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Abstract: In this era, deep learning methods offer a broad spectrum of effi-
cient and original algorithms to recognize or predict an output when given
a sequence of inputs. In current trends, deep learning methods using recent
long short-term memory (LSTM) algorithms try to provide superior perfor-
mance, but they still have limited effectiveness when detecting sequences of
complex human activity. In this work, we adapted the LSTM algorithm into
a synchronous algorithm (sync-LSTM), enabling the model to take multiple
parallel input sequences to produce multiple parallel synchronized output
sequences. The proposed method is implemented for simultaneous human
activity recognition (HAR) using heterogeneous sensor data in a smart home.
HAR assists artificial intelligence in providing services to users according to
their preferences. The sync-LSTM algorithm improves learning performance
and sees its potential for real-world applications in complex HAR, such
as concurrent activity, with higher accuracy and satisfactory computational
complexity. The adapted algorithm for HAR is also applicable in the fields
of ambient assistive living, healthcare, robotics, pervasive computing, and
astronomy. Extensive experimental evaluation with publicly available datasets
demonstrates the competitive recognition capabilities of our approach. The
sync-LSTM algorithm improves learning performance and has the potential
for real-life applications in complexHAR. For concurrent activity recognition,
our proposed method shows an accuracy of more than 97%.

Keywords: Concurrent HAR; deep learning; LSTM; sync-LSTM; smart
home

1 Introduction

Activity recognition has been one of the core topics in the field of artificial intelligence (AI)
research for decades. However, the various features and classifiers designed for specific activity
recognition are still not satisfactory for measuring the effectiveness of detecting complex human
activities. Activity recognition has started to adopt a more complex structure and inference pro-
cedures due to deep learning methods [1]. These deep learning approaches have demonstrated the
potential to significantly improve the state of the art in human activity recognition (HAR) [2]. The
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complete recognition process includes sensor data, pre-processing, feature extraction, and classifiers
(model), where feature extraction and classifier algorithms play a crucial role in achieving high
recognition accuracy [3]. Manual feature extraction or selection is often laborious and arbitrary
and lacks generalizability [4]. Instead of using standard produced features, we applied automatic
feature extraction or selection [5,6]. Recent activity recognition studies have often focused on single
individuals or single activities rather than complex, concurrent activities. Our method addresses
the challenge of concurrent activity detection.

The need to structure information in order to process a large amount of data is becoming
a pervasive problem and gaining high research interest. Automatic sequence classification based
on convolutional neural network (CNN) [7] and recurrent neural network (RNN) [8] methods are
used to structure and process these sequences with a set of high-level representations. Deep learn-
ing methods such as long short-term memory (LSTM) [9] and bi-directional LSTM (BLSTM) [10]
are used in various domains and tasks, including image processing [11], language recognition [12],
and sentence processing [13].

Despite its popularity, LSTM is unable to take multiple inputs for synchronous data and
cannot produce multiple outputs directly when used as a classifier. In [14], a multiple stream neural
network called parallel LSTM is presented, which can process only the synchronous data stream
to produce a single output. In this paper, we present an improved version of the architecture of
a synchronous neural network called synchronous LSTM (sync-LSTM), which processes multiple
data streams simultaneously to detect concurrent human activity. Two or more activities running
simultaneously in parallel are called concurrent activities. Most importantly, we detect complex
human activity using the improved deep learning platform. Multi-binary classifiers can detect
parallel activity [15,16], but this fails for many activities. The hidden Markov model (HMM) [17],
condition random field [18], and various other types of machine learning approaches [19] and
probability inference algorithms [20] are widely used for parallel activity detection. However, they
cannot handle a large number of spatio-temporal data sequences. The method proposed here is
the first so far to address these issues.

Two requirements for human activity recognition drive this work: improving recognition accu-
racy and developing reliable algorithms to solve complex activity recognition problems. Therefore,
our method promises to address the needs of activity recognition with heterogeneous sensors,
primarily by improving performance over existing approaches. The highlights of our method are
as follows.

• We present the improved LSTM known as sync-LSTM to recognize concurrent human
activity.

• The presented concept is an adapted version of LSTM that supports parallel input and
parallel output.

• The proposed approach can structure and learn spatio-temporal features directly and auto-
matically from the raw sensor data, without the need for manual feature extraction or
selection for concurrent activity recognition.

• This framework can likely be applied to different recognition platforms with different sensor
modalities in different domains.

• The results obtained by our proposed method show that it outperforms existing methods
on recognition of concurrent activity.

Activity recognition relies on a combination of different sensors: wearable, external, or both.
We chose external sensors for the user’s comfort. We evaluate and compare the performance of
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our proposed approach using fully annotated real-world datasets generated by Kasteren and the
Center for Advanced Studies in Adaptive Systems (CASAS). The rest of this paper is organized
as follows. Related work on activity recognition and LSTM is described in Section 2. Section 3
illustrates our proposed method. The experiment setup, analysis, and evaluation are provided in
Section 4. Finally, Section 5 concludes the paper.

2 Related Work

Early research trained shallow depth classifiers on sequences collected by a single sensor.
Sensor-specific constraints overly controlled this single sensor-based system, as the data from
this type of sensor was inherently insufficient for complex activity recognition. Therefore, a
multi-sensor heterogeneous system was designed to address these challenges. Significantly, our
system can work with multiple and heterogeneous sensors. A naive Bayes classifier is used for
activity recognition with the longest sequences of sensor data sequences [21]. An incremental
learning approach called the dynamic Bayesian network is tested to detect differences in activities
by rebuilding the previously learned models [22]. Early generative deep learning methods used
restricted Boltzmann machines to derive task-independent feature representations [23,24]. More
complex models such as CNN have been successfully used for challenging HAR tasks [25].
Similarly, some decent algorithms, such as multilayer perceptron [26], support vector machine [27],
decision tree [28], and an updated HMM [29], are used in classifying some types of activities.

The discriminative models have used the independence assumption, where we learn the
model parameters by optimizing the conditional likelihood rather than the joint likelihood [30].
Audio [31] and video [32,33] activity recognition methods are also widely used and best suited
for healthcare and remote monitoring. However, audio-visual methods have privacy issues and are
complex and pervasive. In recent years, many deep learning methods have been used to work with
CNN [34,35], RNN [36], and LSTM. The enhanced RNN and LSTM are widely applicable in
language modeling, hand gesture recognition [37], machine translation [38], sound recognition [39],
video analysis [40], and image captioning [41]. As mentioned earlier, they lag behind in parallel
processing. Additionally, these algorithms are least common in activity recognition. However, a
significant amount of research is concerned with single or regular activity recognition, and few
researchers are interested in complex activity recognition such as concurrent activity recognition.
Activity recognition with a CNN-LSTM [42] structure sheds light on concurrent activity detection
with multimodal sensor data, but it suffers from data redundancy.

3 Materials and Method

The HAR process consisted of four phases: data acquisition, preprocessing, feature extraction,
and training/testing, as shown in Fig. 1. In this work, concurrent activity is recognized by using
Sync-LSTM. Therefore, the experimental process is divided into preprocessing and training/testing,
as LSTM automatically acquires the feature vectors.

The sensor data is pre-processed by applying filters and overlapping sliding windows of 128
time steps each. Our model operates with two fully connected and two LSTM layers of 64 units
each, as shown in Fig. 2. We train the model and predict the real value by setting hyperparameters
such as entropy, learning rate, weight decay, and optimizer. A k-fold cross-validation technique
is performed to improve and validate the output before testing. During testing, a test sensor is
added without affecting the learned parameters. The detection obtained during testing is then
compared with the real values, and the accuracy is calculated using the F1 score determined from
HAR. We present the sync-LSTM based on a standard LSTM and describe its implementation
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for concurrent activity recognition. The main feature of our approach is that it can accept mul-
tiple inputs and produce multiple outputs by improving the LSTM algorithm to handle parallel
structure and detect concurrent activity. The input sequences are independent and mapped into
homogeneous subsets. A single-mode LSTM with concatenated input sequences is theoretically
not suitable for mapping the heterogeneous input representation of parallel sequences.

Sync-LSTM AlgorithmRecognized Activity Sync-LSTM AlgorithmRecognized Activity Feature Extraction

Figure 1: General system workflow of human activity recognition

Figure 2: Proposed workflow for the recognition of concurrent human activity

3.1 Standard LSTM
RNNs use feedback to classify current data to neurons. This unique ability of RNN helps to

find patterns with long-term dependencies. However, the vanishing gradient problem still occurs.
To solve this problem, LSTM was introduced. LSTM outperforms RNN in finding long-term
dependencies. Fig. 3a shows the internal architecture of standard LSTM. The cell in this LSTM
unit of the network consists of an input gate i(t), a forgetting gate f(t), an output gate o(t), and a
memory cell c(t) that stores the information and potentially updates the output over some periods.

The LSTM also has a peephole in the inner cells to the gates in the same cell to learn the
timing of the outputs. The multiplicative equation commands each cell and gate to propagate
forward.

i(t)= σ(wxix(t)+whih(t− 1)+wcic(t− 1)+ bi) (1)
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f (t)= σ(wxf x(t)+whf h(t− 1)+wcf c(t− 1)+ bf ) (2)

o(t)= σ(wxox(t)+whoh(t− 1)+wcoc(t− 1)+ bo) (3)

c(t)= ftc(t− 1)+ i(t)tanh (wxcx(t)+whch(t− 1)+ bc) (4)

hf (t)= o(t)tanhf c(t) (5)

x(t) is the input sequence. wxi, wxf , and wxo are the input weights of the sequence associated
with an input gate, a forgetting gate, and an output gate, respectively. c(t) represents the memory
cell at a corresponding time, and b represents the bias voltage of the corresponding gate and cell.
The hidden layer h(t) computes input x(t) and provides output y(t) at time t, as shown in Fig. 3a.
σ is known as the logistic sigmoid activation function, which bounds the value between [0,1] and
is mathematically expressed as σ (x) = 1

1+e−x . tanh is known as the hyperbolic tangent activation
function.

Figure 3: (a) Standard LSTM; (b) proposed sync-LSTM

3.2 Adapted LSTM: Sync-LSTM

Let a normal input sequence be x ∈R
S×E×I×V×L, where S and E are the start and end times,

I is the sensor ID, V is the sensor value, and L is the location. Sync-LSTM takes the input of
samples

(
x1t ,x

2
t ,x

3
t . . .xNt

)
where each data point xlt is a set of individual samples l (l = 1, 2, 3,

. . .N) observed by the sensors at time t (t= 1, 2, 3, . . .N) and processed as x1t ∈R
S1×E1×I1×V1×L1 ,

x2t ∈ R
S2×E2×I2×V2×L2 . . .xNt ∈ R

SN×EN×IN×VN×LN .
(
h1t ++h3t + hNt

)
are the hidden states, while

Y1
t−1,Y

2
t−1,Y

3
t−1 . . .YN

t−1 are concurrent activities detected at the corresponding time t. H is the
composite function. The insight of the proposed sync-LSTM is shown in Fig. 3b, which contains
the input gate ilt, the forget gate f lt , the output gate olt, and the cell memory clt. W(t) is the weight
matrix. Each gate has its activation functions denoted by sigmoid (σ ) and hyperbolic tangent (

∫
).

Although synchronization is a more challenging prototype that may affect the convergence system,
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this paradigm can accelerate the training model and provide a viable solution to facilitate the
development and operation of AI applications.

ilt = σ(wxi ∗ xlt+whi ∗ hlt−1+wci ∗ clt−1+ bi) (6)

f lt = σ(wxf ∗ xlt+whf ∗ hlt−1+wcf ∗ clt−1+ bf ) (7)

olt= σ(wxo ∗ xlt+who ∗ hlt−1+wco ∗ clt−1+ bo) (8)

clt = f lt ∗ clt−1+ ilttanh ∗ (wxcxlt+whch
l
t−1+ bc) (9)

hlt= olt ∗ tanh ∗ clt (10)

hlt=H
(
wxlhlx

l
t+whlhlh

l
t−1+ blh

)
(11)

Yl
t = (wylhlh

l
t−1+ bly) (12)

Figure 4: Unfolded architecture of sync-LSTM

Sync-LSTM forwards multiple activity sequences to detect and encode hidden internal struc-
tures between parallel hidden activity sequences. It is time-consuming to process a signal with
long time steps by a standard LSTM neuron. Therefore, we used multiple LSTM units in parallel
to process different parts of the information. Fig. 4 shows the unfolded architecture of the sync-
LSTM network. It consists of the input layer, the parallel LSTM, the fully connected layers, and
the outputs. The outputs in the final time step of each LSTM unit are summarized as n × h,
where h is the number of hidden neurons of each LSTM unit. The LSTM layers adjust their
internal state after each time step. The size of the weight, bias, cell, and hidden layers is assigned
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to be 128. The final number of parameters depends on the number of activity classes in the
classification.

Algorithm 1: Pseudo-code for concurrent activity recognition using sync-LSTM
1. initialize network
2. reset: inputs = 0, activations = 0

forward propagation:
3. initialize the inputs do
4. roll over: activations; cell states
5. loop over a cell, end for
6. do
for t = 0 to n do
Calculate the gate values:
input gates: ilt = σ

(
wxi ∗ xlt+whi ∗ hlt−1+wci ∗ clt−1+ bi

)

forget gates: f lt = σ
(
wxf ∗ xlt+whf ∗ hlt−1+wcf ∗ clt−1+ bf

)

loop over the cells in block now
output gates: olt= σ(wxo ∗ xlt+who ∗ hlt−1+wco ∗ clt−1+ bo)
update the cell: clt = f lt ∗ clt−1+ ilttanh ∗ (wxcxlt+whchlt−1+ bc)

final hidden state/final output: hlt = olt ∗ tanh ∗ clt
hlt =H(wxlhlx

l
t+whlhlh

l
t−1+ blh)

Yl
t = (wylhl h

l
t−1+ bly)

end for
7. concurrent activity recognize
8. do
Update the weight
end

4 Experimental Results and Analysis

This section presents the detailed results in both the training and recognition phases of the
model. Several design parameters, such as the input data, the number of sync-LSTM layers, and
the number of activities, are assigned and processed. The training dataset is used to train the
classification, estimation, and evaluation of an individual activity for the best model parameters
and for tuning the hyperparameters. Then the proposed model is trained, and the results are com-
pared with the existing model outputs. For the experimental analysis of the proposed approach,
the Kasteren and Kyoto 3 datasets are considered. The selected datasets have some limitations,
such as the activity instances of different groups, some residents in each house, performance of
the same activity in different ways, and availability of less learning data. Algorithm 1 presents the
pseudo-code for concurrent activity recognition.

4.1 Experimental Configuration and Training
The proposed neural network is implemented in the TensorFlow and scikit-learn libraries. In

this paper, linear interpolation is used to fill the missing data and normalized to a zero mean
with a standard deviation of 0.5. The sensor data is pre-processed and sampled in overlapping
sliding windows with a fixed width of 200 ms and a window size ranging from 0.25 s to 7 s.
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The data is sampled in a single window. The proposed method is trained and tested using the
TensorFlow_GPU1.13.1 library. The computer deployment is best suited to run our algorithm
using i7 CPU with 16 GB RAM and GTX Titan GPU with CUDA 9.0 and using the cuDDN 7.0
library. The CPU and GPU are used to avoid exceeding the memory limit during training. The
dataset is split into a training set and a test set. The model uses 70% of the data for training, 10%
for validation, and the remaining 20% for testing. We use a k-fold CV (cross-validation) to validate
the data. In our experiment, we validate with k = 10, known as 10-fold cross-validation. The
accuracy result is averaged across all 10 folds, and the error is calculated as the cross-validation
error rate.

CV = 1
k

10∑
k=1

Error (13)

During training, the dropout rate is set to 0.5 to remove and avoid unused specific neurons
from each hidden layer to solve the overfitting problem. The training loss function is minimized
by random initialization and optimization of training parameters. The two-loss functions, named
cross-entropy and L2 normalization, are inherited to avoid overfitting throughout the epoch to
make the model stable.

L=− 1
m

n∑
m=1

ylt.logy
l′
t + Γ .‖W‖ , (14)

where m is the number of samples per batch, and Γ is the weighting parameter. ylt is the predicted

output, and yl
′
t is the label from the dataset. L2-normalization limits the trainable weighting

parameter to a smaller value, which avoids overfitting.

We try to tune the best hyperparameters as shown in Tab. 1 in networks so that the learning
rate and L2 weight decrease to reduce the difference and thus achieve the possible optimal
performance. We train the model with a learning rate of 0.005 and 0.006 for the Kyoto 3 and
Kasteren House-B datasets by taking the batch value of 100 for each epoch. Learning starts at
0.001 for all data. The training is performed for more than 12,000 epochs and stops at stable
outputs. The Adam optimizer is an adaptive moment estimator that obtains independent adaptive
learning rates for different parameters, making them more stable. The dimension based on the
input is set to 128. The gradient clipping is set to 4 and 5 to reduce the threshold for crossing the
gradient to match the normalization. The batch size is set to 100 samples, and this is often referred
to as a mini-batch gradient descent since our batch size is smaller than the training sample size.

4.2 Datasets
Our proposed method is evaluated using the Kasteren datasets [43] and CASAS [44]. An

overview of the datasets is shown in Tab. 2. Both datasets were gathered in an apartment contain-
ing either four or two rooms. Seventy-six sensors are deployed in Kyoto 3, whereas 23 sensors are
deployed in House B. Of these sensors, 51 were used for motion detection, 12 were used as cabinet
sensors, 5 were used for cooking element detection, 3 were used as temperature sensors, and the
remainder was used as a medicine container sensor, pot sensor, phone book sensor, water sensor,
burner sensor, or phone sensor in Kyoto 3. The four residents in the Kyoto 3 dataset performed
eight different activities for 15 days. There are 178 instances of activity recorded from Kyoto 3.
The single resident in the Kasteren house performed 13 different types of activities for 14 days.
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The sensors show the change of state according to the action of the occupant. Radiofrequency
identification, a wireless sensor network, a pressure sensor, a reed switch, mercury contacts, a
passive infrared-PIR, float sensors, and temperature sensors are used to record the data for the
Kasteren house. The schematic diagram of the sensor deployment is shown in Fig. 5.

Table 1: Hyperparameter settings

Hyperparameters Values

Kyoto 3 House-B

Time steps of input 128 128
Dropout rate 0.5 0.5
Initial learning rate 0.001 0.001
Learning rates 0.005 0.006
Optimizer (Bi-LSTM) Adam Adam
Batch size 100 100
Gradient clipping 4 5
Epochs 12000 12000

Table 2: Overview of Kyoto 3 and Kasteren House-B dataset

Description Kyoto 3 House-B

Setting Apartment Apartment
Rooms 4 2
Senors 76 23
Activities 8 13
Residents 4 1
Period 15 days 14 days
Instances 178 135
Activities performed Fill Medication Dispenser,

Wash DVD, Water Plants,
Answer the Phone, Prepare
Birthday Card, Prepare Soup,
Clean, Choose Outfit

Breakfast, Brushing Teeth,
Dinner, Drinking, Dressing,
Leaving House, Others,
Preparing Breakfast, Preparing
Dinner, Sleeping Showering,
Toileting, Using Dishwasher

4.3 Evaluation Metrics
The metrics of the confusion matrix, accuracy, F1-score, and training time are used to eval-

uate the performance of the model. A confusion matrix shows the performance of the approach,
where the row represents the predicted class, and the column represents the actual class and
vice versa. It also gives information about the errors made. Generally, human activity recognition
methods are evaluated according to their computational recognition accuracy. The accuracy is
calculated using the confusion matrix, which is the result of the Precision and Recall parameters.
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Precision is the proportion of correctly recognized instances out of the absolute perceived activity
occurrences. Recall is the proportion of correctly recognized instances out of the total occurrences
of the activity. An f-score is the weighted average of Precision and Recall whose value is between
[0,1], with the best performance indicated if it is closer to 1.

-sensor node 

(a) (b) 

Figure 5: Schematic diagram of sensor deployed and layout (a) Kyoto 3 (b) Kasteren House-B

Precision= tp
tp+ fp

× 100 (15)

Recall= tp
tp+ fn

× 100 (16)

Accuracy= tp+ tn
tp+ tn+ fp+ fn

× 100 (17)

f-score= 2×Precision×Recall
Precision+Recall

, (18)

where tp, tn, fp, and fn are true-positive, true-negative, false-positive, and false-negative, respec-
tively. The true-positive score is defined as the number of true activities detected in positive
instances, while a false-positive indicates the false activities detected in negative instances. The
false-negative score indicates the exact number of false activities detected in positive instances,
whereas the true-negative score reflects the correct non-detection of activities in the negative
instances.

4.4 Recognition Analysis
In this section, a possible implementation of the platform for human activity detection in

smart homes is explained. All activities are localized based on the dataset. The activities that
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occur most frequently at the same time are considered the predominant activities in a smart home
environment. Fig. 6 presents the graphical confusion matrix for Kyoto 3.

Figure 6: Confusion matrix for Kyoto 3

According to the confusion matrix, the filling medication activity was correctly detected with
98% accuracy but still has an activity error of 2% because the call may be made while other
activities are being performed simultaneously. Watching DVD also has a 98% confusion accuracy,
although 1.3%, 1.2%, and 0.4% of the fill medication dispenser, answer the phone, and choose outfit
activities cause confusion since they can all be performed at the same location. The activities water
plants, answer the phone, prepare birthday card, prepare soup, clean, and choose outfit have recognition
accuracies of 98%, 96%, 97%, 99%, 98%, and 98%, respectively. The activity answer the phone
has the lowest recognition accuracy compared to the rest of the activities, and this activity also
leads to confusion with all other activities because a phone call can be performed with all other
activities that share most sensor values. However, the co-occurrence of answer the phone is higher.
The data from Kasteren and CASAS have the lowest number of records and instances; therefore,
the actual distribution is easy to find and train. The recognition accuracy can increase if we train
our proposed method with a large amount of data.
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Figure 7: Confusion matrix for House-B

The confusion matrix for House-B is shown in Fig. 7. The number of activity instances is
relatively small, so the occurrence of errors is relatively lower, and recognizing the concurrent
activity with the highest true positive value results in 96.90% accuracy. The activity drinking in
House-B is the most appropriate activity that occurs concurrently with the activities preparing
dinner, preparing breakfast, dinner, relaxing, using dishwasher, and leaving house, with an accuracy
of more than 96.90%. House-B achieved precision, recall, and an f1-score of 97.94%, 97.00%,
and 0.97, respectively. Brushing teeth is also detected simultaneously with the activity toileting.
Activities such as brushing teeth, showering, and toileting create confusion with some error because
all the activities share the same location. However, the errors are comparatively very low and can
be neglected. The using dishwasher activity shows concurrency with activities such as preparing
dinner, preparing breakfast, dinner, and breakfast. The detection of using dishwasher concurrently
with other activities is more than 97.935%. All of these concurrently recognized activities have
high detection accuracies. Sleeping is a stand-alone activity: It cannot appear simultaneously
with other listed activities. Sometimes it may create some confusion with the dressing activity,
as it is performed in the bedroom. The accuracy of House-B is insufficient to fully establish
the experimental concept. Although the accuracy is high, many datasets could be needed to find
the proposed actual recognition. We confirm that our proposed approach for concurrent human
activity recognition is feasible.
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4.5 Performance Comparison

Figure 8: Accuracy and loss curve of (a) Kyoto 3 and (b) House-B

Figs. 8a and 8b present the accuracy and loss of training and testing procedures for Kyoto
3 and House-B, respectively. In the graphs, the gap between the training and testing accuracy is
comparatively small, indicating the effectiveness of the model. The gap between training and test
loss is also very narrow, which explains that the dropout techniques are beneficial and resistant
to overfitting.

The average accuracy was found to be 97.374%, and the average error was 0.1637. The
performance of the proposed approach was compared with the existing framework, which uses
CNN, LSTM, and Bi-LSTM methods (algorithms) for recognition by measuring the average
precision, recall, f-score, and accuracy, which are shown in Tab. 4. The accuracy of our method
is more than 97%, and the f1-score is more than 0.97. The Bi-LSTM also has competitive
accuracy with our method, but it can only process two inputs simultaneously. The cross-validation
process is performed before the test to validate the input sequences; therefore, the accuracy of
the test increases. This is a natural phenomenon in AI. The mean and standard deviation of the
accuracy and error using 10-fold cross-validation are shown in Tab. 3. The given analysis shows
that the proposed method can detect concurrent activities with higher accuracy than the existing
approaches.

Table 3: Average accuracy and standard deviation (SD) over the 10-fold CV

Mean (μ) ± SD (σ ) Accuracy Mean (μ) ± SD (σ ) Error

Kyoto 3 0.9748 ± 0.0448 0.1761 ± 0.0160
House-B 0.9690 ± 0.0455 0.1513 ± 0.0194
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Table 4: Accuracy comparison with existing approaches

Metric Model Dataset

Kyoto 3 House-B

Precision (%) CNN 96.38 94.32
LSTM 97.72 96.67
Bi-LSTM 98.01 96.78
Proposed method 98.8 97.36

Recall (%) CNN 96.22 94.38
LSTM 97.23 96.67
Bi-LSTM 98.06 96.83
Proposed method 98.48 97.35

f1-score CNN 0.95 0.94
LSTM 0.96 0.96
Bi-LSTM 0.97 0.96
Proposed method 0.98 0.97

Accuracy (%) CNN 96.66 95.21
LSTM 96.88 96.42
Bi-LSTM 97.09 96.99
Proposed method 98.38 97.42

4.6 Computational Complexity
The computational complexity depends on the number of weights and is given as O(W), where

W is the weight. The weight depends on the number of output units, the cell storage unit, the
size of the memory, and the number of hidden units. It is also affected by the number of units
associated with forwarding neurons, memory cells, gate units, and hidden units. The computational
complexity does not depend on the length of the input sequence. Although using an LSTM
framework increases time complexity, our approach has an acceptable computation time. Unlike
concurrent activity detection, Bi-LSTM has lower complexity, but it can only handle two parallel
activity detection processes and apply delay or other chaining functions to recognize more than
two activities.

This feature causes the system to wait for a complete process, which increases the compu-
tational complexity. Fig. 9 shows the computational time for testing our method compared to
existing frameworks, such as CNN, LSTM, and Bi-LSTM, for Kasteren house and Kyoto 3. In
the CNN comparison, it processes too many hidden layers and pooling as it segments the activity
into other sub-activities, which causes higher computational complexity. The computation time is
slightly higher but satisfactory and executable.
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Figure 9: Computation time comparison with existing approaches

5 Conclusion

The framework presented in this paper shows that sync-LSTM can lead to a feasible solution
for detecting concurrent human activities in the smart home scenario. This claim is supported by
a comprehensive comparison with recently utilized activity recognition techniques, such as CNN,
LSTM, and bi-LSTM. LSTM can work with single data sequences and bi-LSTM with a maximum
of two data sequences, but our sync-LSTM can accept multiple inputs and generate multiple
outputs, synchronized and in parallel. That is, for any environment or domain for concurrent
processing and recognition, this sync-LSTM would be an effective solution. Many approaches
focus on single and regular activity detection. Few of them have tried to detect complex activity.
Starting from the standard LSTM formulation, we have improvised a more efficient LSTM-based
approach to recognize complex human activity.

However, accuracy, processing complexity, and complex activity recognition are still significant
challenges in human activity recognition. The proposed method has an f1 score of more than 0.97,
along with an accuracy of more than 97%. This proves its effectiveness for concurrent human
activity detection with successful training and testing. Nevertheless, the accuracy is limited due to
some error factors, such as same location errors, sensor distance, noise interference, and limited
data. The unique best-performing model also suffers from several real-time challenges across
different datasets. The parameters, like number of activities, type of sensors, sensor distribution,
number of occupants, and duration of test periods, also affect the performance. The window size
plays a significant role in performance, as a small size may not contain all of the information,
and large size may lead to resident detection errors. The proposed method processes parallel data,
which is beneficial and consistent with the setting of highly imbalanced datasets. Therefore, data
augmentation techniques are not required.

Besides, sync-LSTM can automatically extract spatio-temporal information by reducing the
time-consuming effort for pre-processing data and manual feature extraction. External sensors
were used instead of wearables and camera or video sensors to avoid the unnecessary burden
and protect the privacy of the resident. In the future, more complex activities, such as interleaved
activity, will be recognized by improving and updating the proposed method. Furthermore, we
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can take advantage of cloud computing by using Google Colab and Amazon Web Services.
These technologies provide the opportunity to use their servers and also experiment with tensor
processing units. Using these techniques and technologies will also reduce the time complexity for
faster and better performance. We will also explore a transfer learning approach for this model in
other domains, environments, and sectors on big data and cloud infrastructures. In summary, our
proposed method (i.e., a sync-LSTM-based model that provides fewer parallel and synchronized
recognition and prediction paradigms) is preferable to its competitors.
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