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Abstract: Today, electroencephalography is used to measure brain activity by
creating signals that are viewed on amonitor. These signals are frequently used
to obtain informationabout brain neurons andmaydetect disorders that affect
the brain, such as epilepsy. Electroencephalogram (EEG) signals are however
prone to artefacts. These artefacts must be removed to obtain accurate and
meaningful signals. Currently, computer-aided systems have been used for this
purpose. These systemsprovide high computing power, problem-specific devel-
opment, and other advantages. In this study, a new clinical decision support
system was developed for individuals to detect epileptic seizures using EEG
signals. Comprehensive classification results were obtained for the extracted
filtered features from the time-frequency domain. The classification accuracies
of the time-frequency features obtained from discrete continuous transform
(DCT), fractional Fourier transform (FrFT), and Hilbert transform (HT) are
compared. Artificial neural networks (ANN) were applied, and back prop-
agation (BP) was used as a learning method. Many studies in the literature
describe a single BP algorithm. In contrast, we looked at several BP algorithms
including gradient descent withmomentum (GDM), scaled conjugate gradient
(SCG), and gradient descent with adaptive learning rate (GDA). The most
successful algorithm was tested using simulations made on three separate
datasets (DCT_EEG, FrFT_EEG, and HT_EEG) that make up the input
data. The HT algorithm was the most successful EEG feature extractor in
terms of classification accuracy rates in each EEG dataset and had the highest
referred accuracy rates of the algorithms. As a result, HT_EEG gives the
highest accuracy for all algorithms, and the highest accuracy of 87.38% was
produced by the SCG algorithm.

Keywords: Extracranial and intracranial electroencephalogram; signal
classification; back propagation; finite impulse response filter; discrete
cosine transform; fractional Fourier transform; Hilbert transform

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2021.015524


1428 CMC, 2021, vol.69, no.2

1 Introduction

Epilepsy is one of the most common neurological disorders in the world [1]. This disorder
occurs as epileptic seizures because of the sudden change in electrical activity in the brain [2].
Epileptic seizures were systematically classified by the International League Against Epilepsy
(ILAE) [3]. However, there are many unknown parameters for seizures, and it is hard to diagnose
the disorder. The information about epilepsy in electroencephalogram (EEG) signals can be used
for the diagnosis and treatment of epilepsy [4,5]. However, there are some challenges to using
EEG signals. Analysis of the EEG signals is typically performed manually, and there may be
subjective consequences [4]. EEG signals are affected by artifact noise that results from activities
such as chewing, sweating, blinking, coughing, and other actions. Computer-aided models are used
to evaluate, analyze, and classify epileptic EEG signals with high accuracy rates to help reduce
these artifacts [6].

The use of databases is an important approach to the analysis of EEGs. In the litera-
ture, different computer-aided models using different EEG signal databases have been proposed.
A summary of the studies using the BONN EEG database in the literature is presented in Tab. 1.

Table 1: Literature review

Authors Models Dataset and accuracy rate (%)

[7] FSC, SVM, KNN, PNN, DT,
GMM, NBC

Z-N-S: 98.1

[8] EMD, HOM, ANN AB-CD-E: 80 A-D-E: 100 A-E: 100 D-E: 100 ABCD-E: 100
[9] DWT+Arithmetic coding,

k-NN, NBC, MLP, SVM
AB-E: 100 C-E: 100 CD-E: 100 ABCD-E: 100

[10] DTCWT, Fourier features,
k-NN

A-E: 100 AB-E: 100 CD-E: 100 ABCD-E: 100

[11] SVM+NIG, DT-CWT A-E: 100 ABCD-E:100 AB-CD-E: 96.28 A-D-E:100 D-E:100 C-E:100
[12] GA, SVM A-E:100
[13] Star graph topological

indices, GDA
Z-S: 99.7 ZONF-S: 98.6

[14] DWT, RWE, ANN Z-S: 95.2
[15] DWT, MLPNN Z-S: 100 ZNF-S: 97.75 FNOZ-S: 97.77
[16] Multiwavelet trans.

approximate
entropy—MLPNN

ZONF-S: 98.27

[17] FLP+ SVM, SVM+RBF C-E: 95.33
[18] FFT-QDA, AR-MLPNN A-E: 99.78 B-E: 99.55 C-E: 99.62 D-E: 99.46
[19] CD, LLE, H, entropy,

Surrogate data analysis
Z-S: 90

[20] Shannon’s entropy, ANFIS Z-S: 92.22
[21] BayesNet, SVM, ANN, LR,

FT
A-E: 99.5 A-D: 99.5 D-E: 95.5 CD-E: 97 AB-CDE: 93 A-D-E: 95.67

[22] DWT, ApEn, ANN, SVM A-E: 100 B–E: 92.5 C-E: 100 D-E: 95 BCD-E: 94 ABCD-E: 94
[23] fApEn, SVM+RBF A-E: 100 B-E: 100 C-E: 99.6 D-E: 95.85 ACD-E: 98.1 BCD-E: 98.2

ABCD-E: 97.38
[24] WT, phase space

reconstruction, NEWFM
A-E: 98.17

[25] MODWT-based LND
model+RFC

A-E: 100 AB-CDE: 98.48 ABCD-E: 99 AB-CD-E: 98.1

[26] TF, ApEn, linear or
nonlinear classifiers,
RBFSVM

ABCD-E: 98 A-D-E: 98.67 A-B-C-D-E: 85.9

(Continued)



CMC, 2021, vol.69, no.2 1429

Table 1: Continued

Authors Models Dataset and accuracy rate (%)

[27] BoW+ SVM A-E: 99.85
[28] Improved correlation feature

selection, RFC
A-E: 100 B-E: 98 C-E: 99 D-E: 98.5
ACD-E: 98.5 BCD-E: 97.5 CD-E: 98.67 ABCD-E: 97

[29] WT-based features, entropy,
ANN, SVM

A-E: 99

Approximate entropy, ANN,
SVM

A-D-E: 96 ABCD-E: 99 AB-CD-E: 95 A-B-C-D-E: 94

[30] Permutation entropy, SVM Z-S: 93.5 O-S: 82.8 N-S: 88 F-S: 79.94 FNOZ-S: 86.1
[31] DWT, ANN A-E: 100 ABCD-E: 99 AB-CDE: 98 A-D-E: 96.67 AB-CD-E: 95.6
[32] DTCWT+CVANN A-E: 100 ABCD-E: 99 A-D-E: 99.3 ACD-E: 99.28 AB-CD-E: 98.37
[33] FFT, DT Z-S: 98.72
[34] DSTFT, BayesNet, LR,

SVM, KNN
E-A: 99.8 E-B: 99.3 E-C: 98.5 E-D: 94.9 E-ABCD: 98

[35] ATFFWT, FD+LS− SVM A-E: 100 B-E: 100 C-E: 99 D-E: 98.5
AB-E: 100 CD-E: 98.6 AB-CD: 92.5 ABCD-E: 99

[36] CT, LS-SVM A-E: 99.9 B-E: 96.3 C-E: 96.2 D-E: 93.6 A-D: 84.9
[37] TF, RNN Z-S: 99.6
[38] WT+Weighted permutation

entropy, SVM, ANN
Z-S: 99.5 N-F-S: 95 Z-F-S: 97.5 Z-O-F-N-S: 93

[39] LBP, SVM ZO-S: 100 NF-S: 99.45 ZO-NF-S: 98 ZONF-S: 99
[40] RFC, total and fractional

energy, entropy
Z-O-N-F-S: 91 ZO-NF-S: 98

[41] TF, ANN Z-S: 100 ZONF-S: 97.7 Z-F-S: 99.28 ZO-NF-S: 97
[42] ANN, TF Z-S: 100 Z-F-S: 100 Z-O-N-F-S: 89
[43] P-1D, CNN AB-CD-E: 99 AB-CD: 99.9 AB-E: 99.8 A-E: 100 B-E: 99.8 CD-E: 99.7

D-E: 99.4 BCD-E: 99.3 BC-E: 99.5 BD-E: 99.6 AC-E: 99.7 C-E: 99.1
ABCD-E: 99.7 AB-CDE: 99.5 ABC-E: 99.97 ACD-E: 99.8

[44] Symlets wavelets, statistical
mean energy std, PCA,
GBM-GSO, RF, SVM

Z-S: 100 O-S: 100 N-S: 98.4 F-S: 98.1 OZ-S: 100 NF-S: 98.1
OZ-NF: 93.2 FNOZ-S: 98.4 FN-OZ-S: 96.5

[45] Wavelet-based sparse
functional linear mode

A-E: 100 ABCD-E: 100

[46] WPD-based fDistEn+k-NN A-E: 100 B-E: 99.94 C-E: 99.85 D-E: 99.38 AB-E: 99.97 CD-E: 99.58
AB-CDE: 99 ABCDE: 99.7 A-D-E: 99.39 AB-CD-E: 98

[47] FWHVA, k-NN A-E: 100 D-E: 93 ABCD-E: 95.4
[48] DTCWT+GRNN ABCDE: 100

Notes: ANFIS is Adaptive Neuro Fuzzy Inference System, ANN is Artificial Neural Network, ApEn is Approximate Entropy, AR is
Autoregressive, ATFFWT is Analytic Time-Frequency Flexible Wavelet Transform, BoW is Bag-of-Words, CD is Correlation Dimension,
CNN is Convolutional Neural Network, CT is Clustering Technique, CVANN is Complex-Valued Neural Networks, DSTFT is Discrete
Short-time Fourier Transform, DT is Decision Tree, DTCWT is Dual-tree Complex Wavelet Transform, DWT is Discrete Wavelet
Transform, EMD is Empirical Mode Decomposition, fApEn is Fuzzy Approximate Entropy, FD is Fractal Dimension, fDistEn is Fuzzy
Distributed Entropy, FFT is Fast Fourier Transform, FLP is Fractional Linear Prediction, FSC is Fuzzy Sugeno Classifier, FT is
Functional Tree, FWHVA is Fast Weighted Horizontal Visibility Graph Constructing Algorithm, GA is Genetic Algorithm, GBM is
Gradient Boosting Machine, GDA is General Discriminant Analysis, GMM is Gaussian Mixture Model, GSO is Grid Search Optimizer,
H is Hurst Exponent, HHT is Hilbert-Huang Transform, HOM is Higher Order Moments, k-NN is k-Nearest Neighbour, LLE is Largest
Lyapunov Exponent, LND is Log-normal Distribution, LR is Logistic Regression, LS–SVM is Least-Squares Support-Vector Machine,
MLP is Multilayer Perceptron, MLPNN is Multilayer Perceptron Neural Network, MODWT is Maximal Overlap Discrete Wavelet
Transform, NBC is Naive Bayes Classifier, NEWFM is Neural Network with Weighted Fuzzy Membership Functions, NIG is Normal
Inverse Gaussian, P-1D is Pyramidal One Dimensional, PCA is Principal Component Analysis, PNN is Probabilistic Neural Network,
QDA is Quadratic Discriminant Analysis, RBF is Radial Basis Function, RF is Random Forest, RFC is Random Forest Classifier, RNN is
Recurrent Neural Network, RWE is Relative Wavelet Energy, SVM is Support Vector Machine, TF is Time-Frequency, TFR is
Time-Frequency Representation, WPD is Wavelet Packet Decomposition, WT is Wavelet Transform.

The most commonly used models in the BONN database studies are artificial neural net-
works (ANN), support vector machine (SVM), k-nearest neighbors (k-NN), and recursive flow
classification (RFC) (Tab. 1). They obtained 100% accuracy rates with various datasets such
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as A-D-E, A-E, ABCD-E, D-E [8], AB-E, C-E, CD-E, ABCD-E [9], A-E, AB-E, CD-E,
ABCD-E [10], ABCD-E, A-E, A-D-E, D-E, C-E [11], A-E [12], Z-S [15], A-E, C-E [22],
A-E, B-E [23], and A-E [25]. ANN is an information processing system inspired by biological
nervous systems that can perform computations at a very high speed if implemented on dedi-
cated hardware. It can adapt itself to learn the knowledge of input signals [15,16,22,38,42]. The
SVM classifier is the selected hyperplane that maximizes margins, namely the distance to the
nearest training set. Maximizing the margins increases the generalization capabilities of the SVM
algorithm in classification, but SVM has relatively low execution speed [29,37,38,43]. k-NN is
a simple model that appoints a feature vector to a class according to its nearest neighbor or
neighbors [9,10]. The RFC algorithm works by generating multiple decision trees at the training
time and subtracting the average estimate of individual trees [25,28].

There are some studies in which these methods achieve 100% success. However, the reported
studies do not have the same datasets. The accuracy rate obtained for the method recommended
for the problem of classifying Z, O and N, F, S signals, which is needed by clinical experts in
our study, is 87.38%. It is the method with the second-best classification accuracy in the literature
for this data set. The best result is 99.5% obtained by Ullah et al. [43]. This was obtained
from the P-1D analysis combination with a convolutional neural network (CNN). Although the
classification accuracies are close in value for these two experiments, the time-frequency features
applied in the proposed method are much simpler and have lower computation costs compared
to those in other studies. This makes the system developed in the current work more suitable for
real-time seizure detection in clinical epilepsy diagnostics.

In this study, three ANN back propagation (ANN-BP) algorithms were used to classify EEG
signals to determine the best feature extractor and algorithm. The steps in our study can be
summarized as follows. (i) Finite impulse response (FIR) filtering was used for the preprocessing
to remove noise from the EEG signals;

(ii) The time-frequency domain features were extracted by discrete continuous transform
(DCT), fractional Fourier transform (FrFT), and Hilbert transform (HT);

(iii) The features were obtained from the DCT_EEG, FrFT_EEG, and HT_EEG datasets;

(iv) DCT_EEG, FrFT_EEG, and HT_EEG were classified with the gradient descent with
momentum (GDM), scaled conjugate gradient (SCG), and gradient descent with adaptive learning
rate (GDA) training algorithms for the extracranial and the intracranial EEG signals; and

(v) Classification accuracy rates were compared for the training algorithms according to the
best time-frequency features.

The rest of the paper is organized as follows. The methods of the proposed models are
described step by step in Section 2. The experimental results are given in Section 3, and the
conclusions of the study are presented in Section 4.

2 Materials and Methods

In this study, the extracranial and intracranial EEG signals were used for classifying the
features of the significant time-frequency EEG signals from the ANN-BP algorithms.

2.1 Dataset
The analyzed EEG signals were obtained from the publicly available BONN database [49].

The sampling rate of the EEG signals was 173.61 Hz, and the spectral band of the dilution system
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is in the range 0.5–85 Hz. The input dataset consisted of five sets {Z, O, N, F, S}, each containing
100 single-channel EEG segments of 23.6 s duration; each data segment contained 4097 samples.
In this study, EEG signals, apart from the different recording electrodes, were used for diagnosis
epilepsy where the sets of {Z, O} and {N, F, S} were recorded extracranially and intracranially,
respectively. The signal classification modeling steps were preprocessing, feature extraction, and
classification. {Z, O} sets were taken from surface EEG signal records of five healthy volunteers
with open and closed eyes. Signals were measured in two groups at seizure intervals from the
hippocampal formation of five patients in the epileptogenic region {F} and the opposite half-
sphere of the brain {N}. {S} contained selected seizure activity from all recording areas displaying
ictal activity.

2.2 Preprocessing
Preprocessing is a crucial step for the removal of artifacts from EEG signals before extract-

ing significant signal features. Therefore, in this study the FIR filtering method was used to
remove artifacts.

FIR filtering has a non-recursive impulse response that has a finite duration of h[n]. The
transfer function H [z] of FIR filtering, which contains only zeros and no poles, is always stable.
The impulse response is usually an interruption of the infinite impulse response h∞ [n] or a finite
time section with a window [50]. In the FIR filter, input x [n] and output y [n] are defined by
Eqs. (1) and (2).

H (z)=Y (z) /X (z)=
N−1∑
n=0

h [n] z−n (1)

y [n]=
N−1∑
k=0

h [k] x [n−k] (2)

In this study, the structure of the FIR filter for preprocessing shows that the impulse response
of Eq. (3) is 4097 points.

h∞ [n]= (0.5)n u [n] (3)

So, h [n]= h∞ (n)R4097 [n] was obtained as Eqs. (4) and (5).

R4097 [n]= u (n)−u [n− 4097] (4)

h [n]= (0.5)nR4097 [n] (5)

The FIR filtering structure is shown in Fig. 1.

Figure 1: The FIR filtering structure for set of EEG signals
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The Kaiser window is crucial for reducing spectral leakage in the analysis of EEG signals
that concentrate most of the energy in the amplitude. It is almost optimal, and it depends on the
parameter β, which controls its form as described by Eq. (6).

w [n]=
I0
√

(1− (2n/N)− 1)2

I0 (β)
, 0≤ n≤N (6)

I0 shows the zero order Bessel function, which is measured using the power series expansion
as in Eq. (7) described earlier [50].

I0 (x)= 1+
∞∑
k=1

{
(x/2)k

k!

}2

(7)

2.3 Feature Extraction
In this study, significant features for extracranial and intracranial EEG signals were extracted

by the time-frequency domain using DCT, FrFT, and HT. These extractions helped to describe sig-
nificant features of EEG signal components that tend to be complex and chaotic structures. Three
datasets were extracted by the time-frequency methods, and three different ANN-BP training
algorithms were applied to compare classification accuracy rates.

2.3.1 DCT
DCT is given as an even function f (t) (t= 0 axis). The results of even functions are the real

spectrum. (2N− 2) samples are given as x [0] , x [1] , . . . , x [2N− 3] through even symmetry about
n=N − 1 as shown in Fig. 2 [51].

Figure 2: Symmetry EEG signals

x [1] = x [2N− 3] , x [2] = x [2N− 4] , . . . , x [N− 2] = x [N]; x [0] and x [N− 1] are unique as
shown in Eq. (8).

x [k]= x [0]+ (−1)k x [N − 1]+ 2
N−2∑
n=1

x [n] cos
π

N − 1
nk (8)
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2.3.2 FrFT
The purpose of FrFT is transferring signals from the time domain to the frequency domain

and to determine the most significant features for the EEG signals. The FrFT of EEG signals,
f (t), is given by Eq. (9):

Fa (jω)=
∫ ∞

−∞
Aajπ[cotαω2/

(
4π2)−2 cscα(ω/2π)t+cotαt2]f (t)dt (9)

where Aa =
√
1− j cotα changes with ω = 2π f ; ω describes the variable in the transform domain

as described in Eq. (10).

Fa(f )=Aajπ cotαf 2
∫ ∞

−∞
e−j2π2 cscαf t+jπωtαt2]f (t)dt (10)

The variable parameter α changes α times π/2, which rotates angle changes from 0 to 2π .
In this study, the value of α changed in the interval as 0.1 and 1 the fractional transform is the
usual Fourier transform as Eq. (11) as in [52].

Fa (f )=
√
1+ j tanαe−jπ tanαf 2 (11)

2.3.3 HT
h (t) is a real impulse response, which is shown in Eq. (12).

H (jω)=HR (jω)+ jHI (jω) (12)

H (jω) has been concluded from either HR (jω) or HI (jω). H (jω) is a rational function.

Therefore, H (s)= N (s)
D (s)

. H (s) is analytic, and there is no pole in the right half plane.

In this study, it was extracted from filtered EEG signals time-domain HT relations where there
were no poles on the jω axis followed by the case of poles on the axis.

D (s) is called a ‘Hurwitz’ polynomial, and it has no zeros for Re (s) > 0 [53]. The filtered
EEG signals were decomposed 4097 points. The sequence in Fig. 3 represents the EEG signals of
a patient as described in Eq. (13).

he [n]= (1/2) [h [n]+h [−n]] (13)

Figure 3: An example EEG signals sequence
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2.4 Classification of ANN-BP Training Algorithms
ANN-BP training algorithms are the most widely used algorithms for weight-updating strate-

gies in classification processes [54,55]. The following components were implemented for the
training phase of this study: the fully connected Multi-Layer Perceptron (MLP) models for
classifying the extracranial {Z, O} and the intracranial {N, F, S} signals.

The EEG datasets obtained from time-frequency methods (DCT, FrFT, and HT) were
classified by ANN-BP algorithms.

Initially, the weights (ω) and the biases (b) were set, and the three EEG signal datasets
X (4097× 500) were given as input. The outputs were the extracranial and intracranial EEG
signals with {Z, O, N, F, S} according to momentum (μ). Finally, the output signals were
calculated using Eq. (14):

yJ = φ

(4097∑
i=1

ωjixi+bj

)
(14)

Three basic training algorithms (GDM, SCG, GDA) were used to show the best classification
performances with the effective time-frequency feature descriptor method.

2.4.1 GDM Algorithm
The GDM algorithm allows the neural network model to respond to both local degradation

and recent trends on the error surface. The momentum performs as a low-pass filter, which allows
the minor features to be ignored on the error surface of the neural network. The learning rate
(lr) is the simple gradient descent parameter, and the (μ) parameter describes the amount of
momentum. ANN-BP is used to calculate performance (perf) derivatives based on X ’s perfor-
mance, which is dependent on (ω) and (b) parameters in Eq. (15), and each parameter is set with
respect to GDM [56]:

dX=μ× dXprev+ lr× (1−μ)× dperf/dX (15)

where dXprev is the previous change according to the (ω) or (b) parameters. The GDM algorithm
helps reach the local minimum value faster in the neural network. Momentum is where a temporal
element was added to the equation to update the parameters of a neural network. (dX) is the
objection function that is being optimized. Essentially, (dX) is the saved gradient calculations or
updates to be used in all subsequent updates of a parameter, which is (ω), (b), or activation.

2.4.2 SCG Algorithm
The SCG can train any network as long as its weight and net input. SCG is an effective

and fully automated optimization approach for the supervised learning algorithm that represents
performance benchmarked against that of the standard ANN-BP. It does not add any user-
dependent parameters that are crucial for its success. The algorithm avoids time consuming line
search as per the learning iteration and uses a step-size scaling mechanism. The training step size

equals the minimum quadratic polynomial fitted to E′ (ω̂k)T p̂k, E′ (ω̂k) , E′ ((ω̂k)+αk+ p̂k
)
[57].

The SCG algorithm is indicated below:

—Choose the weight vector
(
ω̂1
)
and scalars 0< σ ≤ 104, 0< λ1 ≤ 10−6, λ1 = 0.

—Set p̂1 =−E′ (ω̂1
)
, k= 1 and success = true.

—If the success is equal to true, then calculate the second order information as δk = p̂Tk ŝk.
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—If δk ≤ 0, then make the Hessian matrix positive definite as λk = λk.
—Calculate the step size as αk =μk/δk.
—Calculate the comparison parameter. 
k = 2δk

[
E
(
ω̂k
)−E

(
ω̂k+αkp̂k

)]
/μ2

k.
—If 
k ≥ 0, then the successful reduction in error is calculated [82].
—If the 
k < 0.25, then the scale parameter is increased.
—If the steepest descent direction is not equal to 0, then set k= k+ 1.

2.4.3 GDA Algorithm
The output and error rate of the GDA algorithm are calculated in the neural network model.

In each epoch, the new (ω) and (b) parameters are calculated by using the current learning rate.
Next, new outputs and errors are calculated. The GDA neural network model, weight, input,
and transfer functions are trained by the derivative functions. Each parameter is set according to
gradient descent as in Eq. (16).

dX= lr× dperf/dX (16)

In each epoch, the learning rate increases by the lr factor if the performance decreases towards
the target [58]. In Eq. (16), ANN-BP is used to calculate performance (perf) derivatives based on
X ’s performance, which is dependent on (ω) and (b) parameters. GDA provides a simple approach
to change the learning rate over time. It is important to accommodate the differences in the
datasets, as it may receive small or large updates depending on how the learning rate is defined.
As the learning rate decreases, GDA takes smaller and smaller steps to get faster, because the
local minimum value is not exceeded by the large steps.

2.5 Statistical Parameters
Our proposed models were evaluated by computing the statistical parameters of Cohen’s

Kappa coefficient and receiver operating characteristic (ROC).

The Kappa Test is a statistical method that measures the reliability of compliance between
two or more observers. If the test is between two observers, it is called cohenKappa. Since the
variable in which compliance is evaluated is categorical, the applied statistic is non-parametric.
Two different probabilities Pr (a) and Pr (e) are calculated when working out the cohenKappa.
Pr (a) is the ratio of the observed accuracy to the sum of the two classifiers, and Pr (e) is
the probability of this agreement occurring with the expected accuracy. The formula to find
cohenKappa is shown in Eq. (17) [59]:

cohenKappa= Pr (a)−Pr (e)
1−Pr (e)

(17)

An earlier study [59] presented the following comments about the results of the two observers
to analyze the obtained cohenKappa values that can be between −1 and +1:

<0: harmony depends only on chance;

0.01–0.20: insignificant compliance;

0.21–0.40: poor compliance;

0.41–0.60: moderate compliance;

0.61–0.80: good fit;

0.81–1.00: very good level of the fit.
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An ROC curve is a graphical plot that shows the classification ability for binary classification.
The ROC curve is constructed by plotting the false positive rate (FPR) versus the true positive
rate (TPR) for the various threshold settings. Tab. 2 describes TPR and FPR whose formulation
is given in Eq. 18 [60].

TPR=
∑
TP∑

ConditionPositive
; FPR=

∑
FP∑

ConditionNegative
(18)

Table 2: 2× 2 confusion matrix

Condition positive Condition negative

True positive (TP) False positive (FP)
False negative (FN) True negative (TN)

The ROC curve can be generated by plotting the cumulative distribution function of the
detection probability in the y-axis versus the cumulative distribution function of the false-alert
probability on the x-axis. ROC analysis includes tools to perceive models that may be optimal
and to reject sub-optimal models independently from the cost case or the class distribution.

3 Experimental Results

In this study, the experiments were performed by using three different EEG signals datasets
obtained using the DCT, FrFT, and HT for extracting the significant time-frequency EEG signal
features. The experimental research consisted of the following steps:

Step 1: Removing artifacts and noises from signals using the FIR filter;

Step 2: Extracting significant filtered signal features from the time-frequency methods by the
DCT, FrFT, and HT;

Step 3: Classifying the extracranial and intracranial signals from the ANN-BP algorithms
using the GDM, SCG, and GDA models;

Step 4: Comparing the classification accuracy rates of the models. The structure of the
proposed model is shown in Fig. 4. In this study, the Kaiser window was appropriate for reducing
the artifacts and noise when convolved by the ideal filter response, leading to a wider transition
region selected as 3. The filtered EEG signals, which were the input data, were the values of
(4097× 500) (n, . . . , N (1, . . . , 4097)).

The flowchart for obtaining the DCT_EEG dataset is shown in Fig. 5a, and the DCT type
was initialized as 1. DCT was obtained as a (4097× 500) matrix and can reconstruct a sequence
from only a few DCT coefficients accurately. In this study, DCT is important for general data
reduction. The flowchart for obtaining the FrFT_EEG dataset is shown in Fig. 5b. Fα (jω) rotated
the signals, f (t), and projected into the line of angle, α, in the time-frequency domain. In this
study, the value of α could be changed in the interval 0.1–1, and the fractional transform was
the usual Fourier transform. This process contributed to the FrFT-based decomposition algorithm
when applied to signals. The flowchart for obtaining the HT_EEG dataset is shown in Fig. 5c.
The changes of the FFT coefficients corresponded to negative frequencies with zeros, and they
were calculated as the inverse FFT value of the result.
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Figure 4: The structure of the proposed model

Figure 5: Flowchart of obtaining the DCT_EEG (a), FrFT_EEG (b), HT_EEG (c)
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Table 3: Training algorithms results

Algo. DCT_EEG dataset FrFT_EEG dataset HT_EEG dataset

Epoch Performance Gradient Accuracy
(%)

Epoch Performance Gradient Accuracy
(%)

Epoch Performance Gradient Accuracy
(%)

GDM 57 0.303 0.208 68.94 1000 0.211 0.347 73.18 310 0.146 0.095 83.62
SCG 21 0.161 0.059 82.39 78 0.130 0.067 82.56 50 0.008 0.085 87.38
GDA 77 0.153 0.269 83.44 19 0.094 0.135 82.88 87 0.105 0.294 83.57
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Figure 7: The classification performances of DCT_EEG, FrFT_EEG, HT_EEG datasets
(a) DCT_EEG dataset classification performance (b) FrFT_EEG dataset classification
performance (c) HT_EEG dataset classification performance
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In this study, DCT_EEG, FrFT_EEG, and HT_EEG were obtained according to the
following steps.

Step 1: DCT_EEG, FrFT_EEG, and HT_EEG datasets were obtained from the extracranial
{Z, O} and the intracranial {N, F, S} EEG signals, which are shown in Figs. 6b, 6d, 6f, 6h and
6j by the black line, green line, and red line, respectively.

Step 2: Classification for the extracranial and the intracranial EEG signal datasets were trained
by the ANN-BP training algorithms of GDM, SCG, and GDA. All the three training algorithms
were stopped when any of the following conditions occurred: reaching the maximum number
of epochs, exceeding the maximum duration, minimizing performance to the goal, and dropping
below the minimum gradient.

Step 3: The options for the neural network architecture of the proposed GDM, SCG, and
GDA training algorithms for choosing the right optimizer with the correct parameters are as
follows: (i) Ten hidden layers were created with the sigmoid transfer function. (ii) The training
epochs, (lr), minimum gradient, and the momentum coefficient were set at 1000, 0.01, 1e−05,
and 0.5, respectively. (iii) The classification performances of all three algorithms were compared
according to their mean squared error (mse) results. The outputs were EEG signals, specif-
ically {Z, O, N, F, S}. DCT_EEG, FrFT_EEG, and HT_EEG datasets had the dimensions
of (4097× 500), and they had been randomly divided 70% for training, 15% for testing, and
15% for validation. All the ANN-BP training results for the training algorithm are shown in
Tab. 3. The time-frequency method was HT. HT was the most successful significant signal feature
descriptor for all three training algorithms in comparison with DCT and FrFT methods.

The training, test, and validation performance results of the algorithms are shown in Figs. 7a,
7b, and 7c. The validation performances were increased more than the maximum validation time
since the last decrease during the experimental processes of this study.

Table 4: Our proposed models’ confusion matrices, TPR, FPR, and cohenKappa

Datasets GDM SCG GDA

DCT_EEG
112 88

67 233

162 38

50 250

167 33

50 250
TPR = 0.62; FPR = 0.27 TPR = 0.76; FPR = 0.13 TPR = 0.76; FPR = 0.11
cohenKappa= 0.3427 cohenKappa= 0.6370 cohenKappa= 0.6590

FrFT_EEG
120 80

54 246

153 47

40 260

154 46

40 260
TPR = 0.68; FPR = 0.24 TPR = 0.79; FPR = 0.15 TPR = 0.79; FPR = 0.15
cohenKappa= 0.4293 cohenKappa= 0.6354 cohenKappa= 0.6399

HT_EEG
157 43

39 261

180 20

43 257

168 32

50 250
TPR = 0.80; FPR = 0.14 TPR = 0.80; FPR = 0.07 TPR = 0.77; FPR = 0.11
cohenKappa= 0.6572 cohenKappa= 0.7424 cohenKappa= 0.6634
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Figure 8: ROC analyses results (a) ROC analysis for the DCT_EEG dataset (b) ROC analysis for
the FrFT_EEG dataset (c) ROC analysis for the HT_EEG dataset
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3.1 Comparison with Other Work
The results of the proposed method were compared with other methods in the literature.

In our study, the experimental results were compared with their classification accuracy rates
and statistical analysis results. Hence, the proposed methods listed in Tab. 1 were used to test
their performances for classifying {Z, O, N, F, S} or {A, B, C, D, E} signals. This study
selects the distinct and significant features in Z, O (or AB) and N, F, S (or CDE) classification
by time frequency methods as in earlier studies [25,31,43,46]. No other study has been found
in the literature comparing datasets obtained from three time-frequency methods together. The
popular ANN-BP algorithms were applied to the datasets comprising distinct and significant time-
frequency domain features. Lastly, the points that distinguished our proposed models from other
studies are as follows: (i) our model discovered a way to classify extracranial signals {Z, O} and
intracranial signals {N, F, S}; (ii) different datasets were obtained by the time frequency methods
DCT, FrFT, and HT; (iii) the proposed methods were compared with the ANN-BP algorithms;
(iv) HT was shown to be a promising way for both EEG signal processing and classification. The
proposed method had some limitations, and our experiments need to be analyzed carefully in this
context. First, this study was cross-sectional in terms of the BONN database and the nature of
the EEGs in the database. We assessed the respondent of the brain perception of the patient for
the cases at a specific time. We had to work under certain conditions that were defined by the
database we used.

3.2 Evaluation of the Analysis
The cohenKappa values according to the ANN-BP algorithms are shown in Tab. 4. For the

DCT_EEG dataset, the classification agreement between the two classes was weakly compatible
for the GDM algorithm. However, the GDA algorithm fit well into the classification agreement.
For the FrFT_EEG dataset, the classification agreement between the two classes was moderate
compliance for the GDM algorithm. Alternatively, SCG and GDA algorithms fit well into the
classification agreement. The HT_EEG dataset fit well into the classification agreement for all
three algorithms. The diagonal divided the ROC area. Points on the diagonal represented good
classification results; bad results were represented by the points below the line. The confusion
matrices, TPR, FPR, and cohenKappa for our proposed model are shown in Tab. 4. The pre-
dictions of the proposed model in this study resulted from 200 extracranial signals and 300
intracranial signals instances.

The plots of the nine confusion matrices mentioned earlier in the ROC curves are shown in
Fig. 8. The result of method SCG for the HT_EEG dataset clearly showed the best prediction
compared with other models and datasets. The result of GDA for the HT_EEG dataset lies on
the diagonal line (gray line), and the accuracy of GDA is 83.57% as shown in Tab. 4.

4 Conclusion

In this study, a novel clinical decision support system was developed for the diagnosis of
epilepsy using extracranial and intracranial EEG signals. The main contribution of this study is
that it proposes a brand-new computer vision-based approach for the measurement of EEG sig-
nals in epileptic individuals. Significant features were extracted using the time-frequency methods
of DCT, FrFT, and HT. The extracted features were fed into the GDM, SCG, and GDA training
algorithms. HT gave the best classification accuracy rates compared with DCT and FrFT methods
with values of 87.38%, 83.62%, and 83.57%, respectively, for the three algorithms. The most dis-
tinctive time-frequency features were obtained using the significant EEG signal properties obtained
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from HT when applied to the SCG training algorithm. In future work, various features can be
used to extract more efficient epilepsy-related properties, and will be tested for effectiveness. In
particular, it is planned to use fractal-related, wavelet-related, and entropy-related features. In addi-
tion, more EEG signals data will be used to re-validate the novel learning algorithms, and other
advanced machine learning algorithms will be validated with the ANN-BP training algorithms.
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