number of feature values
obtained by the sink node. During the sensing data transmission point, the BPDA model dynam-
ically changes the threshold and uses data preprocessing to discard a large number of invalid
data packets, compressing the transmission data of the data packets. Fig. 5 shows that the BPDA
model can sustain a relatively stable linear growth of contact traffic for approximately 3500 s,
while the TEEN protocol can only maintain a relatively stable linear growth for approximately
2500 s. The BPDA model received around 3500 eigenvalues when the experiment hit around 4500s,
while the TEEN protocol had received 5000 eigenvalues at about 3800 s, and the BPDA model
had less data communication at any time. When the RECH algorithm and the neural network are
combined, the BPDA model’s communication volume is greatly increased when compared to the
TEEN protocol. As compared to the TEEN protocol, the BPDA model decreases transmission
frequency by around 30% when transmitting on the same channel. Next, the BPDA model
necessitates less network energy usage, essentially reducing network connectivity and conserving
network energy.

Figure 5: Comparison of data traffic of the proposed and traditional TEEN algorithms
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The wireless sensor network relies heavily on sensor nodes operating normally. When a node
runs out of energy and dies, the wireless sensor network’s life cycle comes to an end. Under
the two algorithms, Fig. 6 depicts the relationship between the number of surviving nodes and
time in the network. The death of the first node in the BPDA model is nearly equal to TEEN,
both at around 700 s, as seen in Fig. 6, but as the experimental period increases, the death
of the entire network node in the BPDA model is postponed for a much longer time than TEEN.
The network energy is essentially depleted when the TEEN protocol runs to about 3000 s, while
the tBPDA model only exhausts the network energy at about 4200 s. By contrast, the wireless
sensor network using the BPDA model has a service life that is approximately 40% longer than
the TEEN protocol.

Figure 6: Comparison of the number of survival nodes of the algorithms

The overall energy comparison of the two algorithms is shown in Fig. 7. The network energy
increases gradually for a period of time, as shown in Fig. 7, but the energy consumption of the
wireless sensor network using the BPDA model is slower. The TEEN protocol seems to have used
up all of the network energy around 3000 s, while the BPDA model has used up all of the network
energy around 4200 s. When the total number of node deaths from the two approaches exceeds
a certain level, the entire network’s energy usage will rise in order to retain the same processing
capacity. The BPDA model, as shown in the diagram, can extend the network’s service life and
boost its efficiency.

Figure 7: Comparison of the node energy of the algorithms
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5 Conclusion

Using a rational clustering structure for data fusion processing will effectively solve the data
fusion problem in wireless sensor networks. This paper proposes a TEEN clustering and BP neural
network-based data fusion model. The energy impact factor is used in the cluster head selection
process so that nodes with more residual energy can be successfully elected. The BP neural
network is used in the fusion processing of the sensing data in the cluster structure information
interaction phase, and the invalid data packets are discarded by compressing the transmission data
of the data packets to achieve the goal of reducing network energy consumption. In comparison
to the conventional TEEN protocol, the simulation results show that the BPDA model can signif-
icantly reduce network data transmission, reduce network energy consumption, and increase data
collection performance. The next step will be to consider other significant WSN considerations,
enforce the scheme, and conduct assessment and analysis.
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