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Abstract: Cancelable biometrics are required in most remote access applica-
tions that need an authentication stage such as the cloud and Internet of
Things (IoT) networks. The objective of using cancelable biometrics is to save
the original ones from hacking attempts. A generalized algorithm to generate
cancelable templates that is applicable on both single and multiple biometrics
is proposed in this paper to be considered for cloud and IoT applications. The
original biometric is blurred with two co-prime operators. Hence, it can be
recovered as the Greatest Common Divisor (GCD) between its two blurred
versions. Minimal changes if induced in the biometric image prior to process-
ing with co-prime operators prevents the recovery of the original biometric
image through a GCD operation. Hence, the ability to change cancelable
templates is guaranteed, since the owner of the biometric can pre-determine
andmanage theminimal change induced in the biometric image. Furthermore,
we test the utility of the proposed algorithm in the single- and multi-biometric
scenarios. The multi-biometric scenario depends on compressing face, finger-
print, iris, and palm print images, simultaneously, to generate the cancelable
templates. Evaluation metrics such as Equal Error Rate (EER) and Area and
Receiver Operator Characteristic curve (AROC) are considered. Simulation
results on single- and multi-biometric scenarios show high AROC values up
to 99.59%, and low EER values down to 0.04%.
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1 Introduction

Compared to authentication systems based on passwords, tokens, IDs, and biometrics, can-
celable biometric recognition systems provide better security for human identification purposes.
They are more suitable for remote access networks such as cloud and IoT networks. Cancelable
biometric systems can be built with a single or uni-biometric, hence the name uCBS, or with
multiple biometrics, hence the name mCBS. The uCBS are considered less secure compared to the
mCBS [1]. The general framework of uCBAS is presented in Fig. 1, where the recognition process
involves a sensor module for image capturing, a pre-processing module for data alignment and
noise removal, and a segmentation module to extract the region of interest from the input image
followed by the feature extraction process, which heralds the user identification.

Figure 1: Framework of typical uCBS

User validation schemes are impeded by overlapping facial biometrics as in twins, poor data
acquisition in the case of dry fingerprints, or even missing data, in typical cases of occluded
biometric images. Therefore, mCBS are required to enhance the outcomes of the recognition
process. Human facial, iris, fingerprint, ear, signature, voice, and other biometric modalities are
now widely exploited to build robust mCBS. At the same time, such behavioral biometrics suffer
from unavailability or poor coverage over large databases, and they also exhibit poor recognition
accuracy [2]. Meanwhile, several studies focusing on numerical approaches to secure biomet-
ric templates have been published [3–5]. Notwithstanding these efforts, safeguarding biometric
templates from illicit tampering remains a top priority deserving improvement in the face of
sophisticated techniques to violate their intensity.

For increasing the security, accuracy, and genuine acceptance rate, mCBS have been imple-
mented [6]. Different studies on improving the accuracy of mCBS have been published [6–17].
Multimodal biometric systems take more than one biometric template to fuse them for the
identification and validation purposes. An effective fusion scheme is an important step for effective
mCBS. In this regard, Rathgeb et al. [7] presented a privacy preserving technique based on feature
level fusion with bloom filter applied on face and iris biometrics. They reported an EER of
0.4%. Similarly, Paul et al. [8] presented a facial and ear cancelable biometric mechanism based
on fusion. Both face and ear templates are partitioned into 25 blocks, and a random projection
process is applied on each block. Subsequently, the average fused projected blocks are used to
generate the cancelable templates. The results reported improvements of 12% and 14% in the
recognition accuracy compared to those of the face and ear recognition systems, respectively. In
their contribution, Dwivedi et al. [9] presented a two-level cancelable multi-biometric recognition
system based on a score fusion technique. This system depends on a rectangular area weighting
technique that is applied on scores from different modalities. It achieved a high authentication
performance compared to those of the single-biometric recognition systems. Moreover, Kaur
et al. [10] proposed a framework for multi-server biometrics that integrates a pseudo-biometric
identity with a revoked version from a pseudo-template. The authors claimed enhanced security
using pseudo-identities generated using a Random Distance Method (RDM).



CMC, 2021, vol.69, no.2 1573

Furthermore, Yang et al. [11] proposed an mCBS based on both fingerprint and finger-
vein. Their method generates cancelable templates by combining feature sets extracted from
both biometrics. They accomplished feature-level fusion using Partial Discrete Fourier Trans-
form (PDFT). They reported a higher security level for the Enhanced Partial Discrete Fourier
Transform (EPDFT) compared to that of the PDFT. Goswami et al. [12] proposed feature-level
fusion and classification for multi-modality biometric recognition. They applied a Group Sparse
Representation Classifier (GSRC) on feature vectors extracted from multi-biometrics, which yields
biometric authentication with an accuracy of 99.1%. Likewise, Canuto et al. [13] investigated four
fusion approaches for mCBS using voice and iris biometrics. Their work proves that cancelable
biometric schemes based on more than one transformation could offer more security, since these
transformations complicate the verification task. In their effort, a fusion structure in the feature
level for fingerprint templates was proposed by Sandhy et al. [14]. Therein, two transformed
features are computed from the fingerprint minutiae to produce a bit string to be used in the
fusion process. They achieved an EER of 1.6% on the Fingerprint Verification Competition (FVC
2002) database. Meanwhile, Barrero et al. [15] introduced a multi-modality biometric recognition
system based on homomorphic encryption. They applied three fusion levels: feature, score, and
decision to safeguard their templates, and they reported a minimum EER of 0.12%.

Similarly, Lai et al. [16] proposed a cancelable iris recognition scheme based on hashing.
It depends on a Hadamard product operation and a modulo threshold function. The authors
claimed improved accuracy in addition to enhanced security. Finally, Umer et al. [17] introduced
a bio-hashing approach with a spatial pyramidal feature extraction process. It depends on a
user-specific independent token that can be generated by each user with his selected generation
method.

This paper presents a new algorithm that can be applied for both uCBS and mCBS. The main
idea of the proposed algorithm depends on the Greatest Common Divisor (GCD) to generate the
cancelable templates. It is known that if two co-prime operators are used on the same biometric
image to obtain two blurred versions of that image, the original biometric itself can be obtained
again through the 2D GCD between the two blurred versions. If some intended change is induced
in the biometric image prior to or after the application of one of the blurring operators, this
will lead to a distorted output from the 2D GCD operation. This output can be used instead
of the original biometric template as a cancelable template. This idea is adopted in this paper
to build uCBS and mCBS. The remainder of this study is outlined as follows. The basics of
the related 1-D and 2-D Sylvester GCD algorithms are discussed in Section 2. The proposed
cancelable template generation algorithm for uCBS and mCBS is presented in Section 3. Extensive
simulation experiments are presented in Section 4 to validate the proposed algorithm. Finally, the
concluding remarks are summarized in Section 5.

2 Basics of the Sylvester GCD Algorithms

This section introduces the major fundamental theories of the 1-D and 2-D Sylvester GCD
algorithms that will be exploited in the proposed cancelable biometric algorithm to create the
distorted versions of the original biometrics.

2.1 One-Dimensional (1-D) Sylvester GCD Algorithm
Let A(z) and B(z) be two polynomials defined as:

A (z)= a0+ a1z+ a2z2+ . . .+ an2z
n2 (1)
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and

B (z)= b0+ b1z+ b2z
2+ . . .+ bn1z

n1 (2)

Similarly, if the GCD between the two polynomials is equal to P (z), which is of degree r,
then it can be computed in the form:

A (z)
C (z)

= B (z)
D (z)

=P (z) (3)

where

C (z)= c0+ c1z+ c2z
2+ . . .+ cn2−rz

n2−r (4)

and

D (z)= d0+ d1z+ d2z
2+ . . .+ dn1−rz

n1−r (5)

are two relatively co-prime polynomials. Consequently, it follows from [18] that

A (z)D (z)−B (z)C (z)= 0 (6)

By equating the coefficients of like powers of z on both sides of Eq. (6), a matrix equivalence
in the form in (7) is obtained [18]:

Sx= 0 (7)

where

x= [dn1−r, . . . , d2, d1, d0, −c0, c1, −c2, . . . , −cn2−r] (8)

Hence, S is defined as presented in Eq. (9) [18].

S=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

an2 an2−1 · · · · · · a1 a0 0 · · · 0

0 an2 an2−1 · · · · · · a1 a0 · · · 0

...
...

...
...

...
...

...
...

...

0 · · · 0 an2 an2−1 · · · · · · a1 a0

0 0 · · · 0 bn1 bn1−1 · · · b1 b0

0 · · · 0 bn1 bn1−1 · · · b1 b0 0
...

...
...

...
...

...
...

...
...

bn1 bn1−1 · · · b1 b0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

By analyzing the matrix S in Eq. (9), it can be deduced that it has n2+ n1− 2r+ 2 rows and
n2+n1−r+1 columns. Therefore, given r, x can be obtained via the application of Singular Value
Decomposition (SVD) on S. Furthermore, since C(z) and D(z) are two unique polynomials of
degrees n2 − r and n1 − r, it is deducible that x has a unique solution, and consequently, S must
possess n2+n1−2r+1 linearly independent rows. As a result, the singular vector that corresponds
to the zero singular value of S is the least-squares solution of Eq. (7) for x, and it contains the
coefficient values of C(z) and D(z) as explained in [18].
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In some cases, the degree r of the GCD is unknown, and hence, S cannot be formed. In that
case, we have [18]:

S0x0 = 0 (10)

where

x0 = [dn1−1, . . . , d2, d1, d0, −c0, c1, −c2, . . . , −cn2−1] (11)

with

dn1−1 = . . .= dn1−r+1 = cn2−r+1 = . . .= cn2−1 = 0 (12)

Therefore, S0 can be computed using the standard Sylvester matrix presented in Eq. (13).

S0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

an2 an2−1 · · · · · · a1 a0 0 · · · 0

0 an2 an2−1 · · · · · · a1 a0 · · · 0

...
...

...
...

...
...

...
...

...

0 · · · 0 an2 an2−1 · · · · · · a1 a0

0 0 · · · 0 bn1 bn1−1 · · · b1 b0

0 · · · 0 bn1 bn1−1 · · · b1 b0 0
...

...
...

...
...

...
...

...
...

bn1 bn1−1 · · · b1 b0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

Using arguments in (9), it can be deduced that S0 has dimensions of (n2+ n1) × (n2 + n1).
Meanwhile, the necessary and sufficient condition for A(z) and B(z) to have a non-constant GCD
is that the resultant Sylvester matrix S0 is singular. The structural relation between S0 and S is
illustrated in Fig. 2. Furthermore, if we denote the sub-matrix of size (n2+ n1− 2k)× (n2+n1−k)
as Sk, which is obtained by striking out the first k and last k rows of S0 and the first k columns
of S0, then for GCD {A (z) , B (z)} =P(z) with degree r, S0, S1,. . ., Sr−1 must be singular and Sr−1
must be of rank n2+ n1− 2r+ 1.

Figure 2: Structure of the Sylvester matrix used to estimate the GCD
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2.2 Two-Dimensional (2-D) Sylvester GCD Algorithm
The direct extension of the 1-D Sylvester algorithm to the 2-D case in terms of constant

matrices generated from the given 2-D polynomial coefficients leads to very large-size matrices.
For N×N images, the matrix S will be of size 2N2× 2N2. Since the SVD computation produces
matrices with a size proportional to the cube of the original matrix size, operations of O(N6) are
required to execute the SVD, directly. Hence, a more efficient strategy is needed to extend the 1-D
Sylvester algorithm to a 2-D algorithm.

In doing so, we assume that the two blurred versions g1(n1, n2) and g2(n1, n2) of the original
image f (n1, n2) are both N1 ×N2 matrices. The coefficients of these matrices are the coefficients
of the z-transforms of their respective images. Using the Conventional Discrete Fourier Transform
Least Squares (CDFT-LS) approach, we substitute z1 = e−j2πn1/N1, n1 = 0, 1,…, N1− 1, into both
G1 (z1, z2) and G2 (z1, z2). This results in two 1-D polynomials [17]:

Gk
(
e−j(2πn1/N1), z2

)
= F

(
e−j(2πn1/N1), z2

)
Hk

(
e−j(2πn1/N1), z2

)
(14)

where k= 1, 2.

It is trivial that F
(
e−j(2πn1/N1), z2

)
is still a common factor of G1

(
e−j(2πn1/N1), z2

)
and

G2
(
e−j(2πn1/N1), z2

)
in a single variable, z2. Consequently, the 1-D GCD produces the scaled

quantity c0
(
e−j(2πn1/N1)

)
F

(
e−j(2πn1/N1), z2

)
. Furthermore, for each value of n1 in Eq. (14), we sub-

stitute z2 = e−j2πn2/N2 in this GCD and form a matrix of discrete Fourier transform elements [18]:

A (n1, n2)= c (n1)F
(
e−j(2πn1/N1), e−j(2πn2/N2)

)
(15)

We scale each row by a constant c (n1)= c0
(
e−j(2πn1/N1)

)
. So, we obtain:

A (n1, n2)a (n1)= F
(
e−j(2πn1/N1), e−j(2πn2/N2)

)
(16)

Undertaking similar operations and substituting z2 = e
−j2πn2
N2 in G1(z1, z2) and G2(z1, z2),

whose 1-D GCD was obtained by substitution of z1 = e
−j2πn1
N1 , we obtain another matrix,

B(n1,n2) in Eq. (17), which is related to the discrete Fourier transform of the original image by
column-wise scaling [18]:

B (n1, n2)b (n2)= F
(
e−j(2πn1/N1), e−j(2πn2/N2)

)
(17)

From Eqs. (16) and (17), we have:

A (n1, n2)a (n1)−B (n1, n2)b (n2)= 0 (18)

Eq. (18) can be written in matrix form as [18]:

�y= 0 (19)

where

y= [a(1), a(2), . . . , a(N1), b(1), b(2), . . . , b(N2)]
T (20)
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and

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(1, 1) 0 0 −B(1, 1) 0 0 0 0

A(1, 2) 0 0 0 −B(1, 2) 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · ·
A(1, N2) 0 0 0 0 0 0 −B(1, N2)

0 A(2, 1) 0 −B(2, 1) 0 0 0 0

0 A(2, 2) 0 0 −B(2, 2) 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · ·
0 A(2, N2) 0 0 0 0 0 −B(2, N2)

...
...

...
...

...
...

...
...

0 0 A(N1, 1) −B(N1, 1) 0 0 0 0

0 0 A(N1, 2) 0 −B(N1, 2) 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 A(N1, N2) 0 0 0 0 −B(N1, N2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

Multiplying Eq. (21) by �T yields [18]:

�T�y= 0 (22)

Eq. (22) can be solved using the least-squares solution to produce Eq. (23):

�T�y= λy (23)

For an eigenvector y corresponding to the smallest eigenvalue of �T� in Eq. (23), the
estimated Fourier transform of the original image can be realized in the form [17]:

F
(
e−j(2πn1/N1), e−j(2πn2/N2)

)
= 1

2
[A (n1, n2)a (n1)+B (n1, n2)b (n2)] (24)

Finally, the inverse Fourier transform can be used to estimate the GCD. If we use two blurred
images of the same biometric and estimate their 2D GCD, we can get the original biometric
template. On the other hand, if we make a slight change induced by the user prior to or after
blurring, we severely distort the 2D GCD result. The result of the GCD in this case can be
used as a cancelable template. The minor changes can be induced in each biometric template in
a user-specific manner.

3 Proposed GCD-Based Cancelable Biometric Algorithm

Fig. 3 presents the outlines of the proposed algorithm. As seen in the figure, the original
biometric images are firstly compressed using the Discrete Cosine Transform (DCT) compres-
sion algorithm. After that, they are merged together to form a unified biometric template. This
template is blurred with an operator h1(n1, n2). Simultaneously, another blurred version of the
biometric template is generated with another operator h2(n1, n2).

We have:

g1(n1, n2)= f (n1, n2) ∗ h1(n1, n2) (25)
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g2(n1, n2)= f (n1, n2) ∗ h2(n1, n2) (26)

Applying z-transform on (25) and (26), we get:

Gk(z1, z2)= F(z1, z2)Hk(z1, z2) k= 1, 2 (27)

where

G1(z1, z2)= F(z1, z2) ∗H1(z1, z2) (28)

and

G2(z1, z2)= F(z1, z2) ∗H2(z1, z2) (29)

If H1(z1, z2) and H2(z1, z2) are co-prime, then

GCD{H1(z1, z2) , H2(z1, z2)} = 1 (30)

and

GCD{G1(z1, z2) , G2(z1, z2)} = F(z1, z2) (31)

As shown in Fig. 3, if we induce some minimal change in the compressed template prior to
blurring with h2(n1, n2), Eq. (31) does not hold. This leads to a distorted version of the fused
templates that can be used as a cancelable template.

Figure 3: The proposed unified mCBS framework

4 Results and Discussion

In this section, the assessment of the suggested algorithm is introduced. Firstly, the security
analysis of the suggested GCD-based algorithm as an encryption-like algorithm is presented in
terms of visual analysis, correlation analysis, differential attack analysis, and entropy analysis [19]
as provided in Tab. 1. It is well-known that the algorithm must break the correlation amongst
the adjacent pixels. It is observed from the obtained outcomes that the suggested GCD-based
algorithm succeeds in demolishing the very high correlation of pixels in the original biometric tem-
plates. Moreover, Tab. 1 demonstrates correlation, Unified Average Change Intensity (UACI), and
Number of Changing Pixel Rate (NPCR) values [20] between two ciphered biometric templates.
The outcomes reveal that the suggested GCD-based algorithm is robust and vulnerable to control
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parameters and secret keys. So, all results confirm that the suggested GCD-based algorithm can be
executed, cost-effectively, for constructing an efficient and secure cancelable biometric recognition
system. As a result, this encouraged us to develop it in our suggested work.

Table 1: Security analysis for evaluating the suggested GCD-based algorithm

O
ri

gi
na

lB
io

m
et

ri
cs

Entropy = 7.3650. Entropy = 7.5638. Entropy = 7.4937. Entropy = 7.3856.

C
an

ce
la

bl
e

B
io

m
et

ri
cs

Correlation = 0.1283,
Entropy = 7.8379,

NPCR = 99.53, and
UACI = 32.98.

Correlation = 0.0937,
Entropy = 7.9183,

NPCR = 99.67, and
UACI = 33.51.

Correlation = 0.0439,
Entropy = 7.9372,

NPCR = 99.72, and
UACI = 33.49.

Correlation = 0.1070,
Entropy = 7.8957,

NPCR = 99.68, and
UACI = 34.07.

Figure 4: Dataset 1 consisting of nine facial images [21]



1580 CMC, 2021, vol.69, no.2

Figure 5: Cancelable facial images for those in Fig. 4 with GCD algorithm

Furthermore, in this section, several experiments are introduced to verify the validity of
the proposed uCBS and mCBS that depend on 2D GCD. They have been implemented using
a workstation equipped with MATLAB Intel ® Core ™i7-4210U on a CPU with a 1.7 GHz
processor. Four datasets have been used in the uCBS experiments, namely ORL [21], FVC2000
DB1 [22], CASIA-IrisV3-Interval [23], and CASIA Palm print [24] for face, fingerprint, iris, and
palm print images, respectively.

For the uCBS, the experiments are based on generating two blurred versions of each tem-
plate and inducing a minor change in one of them prior to blurring. Hence, the 2D-GCD is
implemented to generate the cancelable template of that biometric. The database of cancelable
templates is composed, and hence the distance between new templates and those in the database
is estimated based on the correlation score. Both EER and AROC values are estimated for the
verification process. On the other hand, the proposed mCBS depends on estimating the DCTs of
four biometric templates and generating a combined version based on the first quadrant of each
DCT. This combined version is used as an initial template that is blurred twice. A minor change
in one of these versions and the application of the 2D-GCD lead to the cancelable template.
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(a) (b)

Figure 6: Histograms of facial images (a) original images (b) cancelable templates

(a) (b)

Figure 7: Correlation scores for original facial images (a) genuine (b) imposter

The Receiver Operating Characteristic (ROC) curve, which represents the relationship between
the true-positive correlation and false-positive correlation [25,26], is used to assess the performance
of the suggested CBS. The scores of all patterns are distributed around a mean score, which is
higher for authorized patterns compared to unauthorized ones.
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(a) (b)

Figure 8: Authentication curves for facial biometrics (a) PFD curves (b) ROC curve

Figure 9: Dataset 2 consisting of nine fingerprint images [22]
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Figure 10: Cancelable fingerprint images for those in Fig. 9 with GCD algorithm

(a) (b)

Figure 11: Histograms of fingerprint images (a) original images (b) cancelable templates
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(a) (b)

Figure 12: Correlation scores for original fingerprint images (a) genuine (b) imposter

(a) (b)

Figure 13: Authentication curves for cancelable fingerprint recognition (a) PFD curves (b) ROC
curve

The multi-modal biometrics used to validate the proposed CBS consist of facial, fingerprint,
iris, and palm print images as presented in Fig. 4 (Faces), Fig. 9 (Fingerprints), Fig. 14 (Iris), and
Fig. 19 (Palm prints). Figs. 5, 10, 15, and 20 present the unimodal cancelable templates with 2D
GCD. The histograms of the pristine unimodal biometrics are presented in Figs. 6, 11, 16, and
21 for facial, fingerprint, iris, and palm print biometrics, respectively.
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Figure 14: Dataset 3 consisting of nine biometric iris images [23]

Figs. 7, 12, 17, and 22 present the correlation scores for all nine unimodal biometric images
used in the uCBS experiments. The PTD, PFD, and ROC curves for these biometrics are presented
in Figs. 8, 13, 18, and 23. These curves display the threshold values used to distinguish authorized
users from unauthorized ones. Fig. 24 presents the composite multi-biometric templates. Samples
of the GCD cancelable multi-biometric templates and their respective histograms are presented
in Fig. 25. Correlation scores for both authorized and unauthorized patterns are introduced in
Fig. 26. Authentication curves for the proposed mCBS are presented in Fig. 27.

Finally, the average A ROC, mean correlation scores, False Acceptance Rate (FAR), False
Rejection Rate (FRR), and ERR for the GCD-based mCBS are presented in Tab. 2.
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Figure 15: Cancelable iris images for those in Fig. 14 with GCD algorithm

(a) (b)

Figure 16: Histograms of iris images (a) original images (b) cancelable templates
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(a) (b)

Figure 17: Correlation scores for original iris images (a) genuine (b) imposter

Figure 18: Authentication curves for cancelable iris recognition (a) PFD curves (b) ROC curve
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Figure 19: Dataset 4 consisting of nine palm print images [24]

• Comparison with Other Related Works

To validate the suggested CBS, more test investigations have been carried out for comparison
of the suggested CBS with the latest algorithms [25–32]. We compared the average FAR, EER,
AROC, and FRR of the suggested CBS with those of the CBS in [25–32] as presented in Tab. 3.
From the introduced comparative study in Tab. 3, we ensure that the FAR, EER, AROC, and
FRR of the suggested CBS are better than those of the other traditional CBS.
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Figure 20: Cancelable palm print images for those in Fig. 19 with GCD algorithm

(a) (b)

Figure 21: Histograms of palm print images (a) original images (b) cancelable templates
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(a) (b)

Figure 22: Correlation scores for original palm print images (a) genuine (b) imposter

(a) (b)

Figure 23: Authentication curves for cancelable palm print recognition (a) PFD curves (b) ROC
curve
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Figure 24: Composite DCT outputs of multi-biometric inputs and their histograms

Figure 25: Cancelable templates for the proposed mCBS and their histograms
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(a) (b)

Figure 26: Correlation scores for the proposed mCBS (a) genuine (b) imposter

(a) (b)

Figure 27: Authentication curves for the proposed mCBS (a) PFD curves (b) ROC curve
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Table 2: Results of the proposed uCBS and mCBS

System AROC Mean of
authorized
correlation
score

Mean of
un-authorized
correlation
score

FAR FRR ERR

Proposed uCBS
for face images

0.9806 0.8278 0.0302 0.0916 0.0328 0.0098

Proposed uCBS
for fingerprint
images

0.9922 0.8799 0.0417 0.0401 0.0107 0.0071

Proposed uCBS
for iris images

0.9943 0.8817 0.0430 0.0476 0.0230 0.0107

Proposed uCBS
for palm print
images

0.9780 0.8186 0.0225 0.0735 0.0129 0.0096

Proposed mCBS 0.9802 0.8529 0.0031 0.0933 0.0092 0.0049

Table 3: Average metric values for the proposed and traditional CBS [25–32]

CBAS EER FAR FRR AROC

Proposed 0.0023 0.0182 0.0024 0.968
[25] 0.0046 0.0235 0.0929 0.883
[26] 0.0357 0.0985 0.0612 0.863
[27] 0.0859 0.0435 0.0627 0.718
[28] 0.0416 0.1955 0.0489 0.873
[29] 0.1081 0.0927 0.0967 0.907
[30] 0.0924 0.0562 0.0257 0.868
[31] 0.0178 0.0571 0.0876 0.896
[32] 0.0098 0.0104 0.018 0.952

5 Conclusions and Future Work

This paper presented a new approach to build efficient CBS using single- and multi-biometric
inputs for cloud and IoT biometric applications. Pre-determined distortions are induced in the
biometric images for single- and multi-biometric inputs with the GCD algorithm. As a self-
dependent approach, the need for auxiliary data or images is eliminated. The GCD with some
minimal changes can be used efficiently in the generation of cancelable biometric templates. We
validated the proposed uCBS and mCBS on inputs consisting of facial, fingerprint, iris, and palm
print images. AROC values above 99% were recorded for all the examined biometrics. This work
can be easily implemented for cloud, IoT, and wireless access applications. In addition, it can be
enhanced with the utilization of encryption algorithms with the GCD algorithm. In the future,
we can incorporate deep learning algorithms for compressing and encrypting the biometric images
for enhancing the cancelable biometric system performance.
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