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Abstract: Node failure in Wireless Sensor Networks (WSNs) is a fundamental
problem because WSNs operate in hostile environments. The failure of nodes
leads to network partitioning that may compromise the basic operation of the
sensor network. To deal with such situations, a rapid recovery mechanism is
required for restoring inter-node connectivity. Due to the immense importance
and need for a recovery mechanism, several different approaches are pro-
posed in the literature. However, the proposed approaches have shortcomings
because they do not focus on energy-efficient operation and coverage-aware
mechanisms while performing connectivity restoration. Moreover, most of
these approaches rely on the excessive mobility of nodes for restoration
connectivity that affects both coverage and energy consumption. This paper
proposes a novel technique called ECRT (Efficient Connectivity Restoration
Technique). This technique is capable of restoring connectivity due to single
and multiple node failures. ECRT achieves energy efficiency by transmit-
ting a minimal number of control packets. It is also coverage-aware as it
relocates minimal nodes while trying to restore connectivity. With the help
of extensive simulations, it is proven that ECRT is effective in connectivity
restoration for single and multiple node failures. Results also show that ECRT
exchanges a much smaller number of packets than other techniques. Moreover,
it also yields the least reduction in field coverage, proving its versatility for
connectivity restoration.
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1 Introduction

Wireless Sensor Networks (WSNs) consist of various sensor nodes dispersed for monitoring
different phenomena. Each node in a sensor network can be equipped with a diverse range of
sensors capable of monitoring a wide variety of phenomena. For some applications like wildfire
detection or deep-ocean exploration, sensor nodes deployed in a region stay unattended for a
long period without any human intervention [l]. For this reason, sensor networks should have
self-healing, self-organization, and fault tolerance capabilities for successful operation [2].

Other than the environmental challenges, one of the major challenges in sensor networks
originated from the design and characteristics of the sensor node. Generally, sensor nodes are
quite small in size and have limited resources in processing power and memory. Sensor nodes use
a battery as a central power source [3]. One or more sensors can be attached to a sensor node for
measuring different phenomena from the environment. Sensor nodes detect desired phenomena in
the environment and can transmit this information to other nodes via radio transceivers.

In general, sensor nodes are often deployed in harsh environments where human access is
restricted; therefore, the replacement of node batteries is not possible. After deploying nodes
into a network of sensors, those nodes communicate with each other to establish a network.
This network coordinates the sensor nodes and transmits the detected information to the end-
user [3]. As a sensor network covers a fairly large area, not all sensor nodes are within the
transmission range of the end-user. Nodes must rely on multi-hop communications for sending
information toward the end user [4—6]. The reliability of the collected information can be increased
by increasing the node density in an area. During the period, battery exhaustion of the sensor
nodes occurs as a result of message transmission and information processing.

When the battery of a node is fully depleted, this sensor node is considered a dead node. As
network nodes begin to disappear during the operation of a sensor network, connectivity holes
appear within the network. A connectivity hole is referred to as an area where the nodes are
no longer connected. Connectivity holes lead to loss of inter-node connectivity, leading to the
inability to send the end-users sensed information. The first step is to detect a failure if a node
in the network has failed/died to address such a situation.

Once such a failed node is identified, the next step is to notify the nodes adjacent to the
failed node about repositioning. The disconnected nodes become connected again [7]. However, it
is possible for network nodes to die at any time due to battery exhaustion or physical damage
due to difficult environmental factors.

A failed node may disrupt network connectivity, and the network may develop multiple
isolated segments or partitions. This scenario results in a failure of the flow of information
between the sensor nodes and the end-user terminal. This scenario may compromise the basic
operation of the sensor network and to prevent this, network connectivity should be restored.
One potential connectivity solution is the deployment of redundant nodes in place of dead nodes.
However, this process is slow and often impracticable, particularly in environments where nodes
are more susceptible to physical damage. The connectivity restoration process should be self-
organized using existing living nodes within the network. The recovery mechanism needs to be
robust, and the overhead on the sensor nodes involved in the recovery process should be minimal
because of the resource constraints.

Failure of nodes in a sensor network results in different types of connectivity problems. This
work categorized the connectivity problems into four different cases:
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1) cut-vertex failure, 2) end node failure, 3) two cut-vertex node failures, and 4) multiple end
node failures. Details of such cases are provided in Section 3.

Dealing with the above cases is a challenging task. This paper proposes a novel connectivity
restoration technique called An Efficient Connectivity Restoration Technique (ECRT) to handle
the issues associated with network connectivity. Our work’s major focus is to propose a technique
capable of restoring connectivity using the existing nodes in the network; therefore, there is no
need to re-deploy new nodes for restoring connectivity. Moreover, ECRT does not substantially
reduce the network coverage as observed by the other connectivity restoration techniques. As
energy efficiency is one of the major concerns in sensor networks; therefore, ECRT does not rely
on the exchange of large amounts of messages for its operation. ECRT can also detect all the
identified four connectivity problems and effectively find the solution for each case.

The rest of the paper is organized as follows. In Section 2, we describe the most relevant
related work. Section 3 consists of the research method used for our research work, and we also
elaborate on the four different cases related to connectivity restoration. Section 4 presents the
simulation results, and subsequently, Section 5 concludes this paper.

2 Related Work

Connectivity restoration in wireless sensor networks is an area that has been thoroughly
studied by researchers [8—11]. Some solutions are based on relocation on-demand, while other
solutions rely on post-deployment relocation. The applications requiring sensor nodes to be
deployed over large geographic areas use aerial deployment of the nodes [12]. Due to this, node
density throughout is not uniform, and some areas may have a higher density of nodes than some
other areas. To achieve a uniform distribution of nodes, relocation of sensor nodes is desired so
that connectivity can be established between the sensor nodes and the end-user and coverage area
can be maximized.

The connectivity aspect is thoroughly studied in the literature, and several approaches are
presented [8—12]. Some works are more focused on maximizing the coverage of nodes without
affecting connectivity. In [13], a distributed algorithm for the restoration of network connectivity
in node failure is proposed. This algorithm relies on the mobility of nodes for restoring connec-
tivity in case of failure of a node, and the algorithm also strives to improve the coverage of the
area. In [14], the authors considered robot networks, and a technique similar to [13] is introduced
for the process of connectivity restoration. A 2-connected network concept is introduced, meaning
that there should exist a minimum of two pathways among each pair of nodes in the network.
This approach achieves 2-degree connectivity. For dealing with a node’s failure, the algorithm
strives to achieve 2-connectivity by moving a pair of sensor nodes. In this way, connectivity
is restored. In [15], the authors proposed a technique called C2>AP. In this technique, post-
deployment of nodes is used for improving coverage and connectivity. A hierarchical architecture
is proposed by the authors called COCOLA in [16], where coverage is maximized without for-
warding data path to 1-tier node by the incremental relocation of higher-tier nodes. However,
both the proposed solutions, C2AP and COCOLA, are incapable of dealing with the failed nodes’
implications.

In [17], a solution based on node’s cascaded movement is introduced for connectivity restora-
tion due to failed nodes. According to this technique, a nearby node replaces a failed node,
which is then replaced by another node, and this process continues until finding a redundant
node. C3R (Coverage Conscious Connectivity Restoration) [18], RIM (Recovery through Inward
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Motion) [19], and AUR (Autonomous Repair) [20] are techniques that have a similar focus as
our work. C3R addresses connectivity restoration in case of one or more failed nodes. Once a
failed node is detected, then it is substituted by each neighbor node temporarily for a limited
amount of time. After a specified time, the neighbor node gets back to its original position. The
other neighbors repeat this process. The main issue with this approach is that it involves much
movement of neighboring nodes to tackle a node’s failure. It results in a large overhead in energy
consumption as sensor node movement consumes a substantial amount of energy [21]. In [13], the
authors proposed a new method called DARA. DARA uses a scheme based on probability for
detecting cut vertices and selecting an appropriate neighbor node to the failed node for relocation.
The appropriateness of the neighbor is decided based on the number of communication links.
In [19], the authors proposed another technique called RIM. RIM is based on recovery by the
inward motion, and the neighboring nodes of a failed node take part to relocate the failed node
temporarily.

RIM requires all nodes in the network to have 1-hop information. Once a failed node is
detected, the neighbors of that failed node move inward toward its position. Inward movement is
to ensure that the neighbors will stay in the range of each other. The main idea is that as these
neighbors are directly affected by the node’s failure, therefore, after inward movement, if they can
reach each other again, the network connectivity would be restored to its pre-failure state. This
relocation procedure is applied recursively for handling any node that gets disconnected due to one
of their neighbors’ movements. Through extensive simulations, it was proved that RIM is effective
for connectivity restoration. However, in the case of a highly dense network, RIM suffers because
it tends to move a large number of neighboring nodes, resulting in a substantial increase in the
total traveled distance overhead. This also results in high energy usage, decreasing the network
lifetime.

In [20], the authors proposed an approach called Autonomous Repair (AuR). It uses a
concept similar to electrostatic interaction based on Coulomb’s law between modeling connectivity
charges among neighboring nodes. For the recovery process, only localized information about the
immediate neighboring nodes is used. Neighbors initiate the recovery process by first detecting
the failed nodes. Then, the neighbors start to move toward the failed nodes, causing the intra-
segment topology to be stretched. If connectivity is still unrestored, the segment is then moved
as a block toward the deployment area’s center. Moving all segments close to the center increases
node density in the center point’s vicinity, leading to an increase in the probability of connec-
tivity getting reestablished. Geometric Skeleton based Reconnection (GSR) is proposed in [22].
GSR employs a geometrical skeleton-based approach to logically partition networks into different
segments. A group of nodes having maximum connectivity becomes the geometrical skeleton
backbone. Each segment keeps track of all skeletal backbone nodes because it plays an important
part in network partitioning. In the case of network partitioning, each segment tries to join the
geometrical skeleton backbone. This process leads to the restoration of connectivity. However,
GSR assumes that each node knows the locations of all other nodes in the network. Second, it
is also a pre-requisite that all nodes in the network must be aware of all nodes present in the
geometrical skeleton backbone. These assumptions are impractical, particularly for large networks,
because keeping all this information in a network with mobile nodes can cause massive overhead.
Another problem that may arise during the network’s operation is that the skeleton backbone
may exhaust its energy soon, decreasing such nodes. After a while, the lack of presence of such
nodes may result in compromising the recovery mechanism. All the above-mentioned works do
not consider connectivity, coverage, and energy efficiency collectively. Our proposed work can be
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distinguished from the above-mentioned works because it addresses connectivity restoration, better
coverage, and efficient energy use in an integrated manner.

An energy-efficient technique, Intelligent On-Demand Connectivity Restoration for Wireless
Sensor Networks (IDCRWSN) [23], has been presented that efficiently uses the sensor nodes’
residual energy. IDCRWSN restores the connectivity through redundant nodes, which are managed
by Slave Keeper nodes. The Slave Keeper nodes are managed and controlled by the Master Keeper
nodes. The Permanent Relocation Algorithm for Centralized Actor Recovery (PRACAR) and
Self-Route Recovery Algorithm (SRRA) [24] addresses the connectivity restoration of failed actor
nodes. The PRACAR restores failed actor nodes’ connectivity, and SRRA provides an optimal
path to the relocated sensor nodes.

Efficient Solution for Connectivity Restoration (ESCR) [25] is an energy-efficient technique.
The technique restores the network with an efficient consumption of residual energy and least
node movement. Only such node can participate in network restoration, which is near the faulty
node and has more energy. It stopped unnecessary cascade movement of the nodes during the
restoration process. ESCR consists of two algorithms, i.e., Assigning Backup Nodes (ABN) and
Connectivity Restoration Process (CPR) are designed to handle actor node failure and connec-
tivity problems in wireless sensor and actor networks. ESCR compared with other well-known
techniques and found better than others. It is evaluated in the environment where sensor nodes
are stationary, and only actor nodes can move. Its result can be varied if we consider the mobility
of sensor nodes as well.

3 Research Method

We identified different cases that may come up if single or multiple nodes in a network die.
Our work’s objective is to propose a solution capable of recognizing all of the identified cases
and then taking necessary actions to restore connectivity. For our proposed algorithm, we assume
that all sensor nodes are randomly deployed in the deployment area. After their deployment, all
nodes discover their neighbors by exchanging HELLO beacon messages. For the initial relocation
of nodes, the mechanism used in [18] is used. Algorithm 1 presents the steps that are used for
initial node relocation. Fig. 1 shows the initial relocation scenario. It is assumed that all network
nodes are homogenous and have the same processing and communication capabilities. For each
node, it is assumed that the sensing range and communication range are equal. In this paper, we
use Rc for representing the sensing and communication range.

Algorithm 1: Initial node relocation for ECRT

Nj: Sensor Nodes, Nbr;: Neighboring Nodes of Nj, R.: Communication Range
Input: Area, N;, R,

Output: Initial node relocation successfully done

1 BEGIN

2 SET N;

3 FOR EACH Node N; DO

4 SET DS; < Distance between the Sink and N;
5

6

7

IF(DS; > R./2 && DS; < R,) THEN
MoveTowardsSink(N;, DS;) I/ Function
ELSE IF(DS; < R./2)

(Continued)
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8 //Do not move

9 ELSE

10 //this node is present outside the range of the Sink
11 FOR EACH Neighbouring Node Nbr; of N;

12 SET DN; < Distance between N; and Nbr;

13 IF(DN; > R./2)

14 MoveTowardsNeighbor(Nbrj, DN;)

15 ELSE

16 //Do not move

17 END

18 MoveTowardsSink(N;, DS;)

19 BEGIN

20 While(DS; > R./2)

21 Keep moving towards Sink

22 Update position and notify neighbors via HEARTBEAT message
23 SET DS; < Distance between N; and Sink

24 END

25 MoveTowardsNeighbor(Nbr;, DN;)

26 BEGIN

27 While(DN; > R./2)

28 Keep moving towards the node

29 Update position and notify neighbors via HEARTBEAT message
30 SET DN; < Distance between N; and Nbr;

31 END

=Rc /2

t—p = R

Figure 1: Network topology after initial relocation
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Once the nodes are deployed in an area, each node will broadcast HELLO beacon messages
with a transmission range of RC/2 for providing its location information to other nodes in the net-
work [18]. Each node share information, including its ID and current position in acknowledgment
(ACK), to all the neighboring nodes. The transmission range of Rc/2 is used for the transmission
of ACK. Also, each node periodically sends a broadcast message for synchronization called SYN
message. The transmission range used for transmitting SYN messages is also Rc/2. SYN messages
are used for the identification of failed nodes. For example, let us consider the scenario presented
in Fig. 1. If the node S7 has failed, nodes S5, S6, and S8 will not receive SYN messages from S7.
The absence of a SYN message means the failure of a node. Upon detecting a failed node, nodes
S5, S6, and S8 will send a HELLO message with a transmission range Rc toward the failed node
direction. Upon receiving the HELLO message, in reply, each node transmits an ACK message.
In this way, each node updates the list of neighbors, and they initiate mobility to restore the
network, as depicted in Fig. 2.

Upon detecting the failure, it is important to understand the impact of failure on the network
topology. In this work, we have categorized four scenarios that can occur due to single or multiple
node failure.

=Rc /2

p—— Rc

Figure 2: Single cut-vertex failure

3.1 Scenario 1: Single Cut-Vertex Failure

The cut-vertex scenario is illustrated in Fig. 2. This happens when a node’s failure divides
the connected network into multiple disjoint partitions [21]. In Fig. 2, it can be observed that the
failure of node F divides the network into two partitions resulting in cut-vertex failure. Failure
of node F is detected by nodes S5, S6, and S8 due to the absence of SYN messages from node
F. Algorithm 2 illustrates the single cut-vertex failure detection and restoration process. For con-
nectivity restoration by our proposed algorithm, nodes S5, S6, and S8 send a broadcast HELLO
(also known as Heartbeat) message with a communication range of Rc. If each node receives an
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ACK from another neighboring node, node’s mobility needs to restore network connectivity. Upon
receiving the ACK from neighboring nodes, and all nodes update the routing list. The solutions
presented in [13,17,22] rely on the cascaded relocation of neighboring nodes in the given scenario.
It is proven that cascaded relocation of nodes leads to more energy consumption leading to a
quick drainage of sensor node’s batteries [4]. Cascaded relocation also leads to the shrinking of
network coverage. Our proposed algorithm improves energy efficiency by avoiding the un-necessary
mobility of neighboring nodes and improving network coverage. Essentially, this algorithm also
prefers coverage; therefore, these coverage holes will be fulfilled by the neighbors by measuring
overlapped distance according to [1£].

Algorithm 2: Single cut-vertex failure detection and restoration

N (SN;) : Sensor Nodes, N(CV): Cut—

Vertex Nodes, Nbr (CV) : Neighboring Nodes of CV, ACK: Acknowledgement, R.: Communication
Range

Input: Area, N (SN;), N (CV), Nbr(CV), R,

Output: Single cut-vertex failure detection and restoration

1 BEGIN

2 SET N (SN;), N(CV)

3 FOR EACH cut-vertex node in N(CV) do

4 IF(Nbr (CV) detects that N (CV) has failed) THEN

5 Nbr (CV) braodcast HEARTBEAT with a range equals to R,
6 IF (Nbr(CV) received ACK) THEN

7 Update_Routing_Table(N (SN;));

8 //As connectivity is maintained under range R., therefore, no need for movement
9 ELSE

10 Cascaded_Movement();

11 Update_Routing_Table(N (SN;));

12 END IF

13 END IF

14 END

3.2 Scenario 2: Single End Node Failure

End nodes are also referred to as leaf nodes. These are nodes normally present at the edge
of the network. Failure of end-nodes does not affect inter-node connectivity. However, their
failure affects the coverage area. Upon detecting end node failure (due to the absence of HELLO
messages), the neighboring nodes will calculate the overlapped coverage area with the failed node
using the mechanism presented in [18]. A neighboring node with more overlapping distance with
the failed node is a suitable candidate for moving toward a failed node. During the movement,
the node will continue to send HELLO messages and receive ACK messages to neighboring nodes
with a communication range of Rc. This process ensures that the node mobility by a suitable
candidate node does not cause network disconnectivity. For further illustration of this process, let
us consider Fig. 3a. Let us assume that node S4 has failed. The failure of S4 will be detected by
its neighbors, i.e., S3, and S6 due to the absence of SYN messages from S4. Both the neighbors
S3 and S6 will compute the relative overlapped sensing area with the failed node S4. Node S3
has more overlap areas with the failed node than S6. Therefore, S3 will be selected as a suitable
neighbor responsible for moving toward the failed node S4. According to [18], S3 will move a
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maximum distance of Rc/4 toward the direction of S4. This process is illustrated in Fig. 3b,
and the steps are presented in Algorithm 3. During the movement, S3 will continue sending and
receiving HELLO and ACK messages with Rc’s transmission range with neighbors to ensure
connectivity. End nodes are also referred to as leaf nodes. These are nodes normally present at
the edge of the network. Failure of end-nodes does not affect the inter-node connectivity [26—28].

(a) (b)

Figure 3: (a) End node failure (b) Recovery from end node failure

Algorithm 3: Single-end node failure detection and restoration

N (SN;) : Sensor Nodes, N (EN;): End Nodes, Nbr(ENj;): Neighboring Nodes of EN;, R.:
Communication Range

Input: Area, N (SN;), N(EN), Nbr(EN), R,

Output: Single-end node failure detection and restoration

1 BEGIN

2 SET N (SN;), N(EN,)

3 FOR EACH end node in N(EN;) do

4 IF(Nbr (EN;) detects that N (EN;) has failed) THEN

5 Calculate_Overlapped_Area (Nbr(EN;), Nbr (ENJ))

6 IF (Overlapped_Area (Nbr (EN;)) > Overlapped_Area (Nbr (ENJ))) THEN
7 Nbr (EN;) moves towards Nbr (EN/) with a distance R./4 from its origin
8 /I Broadcast HEARTBEAT message to all neighboring nodes

9 Relocation();

10 Update_Routing_Table(N (SN;));

11 END IF

12 END IF

13 END
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3.3 Scenario 3: Two Cut-Vertex Node Failure

Two cut-vertex node failure is shown in Fig. 4, where multiple nodes fail simultaneously
causing a network partition. The implications of two cut-vertex node failures are substantial. In
this case, merely broadcasting HELLO messages with a transmission range of Rc will not be
received by the nodes toward a failed node as the distance between nodes is greater than Rc (as
illustrated in Fig. 4a). The absence of ACK will mean no immediate neighbors of the failed node
in the Rc range. Dealing with this problem, a new type of message called coordination message
will be broadcast with a transmission range of Rc¢/2 among the neighbors as they start to move
toward the failed node. The coordination message ensures that no moving node goes out of range
of its neighbor, causing further disruption in the network which shows simultaneous node failure.
These moving nodes will continue to transmit HELLO messages and wait for ACK messages.
Receiving the ACK message will mean a node in the failed node’s vicinity capable of restoring
connectivity. This process is illustrated in Fig. 4b, and the steps are presented in Algorithm 4.
Fig. 4b shows the original position of the relocated nodes as well as the position after relocation.

=Rc fz =Rc }'2
PN +—=Rc —=Re
s7 R o o
Yz O = Original Position
ssf®
h
(a) (b)

Figure 4: (a) Two cut-vertex nodes fail. (b) Recovery of two cut-vertex node

Algorithm 4: Two cut-vertex failure detection and restoration

N (SN;) : Sensor Nodes, N (CV) : Cut—

Vertex Nodes, Nbr(CV) : Neighboring Nodes of CV, R.: Communication Range
Input: Area, N (SN;), N (CV), Nbr(CV), R,

Output: Two cut-vertex failure detection and restoration

1 BEGIN
2 SET N (SN;), N(CV)
3 FOR EACH cut-vertex node in N(CV) do

(Continued)
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4 IF(Nbr (CV;) && (Nbr(CVj) detects that N (CV;) and N (CV)) has failed) THEN

5 Nbr(CV;) and Nbr(CV;) will move toward N (CV;) and N (CV;) with respect to R./2
to its origin

6 Nbr(CV;) and Nbr(CV;) will broadcast HEARTBEAT message

7 Cascaded_Movement();

8 Update_Routing_Table(N (SN;));

9 END IF

10 END

3.4 Scenario 4: Multiple End Node Failure

Multiple end node failure is illustrated in Fig. 5. As WSNs operate in harsh environments,
therefore multiple end node failure is a possibility. Multiple end node failure can cause a big
coverage hole, and for various applications, it is undesirable. To deal with such a situation, the
failed nodes’ neighbors start to move toward the failed nodes and exchange SYN messages for
reporting the change in location to all neighbors. The maximum movement toward the failed
nodes by neighbor nodes is Rc/4 (as assumed in most baseline works such as [13,17,18]). Fig. 5b
illustrates the movement of nodes toward the failed nodes to cope with multiple node failures.
Multiple end node failure detection and recovery process are presented in Algorithm 5.

S2

=Rc/2
4= R

' =Rc /2
7 ety = R

O = Original Position

(a) (b)

Figure 5: (a) Shows the multiple end nodes failure (b) Shows the recovery of multiple end nodes
failure



1014 CMC, 2021, vol.69, no.1

Algorithm 5: Multiple end node failure detection and restoration

N (SN;) : Sensor Nodes, N (EN;): End Nodes, Nbr(EN;): Neighboring Nodes of EN;, R.:
Communication Range

Input: Area, N (SN;), N(EN), Nbr(EN), R,

Output: Multiple end node failure detection and restoration

1 BEGIN

2 SET N (SN;), N(EN))

3 FOR EACH end node in N(EN;) do

4 IF(Nbr (EN;) detects that N (EN;) have failed) THEN

5 Nbr (EN;) will move towards N (EN;) with respect to R./4 to its origin
6 Nbr (EN;) will broadcast heartbeat message

7 Coverage_Enhancement();

8 Update_Routing_Table(N (SN;)));

9 END IF

10 END

3.5 Energy Model

The proposed technique ECRT transmits and receives a 8-bit data packet over distance d by
using the energy model described in [29]. While transmitting a B-bit data packet over distance d,
the sensor node’s energy depletion is calculated as:

BEeiec + /3"3fsd2 d<d- }

1
BEejec + ﬂempd4 d>do O

Ery (B,d) = {
where €_g is the required energy in free space at the Radio Frequency (RF) amplifier and e_,
is the required energy in multipath at the Radio Frequency (RF) amplifier. E_.,. is the energy
depletion per bit for the sender or receiver circuit.

While receiving a B-bit data packet over distance d, the energy depletion of a sensor node is
calculated as:

ERy (B) = ERx—clecB (2)

where E_gy_.c 1S the energy consumed per bit by the receiver circuitry.

The remaining residual energy of a sensor node is given by:
Ereng (n) = Epax — E7x (B, d) — ERx (B) 3)

4 Results and Discussion

For the simulations, we have used NS2 (Network Simulator 2). During all simulations, at time
T = 0, sensor nodes are randomly deployed in a field with dimensions of 950 x 950 m?. The
communication range is varied between 25 and 150 m. Node density is varied in the simulation
area by varying the number of nodes between 100 and 250. Tab. | illustrates the simulation
parameters. Each point in the graph is calculated by running simulations with random seeds ten
times. The results for the proposed algorithm are compared with baseline algorithms RIM [1§],
C3R [19], GSR [22], and AUR [20]. The following sections explain the results obtained by doing
extensive simulations.
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Table 1: Simulation parameters

Simulation parameters Values
Simulation area 950 x 950 m?
Number of nodes 50-250

Rc 25-150 m
Simulation tool NS-2.34

4.1 Total Distance Moved During Relocation

Fig. 6 shows the effect of increasing the number of nodes on the total distance moved by
nodes for connectivity restoration. It can be observed that our proposed protocol ECRT performs
well compared to all the other baseline algorithms. The major reason behind this is that ECRT
moves just the critical nodes near the failed nodes. Alternatively, all the other baseline algorithms
rely on non-critical nodes’ movement, resulting in cascaded relocation. Therefore, the average
distance moved by all baseline protocols is much more as compared to our proposed algorithm.
Cascaded relocation increases the average distance moved by the nodes during recovery and
average energy consumption. As ECRT reduces cascaded relocation compared to other protocols,
therefore it proves to be more efficient.

-1}
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Figure 6: Nodes vs. distance moved

4.2 Number of Nodes Moved

The number of nodes moved by the considered protocols by increasing the total number
of nodes in the network is presented in Fig. 7. As the number of nodes increases; the number
of nodes moved by all protocols increases. However, our proposed protocol ECRT outperforms
all the considered baseline protocols as the increase in the number of nodes moved is lesser.
Cascaded relocation is the main reason for more nodes moving on average for all considered
baseline algorithms.

4.3 Reduction in Field Coverage

The percentage reduction in field coverage concerning different communication range is shown
in Fig. 8. Two factors contribute to the reduction in field coverage. First, the nodes that die due
to complete drainage of their batteries; second, the node movement to restore connectivity. Our
proposed protocol aims to achieve connectivity restoration by reducing the number of exchanged
messages (for achieving energy efficiency) and moving only critical nodes (for the restoration of
connectivity and improving field coverage in case of failed nodes). It is evident from the figure
that with an increase in the communication range of nodes, the percentage reduction in the field
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coverage decreases for all considered protocols. The percentage reduction in the field coverage by
our proposed protocol ECRT is lesser than all other baseline protocols. Among all considered
protocols, RIM yields the largest percentage reduction in the field. The major reason behind this
observation is using excessive cascaded relocation for connectivity restoration. Other protocols also
move non-critical nodes for connectivity restoration, leading to the increased energy consumption
of nodes due to movement leading to the failure of more nodes in the network. This ultimately
decreases the coverage area.
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Figure 7: The average number of nodes moved during recovery
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Figure 8: Percentage reduction in field coverage

4.4 Number of Exchanged Packets

The average number of packets exchanged by all considered protocols is illustrated in Fig. 9.
For the working of each protocol, several different types of packets are transmitted. For Fig. 9,
the communication range is varied between 25 to 150 m. It can be observed from the figure that
with the increase in the communication range, the number of packets exchanged increases for
all considered protocols. The operational details of each protocol impact the number of packets
that need to be exchanged. Moreover, the decisions made regarding the movement of nodes also
play a key role. Whenever a node is relocated, it needs to exchange different control packets with
its neighboring nodes. The more nodes a protocol relocates, the more packets are exchanged. It
can be seen from the figure that RIM exchanges the maximum number of packets compared
to all other protocols. Cascaded relocation is one of the major factors resulting in increased
packets for all baseline protocols. As our protocol moves just the critical nodes; therefore, it avoids
unnecessary relocation of nodes. This results in a lower number of exchanged packets. Due to
this, our proposed protocol exchanges the least number of packets. Exchanging the least number
of packets also makes our proposed protocol more energy efficient as packets’ exchange requires
energy. Therefore, ECRT proves to be the most energy-efficient protocol among all considered
protocols.



CMC, 2021, vol.69, no.1 1017

2
£ 10000 gy @C3R
B 8000 TmAUR BGSR
£ £ 6000 [@ECRT
2 £
£'S 4000 -
S o
g 2000 | I
2 o - m__ Mo laun_ ) )
25 50 75 100 125 150

Communication range (m)

Figure 9: Total number of exchanged packets

For the continuous operation of sensor networks, connectivity restoration is of immense
importance, and a technique capable of restoring the connectivity is crucial for smooth opera-
tion. A connectivity restoration technique should be self-organizing, coverage-aware, and energy-
efficient. By studying the literature, it was observed that most of the solutions for connectivity
restoration focused on only one of the above features but not all of them collectively. This
research aimed to design a novel connectivity restoration mechanism that effectively restores
connectivity by moving fewer nodes than existing techniques. Another focus was to keep the
connectivity restoration technique energy efficient by exchanging a minimal number of control
messages. Last but not least, the technique should minimize the reduction in field coverage.
Our proposed connectivity restoration mechanism achieves all the above objectives. Extensive
simulations proved the effectiveness of our proposed protocol.

5 Conclusion

Due to Wireless Sensor Networks (WSN)’s inherent characteristics, network partitioning is
one of the fundamental problems. It is important to have an efficient connectivity restoration
mechanism capable of restoring connectivity in single or multiple node failures. In this paper,
we proposed a novel connectivity restoration technique called ECRT. ECRT can detect single
and multiple node failures and efficiently restore connectivity by relocating a minimal number of
nodes. It does not face the problem of cascaded relocation, and by doing extensive simulations, it
is proved that it achieves an energy-efficient operation by exchanging a minimal number of pack-
ets. Moreover, it moves much lesser nodes on average compared to the other baseline approaches.
It also improves the field coverage as it results in a minimum percentage reduction in the field
coverage compared to the other approaches.

Future work can be extended in two possible dimensions. The first dimension involves devel-
oping an analytical model for the proposed solution under different mobility models. The second
dimension involves implementing the proposed solution on real sensor nodes and doing extensive
performance evaluations.

Acknowledgement: The authors extend their appreciation to the Jouf University for funding this
work through Research Groups under Grant Number (40/117).

Funding Statement: This research is funded by Jouf University Saudi Arabia, under the research
Project Number 40/117. URL: www.ju.edu.sa.

Conflicts of interest: The authors declare that they have no conflicts of interest to report regarding
the present study.


https://www.ju.edu.sa.

1018 CMC, 2021, vol.69, no.1

References

[1] S. Lee, M. Younis and M. Lee, “Connectivity restoration in a partitioned wireless sensor network with
assured fault tolerance,” Ad Hoc Networks, vol. 24, no. 9, pp. 1-19, 2015.

[2] M. Z. A. Bhuiyan, G. Wang, J. Cao and J. Wu, “Deploying wireless sensor networks with fault-
tolerance for structural health monitoring,” IEEE Transactions on Computers, vol. 64, no. 2, pp.
382-395, 2015.

[3] M. Hassan, A. A. Awady, K. Mahmood, S. Ali and M. K. Saeed, “Node relocation techniques
for wireless sensor networks: A short survey,” International Journal of Advanced Computer Science and
Applications, vol. 10, no. 11, pp. 323-329, 2019.

[4] V. Ranga, M. Dave and A. K. Verma, “Node stability aware energy efficient single node failure recovery
approach for WSANSs,” Malaysian Journal of Computer Science, vol. 29, no. 2, pp. 106-123, 2016.

[S] M. Hassan, M. A. Khan, S. Ali, K. Mahmood and A. M. Shah, “Distributed energy efficient node
relocation algorithm (DEENR),” International Journal of Advanced Computer Science and Applications,
vol. 9, no. 3, pp. 95-100, 2018.

[6] M. R. Senouci, A. Mellouk, L. Oukhellou and A. Aissani, “WSNs deployment framework based on
the theory of belief functions,” Computer Networks, vol. 88, no. 4, pp. 12-26, 2015.

[7]1 B. Ishibashi and R. Boutaba, “Topology and mobility considerations in mobile ad hoc networks,” Ad
Hoc Networks, vol. 3, no. 6, pp. 762-776, 2005.

[8] A. A. Abbasi and M. Younis, “A survey on clustering algorithms for wireless sensor networks,”
Computer Communications, vol. 30, no. 14-15, pp. 2826-2841, 2007.

[9] K. Akkaya and M. Younis, “Coverage and latency aware actor placement mechanisms in WSANS,”
International Journal of Sensor Networks, vol. 3, no. 3, pp. 152, 2008.

[10] K. Akkaya and M. Younis, “C2AP: Coverage-aware and connectivity-constrained actor positioning in
wireless sensor and actor networks,” in IEEE Int. Performance, Computing, and Communications Conf.,
New Orleans, LA, USA, pp. 281-288, 2007.

[11] M. Younis and K. Akkaya, “Strategies and techniques for node placement in wireless sensor networks:
A survey,” Ad Hoc Networks, vol. 6, no. 4, pp. 621-655, 2008.

[12] M. Younis, S. Lee and A. A. Abbasi, “A localized algorithm for restoring internode connectivity in
networks of moveable sensors,” IEEE Transactions on Computers, vol. 59, no. 12, pp. 1669-1682, 2010.

[13] A. A. Abbasi, K. Akkaya and M. Younis, “A distributed connectivity restoration algorithm. Wireless
sensor and actor networks,” in Proc. of the 32nd IEEE Conf. on Local Computer Networks (LCN 2007 ),
Dublin, Ireland, pp. 496-503, 2007.

[14] P. Basu and J. Redi, “Movement control algorithms for realization of fault-tolerant ad hoc robot
networks,” IEEE Network, vol. 18, no. 4, pp. 36-44, 2004.

[15] K. Akkaya and M. Younis, “Coverage-aware and connectivity-constrained actor positioning in wireless
sensor and actor networks,” in Proc. of the 26th IEEE Int. Performance Computing and Communications
Conf. (IPCCC 2007 ), pp. 363-374, 2010.

[16] M. K. Saeed, M. Hassan, A. M. Shah and K. Mahmood, “Connectivity restoration techniques for
wireless sensor and actor network (WSAN), a review,” International Journal of Advanced Computer
Science and Applications, vol. 9, no. 9, pp. 139-145, 2018.

[17] G. Wang, G. Cao and T. F. L. Porta, “Movement-assisted sensor deployment,” in Proc. of the 23rd
Annual Joint Conf. of the IEEE Computer and Communications Societies, Hong Kong, pp. 640452, 2012.

[18] N. Tamboli and M. Younis, “Coverage-aware connectivity restoration in mobile sensor networks,”
Journal of Network and Computer Applications, vol. 33, no. 4, pp. 363-374, 2010.

[19] M. Younis, S. Lee and G. Gupta, “A localized self-healing algorithm for networks of moveable sensor
nodes,” in Proc. of the IEEE Global Telecommunications Conf., New Orleans, LA, pp. 1-5, 2008.

[20] Y. K. Joshi and M. Younis, “Autonomous recovery from multi-node failure in wireless sensor network,”
in IEEE Global Communications Conf., Anaheim, CA, pp. 652-657, 2012.



CMC, 2021, vol.69, no.1 1019

[21]

K. Yan, G. Luo, L. Tian, Q. Jia and C. Peng, “Hybrid connectivity restoration in wireless sensor and
actor networks,” EURASIP Journal on Wireless Communications and Networking, vol. 2017, no. 1, pp.
1366, 2017.

Y. K. Joshi and M. Younis, “Exploiting skeletonization to restore connectivity in a wireless sensor
network,” Computer Communications, vol. 75, no. 12, pp. 97-107, 2016.

K. Mahmood, M. A. Khan, M. Hassan, A. M. Shah, S. Ali et al, “Intelligent on-demand connectivity
restoration for wireless sensor networks,” Wireless Communications and Mobile Computing, vol. 2018, pp.
10, 2018.

K. Mahmood, M. A. Khan, M. Hassan, A. M. Shah and M. K. Saeed, “Permanent relocation and
self-route recovery in wireless sensor and actor networks,” International Journal of Advanced Computer
Science and Applications, vol. 9, no. 3, pp. 83-89, 2018.

M. K. Saeed, M. Hassan, K. Mahmood, A. M. Shah and J. Khan, “Efficient solution for connectivity
restoration (ESCR) in wireless sensor and actor-networks,” Wireless Personal Communications, vol. 117,
no. 3, pp. 2115-2134, 2020.

B. Chen, H. Chen and C. Wu, “Obstacle-avoiding connectivity restoration based on quadrilateral
Steiner tree in disjoint wireless sensor networks,” IEEE Access, vol. 7, pp. 124116-124127, 2019.

L. Liu, M. Ma, C. Liu, W. Qu and G. Zhang, “ATCFS: Effective connectivity restoration scheme for
underwater acoustic sensor networks,” IEEE Access, vol. 7, pp. 8770487715, 2019.

Y. Zhang, Z. Zhang and B. Zhang, “A novel hybrid optimization scheme on connectivity restoration
processes for large scale industrial, Wireless Sensor and Actuator Networks,” Processes, vol. 7, no. 12,
pp. 939, 2019.

P. Chanak, I. Banerjee and R. S. Sherratt, “Energy-aware distributed routing algorithm to tolerate
network failure in wireless sensor networks,” Ad Hoc Networks, vol. 56, no. 3, pp. 158-172, 2017.



