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Abstract:Non-orthogonal multiple access (NOMA) is one of the leading tech-
nologies for 5G communication. User pairing (UP) and power allocation (PA)
are the key controlling mechanisms for the optimization of the performance
of NOMA systems. This paper presents a novel UP and PA (UPPA) technique
for capacity and fairness maximization in NOMA called (CFM-UPPA). The
impact of the power allocation coefficient and the ratio between the chan-
nel gains of the paired users on the sum-rate capacity and the fairness in
NOMA is firstly investigated.Then, based on this investigation, the PA andUP
algorithms of the CFM-UPPA technique are proposed. The power allocation
coefficient of the proposed PA is formulated as an exponentially decaying
function of the ratio between the channel gains of the paired users tomaximize
the capacity and the fairness, and its maximum value is adjusted to guarantee
the successive interference cancellation (SIC) constraints. The proposed UP is
based on selecting the user that has the highest channel gain per subcarrier
as the strong user to maximize the capacity and selecting the user that has
the closest lower channel gain to the strong user’s channel gain as the weak
user to improve the fairness and capacity. The performance evaluation of the
proposed CFM-UPPA technique in terms of capacity, fairness, and outage
probability demonstrates that its performance significantly outperforms that
of the orthogonal multiple access (OMA) system and that of the NOMA sys-
tem with random UP. Also, the simulation results demonstrate the efficiency
of the proposed PA in improving the performance of other UP algorithms,
such as the random UP algorithm.

Keywords: 5G; non-orthogonal multiple access; user pairing; power
allocation; capacity; fairness

1 Introduction

The rapid development of multimedia applications and the applications of the Internet of
Things (IoT), in addition to the huge increase in the number of wireless and mobile devices,
paved the way for the emergence of the 5G communication networks. NOMA has emerged as a
promising access technology for capacity enhancement in 5G networks by enabling multiple users
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to use the same subcarrier at the same time with the aid of successive interference cancellation
(SIC) technique implemented at the receiver to detect the user data. The performance optimization
of NOMA strictly depends on the efficiency of user pairing (UP) and power allocation (PA)
mechanisms. UP and PA mechanisms are responsible for controlling all performance metrics of
NOMA, such as system capacity, fairness among users’ equipment (UE), and data rate outage
probability [1–5].

Existing UP and PA mechanisms try to improve NOMA performance, but most of them
succeeded focus on in improving the system capacity at the expense of the other important
metrics such as the fairness among users and the outage probability. Also, most of the existing
researches require exhaustive searching and high computational complexity to provide a near-
optimal solution for the UP and PA problems. So, in this paper, a novel capacity and fairness
maximization-based UP and PA (UPPA) technique called (CFM-UPPA) is proposed for downlink
NOMA. The main contributions of the proposed CFM-UPPA technique can be summarized as
follows:

(1) An extensive investigation of the impact of the power allocation coefficient and the ratio
between the channel gains of the paired users (i.e., paired UEs) on the sum-rate capacity
and the fairness in NOMA is presented. Also, the investigation results are analyzed to
clarify how to adjust the power allocation coefficient using the PA algorithm and select the
channel gains of the paired UEs using the UP algorithm to maximize the capacity and
fairness.

(2) Then based on the investigation results, the PA algorithm of the CFM-UPPA technique,
which is called capacity and fairness maximization-based PA (CFM-PA) is proposed. The
power allocation coefficient of CFM-PA is formulated as an exponentially decaying func-
tion of the ratio between the channel gains of the paired UEs to maximize the capacity
and the fairness, and its maximum value is adjusted to guarantee the SIC constraints.

(3) The UP algorithm of the CFM-UPPA technique, which is called capacity and fairness
maximization-based UP (CFM-UP) is based on selecting the user that has the highest
channel gain per subcarrier as the strong user to maximize the capacity and selecting the
user that has the closest lower channel gain to the strong user’s channel gain as the weak
user to improve the fairness and capacity.

(4) Both CFM-PA and CFM-UP can be considered as non-exhaustive searching algorithms.
Also, unlike the proposed CFM-PA, most of the existing PA algorithms are exhaustive
searching algorithms and have no closed-form equation for the power allocation coefficient
for the maximization of capacity and fairness.

(5) The performance of the proposed CFM-UPPA technique in terms of capacity, fairness, and
outage probability is evaluated, and the simulation results show that its performance signif-
icantly outperforms that of the OMA system and that of the NOMA system with random
UP. In addition, the proposed CFM-PA is applied to the random UP to demonstrate its
efficiency in improving the performance of other UP algorithms.

The paper is organized as follows. Related work is discussed in Section 2. The system model
and capacity are outlined in Section 3. The impact of the power allocation coefficient and the
ratio between the channel gains of the paired UEs on capacity and fairness in NOMA is presented
in Section 4. The proposed CFM-UPPA technique is provided in Section 5. Section 6 presents the
results, comparison, and discussion. Finally, Section 7 concludes the paper.
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2 Related Work

Resource allocation in terms of UP and PA plays the main role in improving the performance
of NOMA especially in terms of the network capacity. However, the traditional UP and PA
methods succeeded in improving the capacity of NOMA with different degrees, they fail in
improving other important performance metrics such as fairness among UEs and outage proba-
bility at the same time. Besides, computational complexity is another important parameter that
should be carefully considered in the design of resource allocation mechanisms since it reduces
computational efficiency and the speed of allocation decisions [6–9].

A deep neural network (DNN) based resource allocation technique is proposed in [10] to
handle the complexity problem of traditional resource allocation methods since DNN can perform
the real-time allocation. Generic DNN is trained to approximate the interior point method (IPM)
for PA to improve the computational efficiency and increases the capacity of the system. In [11],
a joint dynamic PA and UP algorithm is proposed for power-efficient and delay-constrained hybrid
OMA/NOMA systems. In this hybrid system, UP determines if the UE will be served by OMA
or NOMA. Both queue state information and the channel are observed, and the PA and UP
optimization framework is proposed to minimizes the average transmit power while guaranteeing
minimum data rates and decreasing the queueing delay.

In [12], multi-objective optimization is used for resource allocation in multi-user downlink
NOMA systems to improve spectrum efficiency and energy efficiency. A joint spectrum and energy
optimization problem is formulated and solved using dual decomposition while guaranteeing the
SIC process by preserving the constraint of the minimum gap among UE transmit powers. In [13],
a joint UP and PA algorithm for uplink NOMA systems is proposed to improve the proportional
fairness of UEs. A basic scenario in which UEs are distributed in a single base station (BS) and
a complex scenario in which the interfering UEs users are randomly distributed outside BS is
considered. Tabu search is used to provide a near-optimal solution for the UP problem in the basic
scenario and the PA problem in the complex scenario is solved using stochastic programming.

Many research works have investigated the NOMA capacity improvement in heterogeneous
networks [14–19]. The selection of the UP method for NOMA according to the network load to
make a trade-off between the capacity gain and the complexity of the UP method is presented
in [14]. Gale–Shapley, Hungarian, random, and exhaustive methods are considered for UP with
dynamic PA, and the results show that for equally loaded cells, the near-optimal UP methods
provide the highest network capacity gain (22%–24%). While for unequally loaded cells, simpler
UP methods provide higher capacity gains (approximately 29%).

Also, many researchers investigate resource allocation in MIMO based NOMA sys-
tems [20–24]. A greedy-search-based UP and a minimum mean square error (MMSE) based PA is
proposed in [20] to maximize the sum-rate of a downlink NOMA network. Also, the transmitted
power of all UE pairs and that of each UE in each pair are optimized and an iterative procedure
is used to solve the PA problem. Performance improvement of Multi-cell MIMO-NOMA networks
is investigated in [25,26]. In [25], to improve system data rate, the resource allocation problem is
divided into NOMA mobile user clustering and the base station selection. A new objective func-
tion is proposed to integrate mobile user fairness into system data rate optimization. Moreover,
a closed-form solution of MIMO-NOMA resource allocation for a single cluster is derived and
a new two-side coalitional matching approach to jointly optimize MIMO NOMA clustering and
BS selection is proposed. An analytical framework for exploring the benefits of applying MIMO
NOMA clustering in dense wireless networks is developed in [26]. With the aid of stochastic
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geometry, a new explicit expression for per-cluster average data rates are derived, and the analysis
and optimization of area spectral efficiency are considered.

Owing to the important role of cognitive radio as promising solutions to provide high spec-
tral efficiency for future wireless networks, the resource allocation problem in cognitive NOMA
Networks is investigated recently in many studies [27–29]. In [27], an uplink IoT device scheduling
and power allocation problem based on imperfect spectrum sensing and imperfect channel state
information (CSI) is investigated for cognitive heterogeneous NOMA networks. The outage perfor-
mance of an overlay cognitive NOMA system with imperfect successive interference cancellation
(SIC) is investigated in [28]. Closed forms of the outage probability of primary user and secondary
user are derived, and an optimal power allocation coefficient is proposed to maximize the system
throughput. NOMA-assisted overlay cognitive radio network in which the communication between
the pair of primary users is achieved with the aid of the secondary transmitter (ST) is considered
in [29]. The authors aim to minimize the outage probability of the secondary system under
quality-of-service (QoS) constraints of the primary system by jointly optimizing the decoding
order at the receivers and the power allocation factor at ST.

3 System Model and Capacity

A downlink NOMA system is considered, which consists of a base station (BS), multiple
subcarriers, and multiple users (i.e., multiple UEs) as shown in Fig. 1. The set of subcarriers
donated by m = {1,. . ., M}, and the set of UEs donated by k = {1,. . ., K}. The paired UEs
transmit over the same subcarriers, and for a subcarrier m it is assumed that UE-1’s channel

gain is the larger one. Since
∣∣hm, 1

∣∣2 >
∣∣hm, 2

∣∣2, UE-1’s receiver can perform SIC and remove the
interference from UE-2’s signal. The ratio between the channel gain of UE-2 (weak UE) hm, 2 to

the channel gain of UE-1 (strong UE) hm, 1 is μ= hm, 2

hm, 1
< 1 such that hm, 2 =μhm, 1. If the power

allocation coefficient for UE-1 is α < 0.5 then UE-2’s signal is allocated 1−α transmit power.

On subcarrier m, the BS transmits a superimposed signal for the paired UEs as

xm =
√

αPmsm, 1+
√

(1−α)Pmsm, 2 (1)

where Pm is the power allocated to the subcarrier m and sm, 1 and sm, 2 are the message signal
transmitted to UE-1 and UE-2 respectively on subcarrier m.

The received signals for both UEs are

ym, i= hm, ixm+ nm, i i= 1, 2 (2)

where hm, i donates the channel gain between the BS and UE-i, which is assumed to be Rayleigh
distributed. and nm, i denotes the additive white Gaussian noise (AWGN) with zero mean and
variance σ 2.

By assuming that the transmission bandwidth per subcarrier is normalized to 1 Hz. Then the
achievable data rates of the paired UEs are

Rm, 1 = log2

(
1+ αPm

∣∣hm,1
∣∣2

σ 2

)
(3)
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Rm, 2 = log2

(
1+ (1−α)Pm

∣∣hm, 2
∣∣2

αPm
∣∣hm, 2

∣∣2+ σ 2

)
(4)

So, the sum-rate capacity per subcarrier m for NOMA is

Cm =Rm, 1+Rm, 2. (5)

The achievable data rate of the UE-i on subcarrier m in an OMA system is given by

ROMA
m,i = 1

2
log2

(
1+ Pm

∣∣hm, 1
∣∣2

σ 2

)
i= 1, 2. (6)

So, the sum-rate capacity per subcarrier m for OMA is ROMA
m, 1 +ROMA

m, 2 , where the factor
1
2
is

due to the fact that the OMA system results in a multiplexing loss of
1
2
.

Figure 1: System model of downlink NOMA system

4 The Impact of α and μ on Capacity and Fairness of Paired UEs in NOMA

In this section, the capacity (i.e., sum-rate) and fairness of paired UEs in NOMA will be
presented as a function of both the power allocation coefficient (α) and the ratio of UE-2’s
channel gain of to UE-1’s channel gain of (μ). Eq. (3) presents the achieved data rate of strong
UE (Rm, 1) while Eqs. (4) and (5) are used after substituting hm, 2 =μhm, 1 to represent the achieved
data rate of weak UE (Rm, 2) and the capacity of the paired UEs (Cm) respectively.
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The Jain fairness index (FI) presented in Eq. (7), which measures of the fairness among the
achieved users data rate Rk is used to evaluate fairness performance.

F = (
∑K

k=1Rk)
2

K
∑K

k=1(Rk)
2

(7)

The performance is investigated at SNR per subcarrier
(
Pm
σ 2

)
= 10 dB. The investigation

results when the channel gain of the strong UE is normalized to 1 (hm,1 = 1) are presented in
Figs. 2–5 while the investigation results at hm,1 = 2 are presented in Figs. 6–9 to show the impact
of increasing hm,1. The capacity of paired UEs presented in Fig. 2 shows that as μ decreases
(i.e., as the channel gains of the paired UE diverge), the capacity decreases especially at small
values of α. On the other hand, the increase of α has a significant impact on increasing the
capacity, especially as μ decreases. So. we can conclude that α should be increased as μ decreases
to increase the capacity and vice versa.

Figure 2: NOMA capacity of paired UE at hm,1 = 1

Figure 3: Fairness index at hm,1 = 1



CMC, 2021, vol.69, no.1 527

Fig. 3 shows that the fairness performance significantly deteriorates as μ becomes lower than
0.5 and as α increases. On the other hand, the fairness performance significantly improves as μ

increases (i.e., the channel gains of the paired UEs converge) and with the use of small values of
α. The obtained results in Fig. 3 can be more clarified by looking to Figs. 4 and 5, which present
the achieved data rate of weak UE and the achieved data rate of strong UE. For weak UE, the
achieved data rate sharply increases as μ increases, and α decreases, as shown in Fig. 4. On the
other hand, the achieved data rate of strong UE independents on μ and increases as α increases
as shown in Fig. 4.

Figure 4: Data rate of weak UE (Rm,2) at hm,1 = 1

Figure 5: Data rate of strong UE (Rm,1) at hm,1 = 1

The results presented in Figs. 6–9 show that increasing the channel gain of the strong UE to
2 (hm,1 = 2) significantly increases the capacity of paired UE as shown in Fig. 6. This is because
the achieved data rate of both weak UE and strong UE is considerably increased as shown in
Figs. 8 and 9, respectively. Also, it is shown that the capacity decreases as μ considerably decreases
especially at small values of α. So. α should be increased as μ decreases to increase the capacity.
On the other hand, increasing hm,1 makes the fairness performance deterioration more sensitive
to the increase of the value of α, and the FI considerably decreases as α increases especially at
low values of μ as shown in Fig. 7.
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Figure 6: NOMA capacity of paired UE at hm,1 = 2

Figure 7: Fairness index at hm,1 = 2

Figure 8: Data rate of weak UE (Rm, 2) at hm,1 = 2

From the analysis of the investigation results, we can conclude the following concepts:

• To increase the capacity, α should be increased as μ decreases and vice versa. Since the
capacity decreases as μ decreases especially at small values of α.
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• The fairness performance significantly improves as μ increases (i.e., the channel gains of
the paired UEs converge) and with the use of small values of α.

• The capacity significantly increases as the channel gain of the strong UE (hm,1) increases.

It should be noted that the selection of the value of α is the responsibility of the power
allocation (PA) algorithm, while the selection of the values of μ and hm,1 is the responsibility of
the user pairing (UP) algorithm.

Figure 9: Data rate of strong UE (Rm, 1) at hm,1 = 2

5 The Proposed CFM-UPPA Technique

The proposed CFM-UPPA technique consists of capacity and fairness maximization-based
PA (CFM-PA) algorithm and capacity and fairness maximization-based UP (CFM-UP) algorithm.
Both CFM-PA and CFM-UP algorithms based on the concepts concluded from the investigation
results of the impact of α and μ on capacity and fairness in NOMA which is presented in the
previous section. A detailed description of each algorithm is given in the next sections.

5.1 The Proposed CFM-PA Algorithm
With respect to the selection of the value of α, which is the responsibility of the PA

algorithm, the investigation results presented in Section 4 demonstrate the following:

• To increase the capacity, α should be increased as μ decreases.
• The fairness performance significantly improves with the use of small values of α. In other
words, the fairness performance deteriorates as α increases, especially at small values of μ.

So, the objectives of CFM-PA are as follows:

(1) Increase α as μ decreases to maximize capacity, and this will be at the expense of some
degradation in fairness performance at small values of μ.

(2) Considerably decrease α as μ increase to maximize both capacity and fairness.
(3) Adjust the maximum value of α (αmax) to guarantee the SIC constraints.

To achieve these objectives, the proposed relation between α and μ is formulated as follows:

α = αmaxe−3μ (8)
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where

αmax= 0.5

(
1− θ

Pm
∣∣hm,1

∣∣2
)

(9)

Eq. (9) for αmax is derived from the required gap between the received powers of paired users
for successful SIC [12].

[(1−α)Pm−αPm]
∣∣hm,1

∣∣2 ≥ θ (10)

where θ is the minimum required gap.

5.2 The Proposed CFM-UP Algorithm
With respect to the selection of the values of μ and hm,1 which is the responsibility of

the user pairing (UP) algorithm, the investigation results presented in Section 4 demonstrate the
following:

• To increase the capacity, μ should be increased. Since the capacity decreases as μ decrease
especially at small values of α

• The fairness performance significantly improves as μ increases.
• The capacity significantly increases as hm,1 increases.

So, the objectives of CFM-UP are as follows:

(1) Increasing the values of μ which results in maximization of both the capacity and fairness.
So, CFM-UP aims to pair the weak UE that has the closest lower channel gain to the
strong UE’s channel gain.

(2) Selecting the UE that has the highest channel gain over the subcarrier as the strong UE
(UE-1) to maximize the capacity of the NOMA system.

The steps of CFM-UP are as follows:

(1) For each subcarrier, the channel gains of UEs are sorted in descending order, and the
highest UE’ channel gain is detected.

(2) Sorting the subcarriers in descending order according to its highest UE’s channel gain and
follows this order during the UP process in the following steps.

(3) CFM-UP starts the selection process by selecting the strong UE for each sorted subcarrier
(i.e., the subcarrier with highest UE’s channel gain first). The UE that has the highest
channel gain over the subcarrier is selected as the strong UE, and each selected UE is
discarded from subsequent selection during the UP process since each UE can be paired
on a single subcarrier.

(4) After completing the selection process of the strong UE for each subcarrier in step 3,
CFM-UP starts the selection process of the weak UE for each sorted subcarrier. The UE
that has the closest lower channel gain to strong UE’s channel gain over the subcarrier
is selected as the weak UE, and each selected UE is discarded from subsequent selection
during the UP process.
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The pseudo-code of the proposed CFM-UP is shown in Algorithm 1.

Algorithm 1: Proposed CFM-UP Algorithm

1: Initialization: Construct channel gain matrix H = ∣∣hm,k
∣∣2 ∀ m ∈M subcarriers & k ∈K users.

2: for m = 1 to M do
3: detect the highest UE’s channel gain for each m subcarrier: hm

Highest =max
∣∣hm,k

∣∣2 ∀m.
4: Sort the M subcarriers in descending order according to hm

Highest.
5: end for
6: Start the selection process of the strong UE for each subcarrier.
7: for the sorted M subcarrier do
8: Select the UE that has the highest channel gain (hm

Highest) for each sorted m
subcarrier as the strong UE.

9: discard the selected UE from any subsequent selection for any subcarrier.
10: end for
11: Start the selection process of the weak UE for each subcarrier.
12 for the sorted M subcarrier do
13: Select the UE that has the closest lower channel gain to strong UE’s channel gain

for each sorted m subcarrier as the weak UE.
14: discard the selected UE from any subsequent selection for any subcarrier.
15: end for
16: End of the Algorithm.

6 Results, Comparison, and Discussion

In the simulation, we consider the NOMA system, which is characterized by the frequency
selective fading channel with six independent multipath. The fading parameter in the channel
model is a random variable and follows the Rayleigh distribution. It is assumed that the trans-
mission bandwidth per subcarrier is normalized to 1 Hz. The results presented below refer to
ensemble averages across 5000 channel realizations.

In this section, the performance of the proposed CFM-UPPA scheme is evaluated and com-
pared with the performance of the OMA system, as well as that of NOMA utilizing random
UP. Random UP is considered as the lowest complexity UP algorithm, which provides suboptimal
capacity performance since it is based on the random selection of the paired UEs on each
subcarrier without considering the users’ channel conditions [30]. Both the proposed CFM-PA and
Fractional Transmit Power Allocation (FTPA) [31,32] are used for power allocation for random
UP to demonstrate the efficiency of the proposed CFM-PA in improving the performance of other
UP algorithms. During the simulation, the decay power allocation factor of FTPA is set to be
0.2, and the value of minimum power gap θ for CFM-PA is set to be 1W.

Firstly, the performance is evaluated as a function of SNR at M = 32 subcarriers (i.e., K =
64 UEs). Fig. 10 shows that the proposed CFM-UPPA technique achieves considerably higher
capacity than that of random UP and that of OMA. It is clear that the capacity of CFM-UPPA
is higher by more than 2 bps/Hz than the capacity of OMA and higher by slightly less than
2 bps/Hz than the capacity of random UP for all SNR values.
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Figure 10: The system capacity vs. SNR at 32 subcarriers (64 UEs)

Despite the good fairness performance is the main feature of NOMA random UP due to
its random allocation nature, Fig. 11 demonstrates the efficiency of CFM-UPPA in providing a
significantly high degree of fairness among UEs compared to NOMA random UP. In addition,
Fig. 11 demonstrates the significant efficiency of CFM-PA in improving the fairness of random
UP compared to the FTPA algorithm. On the other hand, the high FI obtained by OMA is a
result of the nonexistence of interference among UEs in OMA and the uniform power allocation.

Figure 11: Fairness index (FI) vs. SNR at 32 subcarriers (64 UEs)

The probability that UE’s data rate is lower than a minimum data rate R0 is called the outage
probability and it is represented in Fig. 12 for R0 = 1 bps/Hz and in Fig. 13 for R0 = 2 bps/Hz.
It is shown that CFM-UPPA technique provides the lowest outage probability especially at small
SNR values and its values are approximately lower by a factor 0.1 than the values of random
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UP and OMA for most of the SNR values. Also, it is shown that CFM-PA efficiently reduces the
outage probability of random UP compared to the FTPA algorithm especially at R0 = 2 bps/Hz.

Figure 12: Outage probability at R0 = 1 bps/Hz vs. SNR at 32 subcarriers (64 UEs)

Figure 13: Outage probability at R0 = 2 bps/Hz vs. SNR at 32 subcarriers (64 UEs)

Secondly, the performance is evaluated as a function of the number of UEs at SNR =
20 dB where the number of UEs is double the number of subcarriers. Fig. 14 shows that the
capacity of the proposed CFM-UPPA outperforms that of OMA by approximately 30% and that
of NOMA random UP by approximately 17%. Also, it is shown that the capacity of the CFM-
UPPA improves as the number of UEs increases, while the capacity of the other algorithms tends
to reach its maximum value as the number of UEs becomes greater than 16 UEs. With respect to
the fairness performance, Fig. 15 shows that CFM-UPPA achieves significantly high FI equals 0.9
compared to 0.63 obtained by random UP with FTPA, and the proposed CFM-PA can improve
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the fairness performance of random UP by 35% (FI = 0.85) compared to the FTPA algorithm. In
terms of outage probability, the lowest outage probability for R0 = 1 bps/Hz and R0 = 2 bps/Hz
is achieved by CFM-UPPA and it slightly improves as the number of UEs increases. on the other
hand, the worst outage probability is achieved by random UP with FTPA as shown in Figs. 16
and 17. Also, it is shown that CFM-PA considerably reduces the outage probability of the random
UP compared to the FTPA algorithm.

Figure 14: The system capacity vs. the number of UEs at SNR = 20 dB

Figure 15: Fairness index (FI) vs. the number of UEs at SNR = 20 dB
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Figure 16: Outage probability at R0 = 1 bps/Hz vs. the number of UEs at SNR = 20 dB

Figure 17: Outage probability at R0 = 2 bps/Hz vs. the number of UEs at SNR = 20 dB

7 Conclusion

Since the performance of the NOMA system is controlled by UP and PA. So, this paper
presents a novel UP and PA (UPPA) technique for capacity and fairness maximization called
(CFM-UPPA). Firstly, the paper investigates the effect of the power allocation coefficient and the
ratio between the channel gains of the paired users on the capacity and the fairness of the NOMA
systems. Then, capacity and fairness maximization-based PA (CFM-PA) is proposed in which the
power allocation coefficient is formulated as a function of the ratio between the channel gains
of the paired users, and its maximum value guarantees the SIC constraints. After that, capacity
and fairness maximization-based UP (CFM-UP) is proposed to pair the strong user that has the
highest channel gain per subcarrier with the weak user that has the closest lower channel gain
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to the strong user’s channel gain to maximize the capacity and fairness. Simulation results show
that the performance of the proposed CFM-UPPA technique significantly outperforms that of
the OMA system and that of the NOMA system with random UP. Also, applying the proposed
CFM-PA to the random UP significantly improves its performance.
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