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Abstract: The heart rate variability signal is highly correlated with the respi-
ration even at high workload exercise. It is also known that this phenomenon
still exists during increasing exercise. In the current study, we managed to
model this correlation during increasing exercise using the time varying inte-
gral pulse frequency modulation (TVIPFM)model that relates themechanical
modulation (MM) to the respiration and the cardiac rhythm. This modulation
of the autonomic nervous system (ANS) is able to simultaneously decrease
sympathetic and increase parasympathetic activity. The TVIPFMmodel takes
into consideration the effect of the increasing exercise test, where the effect of
a time-varying threshold on the heart period is studied. Our motivation is to
analyze the heart rate variability (HRV) acquired by timevarying integral pulse
frequency modulation using time frequency representations. The estimated
autonomic nervous system (ANS) modulating signal is filtered throughout
the respiration using a time varying filtering, during exercise stress testing.
And after summing power of the filtered signal, we compare the power of the
filtered modulation of the ANS obtained with different time frequency rep-
resentations: smoothed pseudoWigner–Ville representation, spectrogram and
their reassignments. After that, we used a student t-test p < 0.01 to compare
the power of heart rate variability in the frequency band of respiration and
elsewhere.

Keywords: Heart rate variability; respiration; TVIPFM; mechanical
modulation; autonomic nervous system

1 Introduction

The Heart Rate Variability is the time variation of heartbeats. It reflects the regulations of
the Autonomic nervous System [1,2]. The fluctuations of heart rate are modeled by mathematical
chaos [3]. The variability leads to the flexibility to rapidly contend with a changing environment.
Modeling biological systems reveals spatial and temporal complexity, so any disorder changes this
complexity [4]. Higher magnitude of the HRV is not always a sign of healthy biological conditions.
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For instance, any conduction problem in the heart, makes HRV amplitudes higher. To study the
HRV, we need to start with studying electrocardiogram (ECG) waves. A good interpretation of
these waves shows whether high HRV values are the consequence of cardiac problems like atrial
fibrillation [5] or other side effects that could impact heart rhythm [6]. A normal magnitude of
HRV could be interpreted as a sign of adaptability or resilience. Higher magnitudes of HRV are
due to the effect of executive functions by the prefrontal cortex [7,8].

The Integral pulse frequency modulation (IPFM) model explains the influence of the heart
rate by the autonomic nervous system [9] in several physiological conditions: at rest or during
exercise [10,11]. However, the IPFM model considers the heart period as a constant [12,13] which
means that it considers a constant mean heart period [14]. That’s why we use the time varying
threshold IPFM (TVIPFM) model to analyze the heart rate variability during exercise. Applying
this model leads to the approximation of a modulating signal taking into account the time varying
threshold. Many studies highlighted the close relationship between respiration and HRV [15–17].
That’s why in this paper, we analyze non-stationary (HRV) signals using time varying filtering
based on the frequency band of respiration.

Our study is in stress testing exercise, permitting us to look the respiratory information to
estimate parasympathetic activity. Heart rate variability was analyzed in time frequency domain.
The Wigner–Ville [18] and the Smoothed Pseudo Wigner–Ville Distributions (SPWVD) have
already been used to analyze biological signals [19], including HRV and respiration oscillations.
The Smoothed Pseudo Wigner–Ville Distribution is a good technique to study large band non-
stationary signals. This technique allows us to determine time-intervals, where the heart rate
variability is excited and where it is not. The knowledge of these intervals in time could also be
used to find a direct correlation, graphically and analytically, between the heart rate variability
and the respiration. But unfortunately, the SPWVD has a cross term which causes interference,
that’s why we need a reduction of cross terms, which is obtained by use of analytical signal with
no frequencies instead of real signal. This procedure is based on the Hilbert Transform, which is
a linear transform that extends a real signal to a complex one, to satisfy the equations of Cauchy
Riemann.

This method could be applied during exercise with a high stress test, but it could be applied
during other conditions.

2 Methods and Materials

In our study, one of the time frequency representations used in non-stationary conditions, is
the spectrogram. The spectrogram is as below [20,21]

Sx (t,υ)=
∣∣∣∣
∫ ∞

−∞
x (s)h∗ (s− t) e−i2πυsds

∣∣∣∣
2

(1)

h is a smoothing window. The spectrogram is the squared magnitude of the short Fourier
Transform.

Another time-frequency representation studied is the Pseudo Wigner–Ville Distribution
(PWVD) since it uses a short term window, whose effect is to operate on the Wigner–Ville
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distribution a smoothing frequency, which amounts to limit the interference terms only compo-
nents that are simultaneously present in the window. The PWVD is defined by [22]:

X (t,υ)=
∫ ∞

−∞
p (s)x

(
t+ s

2

)
x∗

(
t− s

2

)
e−i2πυsds (2)

with p is a smoothing frequency window, if this window is factorable, we have:

p (s)= h∗
( s
2

)
h

(
− s
2

)
(3)

And the result obtained is the pseudo Wigner–Ville, inspired from the Wigner–Ville. This
analysis is a slippery short term analysis, which therefore resembles the spectrogram. To find a
relation between spectrogram and SPWVD, we introduce the weighted delayed signal:

xt (s)= h∗ (s)x(s+ t) (4)

permitting as to define the PWVD:
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Spectrogram can be written as:

Sx (t, s)=
∣∣∣∣
∫ ∞

−∞
xt (s) e−i2πυsds

∣∣∣∣
2

(6)

Using the spectrogram as a smoothed version of Wigner–Ville distribution presents two
major weaknesses: the first one is that passing to spectrogram implies the loss of theoretical
advantageous properties of Wigner–Ville distribution, and the second one is that the smoothing
introduced obeys the constraint of Heisenberg–Gabor between time and frequency. Since the
smoothing time frequency associated to spectrogram has only one degree of freedom.

Considering the two dimensions obtained by the time and the frequency domain, improvement
is possible if we move to a smoothing with two “degrees of freedom” respectively to the time
and frequency. Both distributions, spectrogram and pseudo Wigner–Ville, have the same principle,
a signal segment taken with a short-term window. After, both undergo a Fourier Transform,
followed by a quadratic operation. In this paper we use the SPWVD and the balance between
time and frequency filtering can be done independently. One of the drawbacks of the SPWVD
representation is the presence of interferences.

After we will use the indicator function named GABresp in the time frequency domain showed
as below{
GABresp= 1 if f ∈Band of respiration
GABresp= 0 if f /∈Band of respiration

(7)
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3 The Time Varying Threshold Integral Pulse Frequency Modulation Model

The TVIPFM model considers m(t) as the ANS control. The first beat happens at time t0 = 0,
so tk is solution of [2,23]:

k=
∫ tk

0

1+m(t)
T(t)

dt (8)

the instantaneous heart rate is defined as 1+m(t)
T(t)

Supposing that the oscillating term m(t)
T(t) is with higher frequency than the term 1

T(t) , so

dHRM(t)= 1
T(t)

(9)

and the heart rate variability is represented by

dHRV (t)= dHR (t)− dHRM (t)= m(t)
T(t)

(10)

After dividing the HRV dHRV (t) by dHRM (t) we obtain m(t). The variations of the time-
varying threshold TAC (t) are smaller than the mean value TDC. Rewriting the instantaneous heart
rate

dHR (t)= 1+m(t)
TDC +TAC (t)

= 1+m(t)

TDC
(
1+ TAC(t)

TDC

) ≈ 1+m (t)
TDC

(
1+ TAC (t)

TDC

)
(11)

Assuming m(t)� 1 we have:

dHR (t)=
1+m (t)− TAC (t)

TDC
TDC

(12)

We assume

dHRM (t)=
1− TAC (t)

TDC
TDC

≈ 1
TDC

(13)

This mean heart rate obtained by the TVIPFM model, is more adequate to stress tests and
exercise, taking into consideration a mean heart period varying function of time, changing between
two successive heartbeats. So

m (t)= dHRV (t)
dHRM (t)

(14)

First, we calculate k (t) from the pairs (tk,k), then we low-pass filter dHR (t) to obtain the
dHRV (t) term. Therefore, we get m (t). Finding this modulating signal using our TVIPFM model
combined with different time frequency representation is aiming to calculate the effect of the
autonomic nervous system on the sinoatrial node. This control is synchronized with the respiratory
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sinus arrhythmia. This modulation m (t) plays a key role to understand different pathologies and
dysfunctions of the autonomic nervous system to monitor the cardiac rhythm.

4 Statistical Analysis

The correlation between the respiration and the ANS modulation is investigated by comparing
the instantaneous power throughout the respiration using the gabarit function, and the instanta-
neous power at the rest of the frequencies, other than the frequency band of respiration, using
a student t-test. Statistical results have been shown at the time frequency domain, during exercise
stress testing.

We calculate the instantaneous power for each time, around the respiration at the first time,
and elsewhere at the second time. The student t-test significance was fixed for p< 0.01.

5 Results

5.1 Simulation Study
In Fig. 1, we generate a signal containing three parts to represent the modulating signal. The

first part is a sinusoidal signal with constant frequency around 100 Hz and a constant magnitude
equal to one. In the second part, we generate a chirp with instantaneous frequency varying linearly
from 100 to 350 Hz, and with a magnitude, increasing linearly from one to five, and the third
part is like the first one.

Figure 1: The smoothed pseudo Wigner–Ville representation of the simulated signal, with the
gabarit in black

We define the gabarit function as a function which is equal to one around the frequency band
of respiration and zero elsewhere, mathematically, it can be considered as the Indicator function
which is equal to one around the respiratory frequency and zero elsewhere. The gabarit plays a
key role in filtering, the representation of the obtained signal will be multiplied by the gabarit
function in the time frequency domain for spectrogram, SPWVD and their reassignments. After
the filtered signal obtained at the frequency band of respiration, will be studied to compare which
representation is better, and contains more power. In this simulated signal, we consider that the
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respiratory signal is concentrated around the frequencies of the signal in each part, the aim of
this simulation is to show how the gabarit is well adapted to our simulated modulation [24].

In Fig. 2, after representing in the time frequency domain with spectrogram, SPWVD and
both their reassignments [25] for a simulated signal, the result obtained will be multiplied by the
GABresp and after that we integrate over the frequencies weighting by the number of the points
used in the gabarit function. The obtained result, is quadratic in the time domain, to compare
it with the original signal, we take the root square of this quantity, and we compare with the
envelope of the magnitude of the starting signal as shown in Fig. 3.

Figure 2: The envelope of the magnitude of the filtered signal obtained after time frequency
representation

Figure 3: Envelope of the magnitude of the simulated signal
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5.2 Real Signals During Exercise Stress Testing
In our study, we need the instants tk, from these beat occurrences, first we obtain the

instantaneous heart rate, then we get the time varying mean heart rate from the instantaneous
heart rate, using a high-pass filtering, then we obtain the heart rate variability by subtracting the
time varying mean heart rate from the instantaneous heart rate. Finally, the obtained HRV will
be corrected by the time varying mean heart rate, and we obtain the modulating signal using the
TVIPFM model.

The technique proposed in this paper is the time varying signal filtering using the gabarit
function at the time frequency domain around the respiration.

The SPWVD signal X (t,υ) of the original signal x(t) is after integrated respect to the
frequency υ, for spectrogram and the SPWVD and their reassignments, we expect to have the
instantaneous power |x (t) |2, and∫
X (t,υ)dυ =

∫ ∫
h∗

( s
2

)
h

(
− s
2

)
x

(
t+ s

2

)
x∗

(
t− s

2

)
e−i2πυsdsdυ = |x (t) |2 (15)

Fig. 4. shows the time frequency representation of the HRV of a real signal using the
SPWVD representation with the gabarit function (in black) around the recorded frequency band
of respiration. The high correlation between the HRV obtained from the TVIPFM model and the
respiration is obviously displayed.

Figure 4: The smoothed pseudo Wigner–Ville representation of a real signal with gabarit function

So, we obtain the magnitude of the signal x (t) after the time varying filtering, that’s why we
apply the root square on this quantity to retrieve the magnitude of the real signal.

In Fig. 5, we represent the envelope of the magnitude of the modulating signal with dif-
ferent time frequency representations like SPWVD, spectrogram and their reassignments. Results
obtained prove the importance of our time varying filtering technique to retrieve the modulation
from the heart rate variability due to the respiratory sinus arrhythmia. The use of a time varying
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model with a time varying filtering around the respiration, gives us the best envelope using the
spectrogram method.

Figure 5: Magnitude of the filtered real signal

In Fig. 6, we show that the correlation between the HRV and the respiration using different
kinds of time frequency representations as spectrogram, SPWVD and their reassignments.

Figure 6: Student t-test with significance p< 0.01

There is a high correlation between the respiration and the heart rate variability, with signif-
icance p < 0.01. In this figure, for each time frequency representation, the instantaneous power
at the frequency band of respiration and elsewhere are computed. We obtain two sets of data.
We use a t-test with a window of 200 samples. The curves spwv, r-spwv, spe and r-spe plotted
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in Fig. 6 represent the result of the t-test, the horizontal straight line represents the threshold
of the significance level. The presence of the instantaneous power in the respiratory frequency
band is always shown p < 0.01 with each time frequency representation. Therefore, we can use
our technique of filtering to retrieve the envelopes of the magnitude of the modulating signal
corresponding to the ANS modulation. The spectrogram representation, shows the most significant
correlation between the modulating signal and the respiration.

The correlation modeled between the respiration and the HRV plays a key role to understand
the control of the ANS on the heart. A recent work [26] studied the link between respiration
and HRV during yoga breathing practice. After six months of yoga, HRV showed improvement
towards the parasympathetic domain. This study was performed in the time and frequency
domains. Modeling the HRV coupled with the respiration has several applications. One current
study [27] was applications was about tracking the cardiorespiratory load of firefighters reflecting
the respiratory metabolism state to ensure their safety. This study needs to take into account a
respiration during the intense physical exercise. The reader may refer to [28], where the HRV is
positively linked with compassion. The study HRV associated with soothing emotions.

6 Conclusion

In this paper, we used the TVIPFM to obtain the modulating signal of the heart rate
variability filtered with respect to the respiration frequency. This filtering is assumed in time
frequency domain, using different representations like spectrogram, the smoothed pseudo Wigner–
Ville distribution and their reassignments. Differences between magnitudes of instantaneous power
in all of the representations are due to the reassignment principle moving power dispersed, to
reassign it to the nearest point. After that, we used a statistical test to explain our choice to
filtrate around respiration, so we involve the student t-test to compare the instantaneous power in
the respiratory frequency band and elsewhere using the gabarit function. The significance of the
t-test is set at p < 0.01 showing that all time frequency representations used prove the existence
of the power in the respiratory frequency band.

HRV has been also studied with Kalman smoothed method to estimate time varying charac-
teristics of HRV. The proposed method, supposes that HRV is obtained by auto regressive model.
Using a Kalman smoothed algorithm, parameters are estimated. In this method, the time varying
spectrum is a continuous function of frequency, so we can evaluate it at any desired frequency up

to the Nyquist frequency fs
2 . The advantage of the Kalman smoother algorithm method is that

the spectrum is separable.

However, one of the limits of this method is that the characteristics of the Kalman smoother
spectrum depends strongly on the order of the auto regressive model. For example, if the used
model is with a higher order, it can lead to some interference in the spectrum. Studying HRV
during exercise imposes the use of a non-stationary mean time varying period. So, we studied the
HRV using our TVIPFM model, also we used the method of time varying filtering. Finally, with
this study, we satisfy the increasing exercise conditions.
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