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Abstract: In underground mining, the belt is a critical component, as its state
directly affects the safe and stable operation of the conveyor. Most of the
existing non-contact detection methods based on machine vision can only
detect a single type of damage and they require pre-processing operations.
This tends to cause a large amount of calculation and low detection precision.
To solve these problems, in the work described in this paper a belt tear detec-
tion method based on a multi-class conditional deep convolutional generative
adversarial network (CDCGAN) was designed. In the traditional DCGAN,
the image generated by the generator has a certain degree of randomness.
Here, a small number of labeled belt images are taken as conditions and added
them to the generator and discriminator, so the generator can generate images
with the characteristics of belt damage under the aforementioned conditions.
Moreover, because the discriminator cannot identifymultiple types of damage,
the multi-class softmax function is used as the output function of the discrim-
inator to output a vector of class probabilities, and it can accurately classify
cracks, scratches, and tears. To avoid the features learned incompletely, skip-
layer connection is adopted in the generator and discriminator. This not only
can minimize the loss of features, but also improves the convergence speed.
Comparedwith other algorithms, experimental results show that the loss value
of the generator and discriminator is the least.Moreover, its convergence speed
is faster, and the mean average precision of the proposed algorithm is up to
96.2%, which is at least 6% higher than that of other algorithms.

Keywords: Multi-class detection; conditional deep convolution generative
adversarial network; conveyor belt tear; skip-layer connection

1 Introduction

Belts comprise a very important component of conveyors as the condition of the belt directly
affects the safe and stable operation of the conveyor [1]. However, the working environments in
mining are extremely complex. When coal mixes with angular gangue, thin rods, and other objects,
the surface of the conveyor belt is easily worn during transportation of such materials due to
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uneven force, resulting in scratches, cracks, and severe tears [2]. To ensure mining safety, a belt-
detection system is not only designed to quickly detect the working status of a belt, but also
to determine the damage location accurately. Rapidity refers to the ability to judge the damage
severity of the belt and respond in time. This requires a system-detection algorithm with low
complexity. Accuracy refers to discerning different types of damage such as scratches, cracks,
and tears, and labelling severe damage locations. At present, belt tear-detection methods can be
divided into contact detection [3] and non-contact detection [4]. Contact detection is generally
conducted by detecting the force on the rollers, such as swing roller detection [5] and tear pressure
detection [6–8]. These methods are fast and simple, but when a large coal block passes through
the blanking port and collides with the buffer roller, false or missed detection is easily caused.
In contrast, non-contact detection methods are usually based on non-destructive detection, such
as ultrasonic detection [1,9,10]. Because there is complex noise in underground mining, it is
difficult for an ultrasonic system to receive the echoes of longitudinal tearing to perform accurate
detection. With the development of machine vision, non-contact detection has gradually begun to
use edge extraction to capture saliency areas and other methods to monitor the acquired images.
In practical application, most of these image-based detection methods can only detect a single
type of damage. They require pre-processing operations, such as binarization, edge extraction, and
image denoising, which can easily cause a long computation time.

Deep learning has superiority in using a massive data training network to extract object
features. A generative adversarial network (GAN) is a deep-learning model. It is based on the idea
of the zero-sum game, which extracts image features through competition between a discriminator
and generator. The former tries to identify the image data generated by the generator to minimize
the error, while the latter tries to maximize the error. Finally, Nash balance is reached between
both, and the foreground and background are segmented according to the difference of the fea-
tures. When a GAN and its improved algorithm are applied to belt-damage detection, the images
generated by the generator are not constructed specifically for belt damage, and thus the features
extracted during up-sampling appear to be random, resulting in feature deviations. Moreover,
the discriminator mostly uses a binary classification function. It can output only two categories
of images, i.e., real and fake, but cannot distinguish multiple types of damage. In addition, the
generator and discriminator networks have a large number of layers. When the dimension of
the convolutional layers is reduced, only part of the information is retained, which is considered
useful, but may cause the loss of important features. Therefore, an improved conditional deep
convolutional generative adversarial network (CDCGAN) is proposed and applied to belt-damage
detection.

The contributions of this paper are the following. (1) For the images generated by the
generator having a certain randomness, a small number of labelled belt images is taken as
conditions and are added to the generator and discriminator. According to the conditions, the
generator generates images with corresponding belt-damage features. This facilitates learning the
characteristics of damaged parts in one image and improves the accuracy of damage detection.
(2) Because the discriminator for a DCGAN cannot identify multiple types of damage, a multi-
class softmax function is adopted as the output function of the discriminator in the proposed
CDCGAN. The vector of the output class probability is used to classify the cracks, scratches and
tears accurately. (3) To avoid the features learned incompletely, skip-layer connection is adopted in
the generator and discriminator. This not only can minimize the loss of features, but also improves
the convergence speed.
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The rest of this paper is organized as follows. In Section 3, the problem of the traditional
DCGAN and corresponding solution are introduced. In Section 4, the proposed conveyor-belt
detection-system is described, including system design and the algorithm design of the detection
module based on the multi-class CDCGAN. Experimental results and analysis are provided in
Section 5. Finally, conclusions are presented in Section 6.

2 Related Work

With the development of machine vision, non-contact detection has gradually used edge
extraction to capture saliency areas as well as other methods to monitor acquired images. For
example, Wang et al. [11,12] proposed a tear-detection method based on Haar features instead of
traditional geometric features. The weak classifier is trained by the Haar features extracted from
the dataset and is promoted to the strong classifier with the AdaBoost algorithm. For the method
only trained on the features of the area of the tear, other damage, e.g., cracks and scratches,
cannot be detected. Yang et al. [13–15] designed a belt longitudinal tear warning method that uses
infrared spectroscopy analysis. The maximum target background-radiation contrast is obtained,
and the infrared-radiation field matrix is acquired through the infrared-radiation difference. By
setting the radiation field as the carrier and acquiring its characteristic coefficient T in the fre-
quency domain, the demodulation of the carrier wave is used to detect the damage. However, the
frequency domain is limited to tear detection and lacks generalization ability. Qiao et al. [16–20]
proposed a Harris corner point detection algorithm with filtering function that helps to make
it possible to eliminate the influence of pseudo-corners in feature recognition. Combined with a
Hough transform, the original image is divided into a highlight area and a dent area. From the
difference between the two types of areas, the damage is detected. However, among the images
detected, the dent area usually includes a single crack, which is not suitable for detecting multiple
damage types. Hao et al. [21–23] proposed a multi-class support-vector-machine (SVM) detection
method based on visual salience that uses a SVM to transform the nonlinear separable samples of
the extracted seven-dimensional feature vectors into linear separable samples in a high-dimensional
space. It classifies the test samples by using the radial basis function. Although this method can
detect three types of damage, i.e., scratches, cracks, and tears, the collected images must be pre-
processed by binarization and a grey histogram to obtain the features of the damaged positions,
which is time-consuming and costly.

Deep learning has been widely applied in image segmentation [24–26] and image detec-
tion [27–29], owing to its advantage of using a massive data training network to extract object
features. Among them, GANs [30,31] extract image features by competition between discrimina-
tor and generator. Then, the foreground and background are segmented by feature differences.
Usually, traditional convolution neural networks require labelling a large number of images man-
ually [32,33]. Superior to them, a GAN only needs a small amount of data to be labelled, because
the model can automatically learn the data distribution from the training samples and generate
new sample data. However, the training process of the network usually adopts the gradient-descent
method, and the generator model may be trained along a certain feature all the time, resulting
in failure to converge and model collapse. DCGANs [34,35] adopted step convolution instead of
up-sampling layer, and convolution instead of fully connected layers. Thus, they can learn their
own spatial down-sampling to obtain image features. However, Since the noise vector is random,
it is not constructed for the specific type of images. When the generator performs up-sampling,
the extracted features appear random to some degree, resulting in the deviation in the features. In
CGANs, the condition is the target label, which is expected to be matched by the images generated
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by the generator [36–38]. The discriminator not only identifies whether the generated image is true,
but also discerns whether the image and condition (c) match. However, the model has a large
number of layers, and some features may be lost during forward propagation, which results in the
features being acquired incompletely. Ren et al. [39–42] added a skip-layer connection among the
network layers, which can promote function re-use between layers and preserve useful information.
Even if some of them are lost in training, the key features can be well retained.

3 Problem Statement

To detect belt tears effectively, a belt damage detection system must first be designed.
Such a system includes image-acquisition, data-transmission, image-detection and system response
modules. These modules realize image acquisition, image transmission, image detection, and
real-time response, respectively. Among them, the image-detection module is the core part of belt-
damage detection. The rationality of its algorithm design is related to the real-time and accuracy
requirements of belt-tear detection; Therefore, the design of this part is particularly critical.

When a traditional DCGAN is used for image detection, the input of the generator is a
random noise vector. Owing to the fact that DCGANs are not constructed specifically for belt
damage, the extracted features appear random during the generator’s up-sampling, which causes
feature deviation. In response to this problem, a small number of the labelled belt images with
damage as conditions are taken herein and added them to the generator and discriminator.
Thus, the model can generate the damaged images according to the corresponding conditions.
Furthermore, the output of the discriminator mostly uses a binary classification function. If it
is adopted, only the torn and non-damaged parts of the belt can be detected, and no warning
can be issued regarding the potential danger of scratches. Therefore, to solve this problem, the
output of the discriminator is changed to a multi-classification softmax function that detects
and classifies three types of damage: scratches, cracks, and tears. In addition, due to the large
number of network layers in the generator and discriminator, dimensionality reduction of the
convolution layer is essential. During the process, some of the important features are easily lost as
they are considered useless. The incomplete features obtained easily affect the accurate detection
of belt tearing. Considering this question, a skip-layer connection is used in the generator and
discriminator that not only improves convergence speed, but also avoids the loss of features in
propagation, thereby improving detection accuracy.

4 Conveyor Belt-Detection System

4.1 System Design
The detection-system architecture is divided into three parts, namely, image-acquisition, data-

transmission and decision subsystems, as shown in Fig. 1. Of these, the image-acquisition subsys-
tem is shown in Fig. 2, and it includes a surface light source and image-acquisition equipment,
which is installed at the bottom of the conveyor belt to collect belt-damage images. The surface
light source illuminates the belt surface vertically to improve the brightness of the image and a
charge-coupled-device (CCD) camera (Mind Vision PMV-GE100M-T, ShenZhen, China) is placed
at a suitable angle to collect images with the surface light source. Hundreds of images are collected
as samples with the test belt operating at speed. Once the appropriate image is obtained, the
system begins to process the image.

The decision-making subsystem is divided into a detection module and a response module.
The former uses the algorithm designed as detailed in Section 4.2, which is accelerated by a



CMC, 2021, vol.69, no.2 2675

graphical processing unit (GPU) (NVIDIA), to detect the damage of the images. The latter
responds to the results in real time. If a tear occurs, the conveyor stops immediately; If a crack
occurs, the system warns but does not stop; If the conveyor is detected as normal or a scratch
appears, the system operates normally.

Figure 1: System structure diagram

Figure 2: Image acquisition subsystem
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4.2 Multi-class CDCGAN
The multi-class CDCGAN is designed in the belt-tear-detection module. The generator model

of a traditional network is a deconvolution neural network. Through the input layer and deconvo-
lution layer for up-sampling feature extraction, it transforms random noise into the fake images,
which are very close to the real images. To avoid feature deviation, a small number of images with
damage labeled are set as condition (c) to help guide data generation. The conditions are added
to the DCGAN and it is expanded to the conditional model. In the generator, both condition (c)
and the noise are input. Similarly, in the discriminator, condition (c), real data and the images
generated by the generator are regarded as input that helps to train the networks purposefully to
obtain the characteristics of belt damage precisely.

The goal of the generator is to minimize the difference between the real and generated
data. It tries to make the discriminator unable to distinguish them. However, the discriminator
tries to maximize the difference. Here, the objective function is set to illustrate a continuously
iterating process to obtain the optimal solution by minimizing the generator and maximizing the
discriminator.

In this paper, the object function V (D, G) is shown in Eq. (1):

min
G

max
D

V (D, G)=Ex∼pdata(x) [logD (x | c)]+Ez∼pz(z) [log (1−D (G (z | c)))] (1)

where, minGmaxDV (D, G) represents the optimization process of minimizing the generator and
maximizing the discriminator, E (·) the expected value of the distribution function, Pdata(x) the
distribution of real data, pz(z) the distribution of noise data, D (x | c) the discriminator with
condition (c), and G (z | c) a generator with a condition and noise.

The conventional discriminator model is a convolution neural network. Its input is the real
and fake images generated by the generator. The output layer adopts the sigmoid binary classifi-
cation function with an output value between [0, 1]. If the output is 1, it indicates that the input
image is real data; but, if the output is 0, it means that the input image is a fake image generated
by the generator. Owing to the binary classification characteristic, only the torn and non-damaged
parts can be detected, while the types of cracks and scratches cannot be identified. In this paper,
the softmax function is used as the output function of the discriminator to identify scratches,
cracks, and tears. This is called multi-class CDCGAN.

Assuming that the random vector z has a uniform noise distribution Pz(z), the generator
model G (z | c) maps it to the data space of the real image. The input x of the discriminator
is the real images or the fake image with condition (c), and its distribution is Pdata (x | c). The
output of the fully connected layer in the discriminator is l = {l1, l2, . . . , lk}, which is a k + 1
dimensional vector. It is converted by the softmax function to the k + 1 dimensional category
probability p= {

p1, p2, . . . , pk+1
}
. Using it, the real image will be judged as the first k class and

the fake image will be judged as the (k + 1)-th class. The softmax function is shown in Eq. (2):

pj = elj
∑k

i=1 e
li
, j ∈ {1, 2, . . . , k+ 1} (2)

where li represents the input vector of the fully connected layer, lj the class vector output by
the fully connected layer, pj the class probability of the output, and e is the base of the natural
logarithm, equal to approximately 2.71828.
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In this paper, the cross-entropy function is selected as the loss function of discriminator
D (y | x) to determine the closeness between the actual and expected output. The smaller the loss
value, the better the model learning. Therefore, it is necessary to optimize the network model by
minimizing the loss function. D (x | c) is defined as Eq. (3):

D (x | c)=−
∑

j

c′j log
(
pj

)
(3)

where j represents the class, c′ the expected category and pj the category probability of the output.
One-hot coding is adopted for c and c′; in other words, if the discriminator’s output is the j-th
class, the corresponding position is coded as 1, while the remaining positions are coded as 0.
When the input is a real image, Eq. (2) can be further expressed by Eq. (4):

D (x | c, x< k+ 1)=−
k∑

j=1

c′ log
(
pj

)
(4)

where c′ denotes the expected class and pj the probability of the output category.

When the input is a fake image, it can be simplified to Eq. (5):

D (x | c, x= k+ 1)= log
(
pk+1

)
(5)

where pk+1 is the category probability of the fake image.

In this paper, the damage-detection method is based on the multi-class CDCGAN, and the
type of belt damage is identified by the softmax function. Damage labelled by 1–4 indicates the
detection of tears, cracks, scratches, and fake images, respectively.

In addition, skip-layer connections are implemented to enhance feature propagation and
enable feature re-use between two convolution layers. Without skip-layer connections, features
obtained from previous layers will be gradually lost after a series of convolution layers, and the
convergence rate of the model will decrease during the training period.

4.3 Algorithm Design and Description
The algorithm design process is the following.

Step 1: Collect belt images with the area light source through the CCD camera, and label
some of them with damage type. This dataset contains a small amount of labelled data and a
large number of unlabelled data. Fig. 3 shows the images collected in the dim environment of a
coal mine. Belt damage is marked as follows: the red box represents tears, the green box represents
cracks, and the blue box represents scratches.

Figure 3: Labelled belt damage
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Step 2: Build the generator model by taking a 100-dimensional random noise vector z and
condition (c) (a small number of images with the damage labelled) as input. The noise is converted
to an 8192-dimensional vector through a full connection layer, and then transformed into a 4 ×
4 × 512 feature map by reshape function. Through deconvolution layers 1–4 for up-sampling, a
64 × 64 × 3 belt image is finally generated. The generator model’s structure is shown in Fig. 4.

Figure 4: Generator model structure

Step 3: Build the discriminator model by taking a 64 × 64 × 3 image generated by the
generator and condition c (a small number of damaged images labelled) as input. After using
convolution layers 1–4 for down-sampling, the final output is a 4 × 4 × 512 feature map that
is reshaped into a 4 × 4 × 512-dimensional vector, and through the fully_connected layer, the
probability values of scratches, cracks, tears, and fake images are output by the softmax function,
and the types of conveyor-belt damage are judged. The discriminator model structure is shown in
Fig. 5.

Figure 5: Discriminator model structure

Step 4: Train the network by adding skip-layer connections in the generator and discriminator.
This helps the network to learn the characteristics of belt damage and keeps the important
information in the network propagation. This can improve the precision of detecting of the cracks,
scratches, and tears.
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Step 5: Based on the predicted results, the system responds in real time. If a tear occurs, the
belt stops immediately. If a crack occurs, the system issues a warning and does not stop. If the
belt is detected to be operating normally or a scratch occurs, the system operates normally.

The detection process diagram of belt images is shown in Fig. 6.

Figure 6: Detection process of belt images

5 Experiment and Analysis

5.1 Data Acquisition and Pre-processing
As the conveyor reaches a constant speed, a surface light source is added to clarify the

collected data clearer. At this time, the CCD camera is used to capture the image of the surface
of the conveyor belt, and the captured image is transmitted to the computer through the data
transmission line. Accelerated by the GPU, the processing module classifies the damage image, and
the control module responds in real time based on the types of damage, including maintaining
normal operation or stopping the conveyor immediately.

The image-acquisition process was tested under ideal conditions; that is, without water, dust
or any other environmental factors that may affect the test results. A total of 3,200 images were
collected and divided into four groups, each containing 800 images. The experimental parameters
are the height of the CCD camera and speed of the conveyor belt. The height determines the size
of the image, while the speed affects the clarity of the image. Both affect the recognition accuracy.
In the first set of experiments, the belt was run at a low speed (1 m/min), the CCD height was
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set to 0.4 m and the resolution was 900 × 700. In the second set, the belt was still run at a low
speed (1 m/min), the CCD height was set to 0.8 m and the resolution was 1800 × 1400. In the
third set, the conveyor belt was run at a high speed (2 m/min), the CCD height was set at a low
height (0.4 m) and the resolution was 900 × 700. In the fourth and final set, the conveyor was
run at high speed (2 m/min), the CCD height was set at a high height (0.8 m) and the resolution
was 1800 × 1400. From each group of images, 200 images were selected randomly for labelling.
As a result, there were 800 labelled images and 2400 unlabelled images.

5.2 Model Training and Results
The experiment was run on the pycharm 2017 software platform. The python library included

tensorflow, scipy, and numpy. The hardware was configured with the windows 10 on a i5-
9300HQ@2.40 GHz CPU. The GPU was an NVIDIA GeForce GTX 1650. In the experiment, the
data were loaded in batches, each of size seven. That is, seven pictures were loaded in one batch
during each training cycle. An epoch represents the image data of the entire dataset loaded at
once. The epoch size was set as 300 and the sizes of the images collected were uniformly adjusted
to 64 × 64 pixels.

In this work, the Adam optimizer was used to optimize the network and skip-layer connection
used to accelerate the convergence speed of the CDCGAN. Figs. 7 and 8 show the training curves
of the generator and discriminator with and without a skip-layer connection, respectively. The
horizontal coordinate represents the epoch number and the vertical coordinate the value of the
loss function.

Figure 7: Generator model training curve with and without skip-layer connection

The smaller the loss value, the more realistic the image generated by the generator and the
better the model fits. In Fig. 7, the loss function in the generator exhibits the same downward
trend regardless of whether or not it contains a skip-layer. However, the generator with a skip-
layer connection has a loss value of 0.41 while that without has a loss value of 0.71. The
loss value of the former is approximately 0.3 and is less than the latter. In Fig. 8, the smaller
the loss value, the closer the discriminator’s prediction to the real damage. Compared with the
discriminator without a skip-layer connection, the loss value for the discriminator with a skip-layer
connection decreased to 0.63. It can be seen that the algorithm model proposed in this paper is
better than that without a skip-layer connection in belt-tear detection.



CMC, 2021, vol.69, no.2 2681

Figure 8: Discriminator model training curve with and without skip-layer connection

The experimental evaluation indexes mainly include precision, recall and the mean average
precision (mAP) curve, which are used to evaluate the overall performance of the model. Among
them, average precision (AP) is the area surrounded by the curve of the accuracy rate changing
with the recall rate, and mAP is the average value of the AP of multiple classes. In this paper,
the algorithm of the precision and recall rates are shown in Eqs. (6) and (7), respectively:

precision= TP
TP+FP

(6)

recall= TP
TP+FN

(7)

where TP is the number of pixels in the damaged area of the belt that is correctly judged, FP is
the number of pixels in the damaged area that is misjudged and FN is the number of pixels in
the missing area.

To analysis the generalization ability, the algorithm was compared with the DCGAN and
CGAN on the belt-image dataset. Tab. 1 shows the comparison of detection results with different
algorithms, where from top to bottom are represented scratches, cracks, tears, scratches + cracks,
scratches + tears, tears + cracks and scratches + cracks + tears. Tab. 2 shows the comparison
of precision and recall with different algorithm models. Fig. 9 shows the mAP curve comparison
with different algorithm models.

It can be seen from Tab. 1 that, compared with the algorithm proposed in this paper, the
DCGAN and CGAN have the same effect for a single crack. However, when detecting multiple
types of damage, the effect of the algorithm proposed in this paper performs relatively better. As
the discriminators of the DCGAN and CGAN are both binary classification models, the effect is
obviously poor at detecting multiple types of damage.

It can be seen from Tab. 2 that the precision and recall rates of the model proposed in this
paper are higher than those of the DCGAN and CGAN.
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Table 1: Comparison of detection results using different algorithms

Original DCGAN CGAN Proposed Baseline

Scratches

Cracks

Tears

Scratches + cracks

Scratches + tears

Tears + cracks

Scratches + cracks + tears

Table 2: Comparison results of different models

Experiment Precision Recall

DCGAN 0.916 0.803
CGAN 0.927 0.809
Proposed 0.955 0.834

As can be seen from Fig. 9, in which a skip-layer connection was adopted in the proposed
algorithm, the convergence speed is faster relatively. Owing to the fact that the discriminators of
the DCGAN and CGAN are both binary classification models, lacking multi-class detection, the
mAP of the DCGAN is 88.3% while that of the CGAN is 90.1%. In contrast, the mAP of the
proposed algorithm is up to 96.2%, which is at least 6% higher than that of the others.
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Figure 9: Comparison of mAP curves for different models

6 Conclusions

A reliable and fast tear-detection method for mining conveyor belts is presented in this paper.
The model can obtain the corresponding damaged image by adding conditions to the generator
and discriminator. The use of a skip-layer connection can not only improve the convergence
speed, but also avoid the loss of features during the propagation process, and the output of the
discriminator is a multi-class softmax function, which can detect and classify damage very well.
Experimental results show that compared with other methods, the method advanced herein is
suitable for detecting multiple types of damage in an image with both high accuracy and reliability.
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