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Abstract: Outlier detection is a key research area in data mining technologies,
as outlier detection can identify data inconsistent within a data set. Outlier
detection aims to find an abnormal data size from a large data size and
has been applied in many fields including fraud detection, network intru-
sion detection, disaster prediction, medical diagnosis, public security, and
image processing. While outlier detection has been widely applied in real
systems, its effectiveness is challenged by higher dimensions and redundant
data attributes, leading to detection errors and complicated calculations. The
prevalence of mixed data is a current issue for outlier detection algorithms.An
outlier detection method of mixed data based on neighborhood combinato-
rial entropy is studied to improve outlier detection performance by reducing
data dimension using an attribute reduction algorithm. The significance of
attributes is determined, and fewer influencing attributes are removed based
on neighborhood combinatorial entropy. Outlier detection is conducted using
the algorithm of local outlier factor. The proposed outlier detection method
can be applied effectively in numerical andmixed multidimensional data using
neighborhood combinatorial entropy. In the experimental part of this paper,
we give a comparison on outlier detection before and after attribute reduction.
In a comparative analysis, we give results of the enhanced outlier detection
accuracy by removing the fewer influencing attributes in numerical and mixed
multidimensional data.

Keywords: Neighborhood combinatorial entropy; attribute reduction; mixed
data; outlier detection

1 Introduction

Outlier detection is frequently researched in the field of data mining technologies and is aimed
at identifying abnormal data from a data set [1]. It is widely applicable for credit card fraud detec-
tion, network intrusion detection, fault diagnosis, disaster prediction, and image processing [2–8].
Presently, outlier detection methods are conducted with statistical techniques [9], which include
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distance-based proximity, network-based and density-based proximity [10–12], data clustering [13],
and rough set data modeling [14].

Statistical methods require the presence of a single feature and predicable data distribution. In
real environment, many data distributions are unpredictable and multi-featured. In addition, their
applications are restricted [15]. Knorr et al. [16] proposed a distance-based method that required
little information of the data set and was therefore suitable for any data distribution. Early outlier
detection algorithms focused on mining global outliers. Contrarily, a multidimensional algorithm
must outline data locally because its data sets are unevenly distributed, complex, and difficult to
identify. Since Breunig et al. [10] put forward the concept of local outliers, local outlier detection
has attracted considerable attention owing to its practical advantage in reducing time overhead
and improving scalability. The local outlier detection algorithm starts by calculating the outlier
value of local data and defining outlying data. Subsequently, the local outlier detection algorithm
focuses on the local neighborhood determination to calculate local outliers [17,18]. A clustering
algorithm divides a data set into several clusters to show similarities and differences of objects
based on their respective clusters [19]. When judging a local outlying object, a cluster is considered
as its neighborhood, and the local outliers of the data are calculated in the neighborhood [20].
Outlier detection based on information entropy theory [21] judges the amount of information in
the outlier through entropy value and determines outlying data in light of their entropies [22].
The introduction of information entropy weighting effectively improved the outlier detection
accuracy [23].

Many studies [24–27] focused on rough set-based detection methods, which originated from
intelligent systems. Although the studies provided insufficient and incomplete information, they
were introduced into outlier detection to handle categorical data. Conventional outlier detection
uses more numerical data than classical rough set-based methods as they deal with categorical
data. However, the processing of mixed data of categorical and numerical attributes, ubiquitous
in real applications, has received inadequate attention. Through the adoption of robust neigh-
borhood, explorations were conducted to improve classical rough sets for better performance
in numerical and mixed data. At present, neighborhood rough sets are effective for attribute
reduction, feature selection, classification recognition, and uncertainty reasoning.

This study aims to use a novel approach by combining attribute reduction with outlier
detection technology to improve the outlier detection accuracy, reduce calculation complexity,
remove fewer influencing attributes and reduce data dimensions. Data-processing plays a significant
role in attribute reduction by using experimental multi-type data to achieve an accuracy boost for
outlier detection. Using the neighborhood combinatorial entropy model, we construct mixed data
outlier detection algorithms after defining the local outlier factor (LOF) algorithm, neighborhood
combinatorial entropy algorithm and relevant concepts. Comparative data analysis is conducted
to verify the detection accuracy after attribute reduction.

The rest of the paper is structured as follows. Section 2 provides the LOF algorithm, pro-
viding related definitions. Section 3 discusses the neighborhood combinatorial entropy algorithm,
providing related definitions. Section 4 constructs the mixed data outlier detection algorithms
based on neighborhood combinatorial entropy. Section 5 carries out the experimental analysis on
the advantages of attribute reduction prior to outlier detection. Finally, Section 6 concludes the
paper.
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2 Local Outlier Factor Algorithm

2.1 Related Definitions
The LOF algorithm is a representative outlier detection algorithm that computes local density

deviation [10]. It calculates a local outlier factor of each object, and judges whether the object is
an outlier that deviates from other objects or a normal point.

Definition 1: We define the distance (Euclidean distance) between object x and object y; two
objects in object set U are as follows:

d (x, y)=
√√√√ m∑

i=1

(xi− yi)2, (1)

where m represents the dimension of the objects; and xi and yi represent the coordinates of the
ith dimension of objects x and y, respectively.

Definition 2: We define the kth nearest distance of an object x in object set U as:

dk (x)= d (x, p) , (2)

where p is the kth nearest neighbor to object x in all dimensions (excluding object x). The
Euclidean distance between object x and object p is the kth nearest distance of object x. As
shown in Fig. 1, the object y5 is the 5th closest neighbor to the object x, which concludes that
d5 (x)= d (x, y5).

Figure 1: The 5th nearest neighbor of object x

To determine the value of k, the number of objects in the set satisfies the following: (1) the
number of objects q (object x excluded) is at least k so that d (x, q)≤ d (x, p); (2) the number of
object q (object x excluded) is at most k− 1, making d (x, q)≤ d (x, p).

Definition 3: We define the neighborhood of k nearest neighbors of the object x in object set
U as:

Nk (x)= {y | y ∈U , d (x, y)≤ dk (x)} (3)



1768 CMC, 2021, vol.69, no.2

Eq. (3) describes the set of objects within the kth nearest distance (including the kth nearest
distance) of the object x; therefore, the number of objects in the neighborhood of x conforms to
|Nk (x) | ≥ k. As shown in Fig. 1, the 5 nearest neighbors of object x are the set {y1, y2, y3, y4, y5}.

Definition 4: We define the kth reachable distance from the object x to object p in object set
U as:

R_distk (x, p)=max {dk (x) , d (x, p)} (4)

The kth reachable distance from x to p is longer between the kth nearest distance of x and
real distance from x to p. The distances from x to the k-nearest objects from x are equal and
are dk (x). The distance between the object x and other objects apart from the above-mentioned
k nearest objects is the real distance between the two objects.

As indicated in Fig. 2, the actual distance from x1to p is smaller than the 5th nearest distance
of x1. From the definition, R_dist5 (x1, p) = d5 (x1). The actual distance from x2 to p is greater
than the 5th nearest distance from x2; thus, R_dist5 (x2, p)= d (x2, p).

Figure 2: The 5th reachable distances from x1 and x2 to p

Definition 5: We define the local reachable density of the object x in object set U as:

LRDk (x)= |Nk (x) |∑
y∈Nk(x)

R_distk (x, y)
(5)

LRDk (x) refers to the density. The larger the value LRDk (x), the higher the density, and the
more the objects belong to the same cluster. Contrarily, the smaller the value LRDk (x), the lower
the density, revealing that the objects are likely to be outliers.

If the object x is in the same cluster as the neighboring objects, the reachable distance is
likely to be dk (x), the kth nearest distance of the object x. Otherwise, the reachable distance may
be d (x, y), which is the true distance. From Eq. (4), dk (x), the kth nearest distance of object x
is smaller than d (x, y), the true distance. Hence the denominator of Eq. (5) in the same cluster
is smaller than that in different clusters. The values LRDk (x) in the same cluster will be larger
than those in different clusters. When the value LRDk (x) is smaller, object x is likely to be an
outlier.
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Definition 6: We define the local outlier factor of the object x in object set U as:

LOFk (x)=
∑

y∈Nk(X)
LRDk(y)
LRDk(x)

|Nk (x) | (6)

LOFk (x) represents the average ratio of the local reachable density of the objects in the
neighborhood Nk (x) and the object x to the local reachable density of the object x. When the
value LOFk (x) is closer to 1, the local reachable density of the objects in the neighborhood
Nk (x) is closer to the local reachable density of the object x. The object x is likely to be in
the same cluster in its neighborhood. Otherwise, when the value LOFk (x) is smaller than 1, the
local reachable density of the object x is higher than that of its neighborhood, revealing that the
object x tends to be in the dense points. If the value LOFk (x) is larger than 1, the local reachable
density of the object x is lower than that of its neighborhood, revealing that the object x is likely
to be an outlier.

2.2 Analysis of LOF Algorithm
The LOF algorithm examines whether the point is an outlier, which is carried out by

comparing the local density of each object x and its neighboring objects. The lower the den-
sity of object x, the more likely it is an outlier. The density is calculated using the distance
between objects. The farther the distance, the lower the density, and the higher the outlier. In
certain objects, the neighborhood of k nearest neighbors is introduced to expand its global deter-
mination as a substitute to direct global calculation. In this way, one or more clusters of dense
points are determined based on local density, thereby realizing multiple clusters identification. The
cluster is comprised of multi-type data, containing categorical attribute, numerical attribute or
mixed attribute. However, the algorithm of Eq. (1) can only process numerical data. The accuracy
of LOF algorithm is ineffective for categorical or unknown data types.

3 Neighborhood Combinatorial Entropy

The neighborhood combinatorial entropy calculation follows two aspects: neighborhood
approximate accuracy and neighborhood conditional entropy. The neighborhood approximate
accuracy is the ability to divide the system from the set perspective [28,29]; whereas, the neighbor-
hood conditional entropy is the ability to divide the system from the knowledge perspective [30].

3.1 Related Definitions
The information system is an aspect of data mining, expressed in a four-dimensional form

IS= (U , A, V , f ). In this system, U = {x1, x2, . . . , xn} is a non-empty limited set of objects; A=
{a1, a2, . . . , al} is a non-empty set of attributes; V is the union of the attribute domain Va; and
f is the information function: U ∗A→V , which is ∀x∈U , ∀a ∈A, f (x, a) ∈Va.

In addition, attributes are categorized into conditional and decision attributes. Therefore,
attribute set A is the union of conditional attribute set C and decision attribute set D, namely,
A = C ∪ D. Moreover, the information system is defined as a decision-making system DS =
(U , C ∪D, V , f ).

When neighborhood range is set manually, δ, a neighborhood threshold is added to the infor-
mation system and transformed into a neighborhood information system NI = (U , A, V , f , δ). In
this case, δ is also called the neighborhood radius.
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Definition 7: We define the distance measure of two objects on attribute subset B⊆C as:

DistB (x, y)=
√√√√ m∑

i=1

d2ai (x, y) (1≤ i≤m) (7)

In Eq. (7), B= {a1, a2, . . . , am} is a subset of attributes,

where

m represents the dimension of the object, namely, the number of attributes.

ai corresponds to the ith attribute.

x and y are in U .

d2ai (x, y) is the square of the distance between object x and object y in the ith dimension.

The calculations on the distance between two objects are different, which depend on attribute
types [31],

where

ai is a numerical attribute; and

dai (x, y)=
|x− y|

max (ai)−min (ai)
. (8)

By eliminating the influence of dimension and value range between the attributes, numerical
attributes are pre-processed into dimensionless data where each attribute value falls within the
range of [0, 1]

where

ai is categorical attribute; and

dai (x, y)=
{
1, xai 
= yai
0, xai = yai

. (9)

Categorical data are converted into numerical data, and their values are determined per their
categories. From Eq. (8), the data values of all numerical attributes are within the range of [0, 1].
Thus, we set the maximum value of the distances of different types to 1, and that of the minimum
value to 0. After converting categorical data into numerical data, the distance between different
objects is obtained through numerical calculations

where

ai is an unknown attribute; and

dai (x, y)= 1. (10)

Eq. (10) is a new classification due to the unknown attribute. The data in this category
belongs to a cluster different from other data, and a maximum distance of 1 is defined according
to different attribute classifications in the clusters.

When processing different data categories, corresponding formulas are selected. Subsequently,
the distance of the mixed data is obtained by applying Eq. (7), and the application of mixed data
is realized by adopting different distance calculation following different attribute types.
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DistB (x, y) becomes the effective distance in the neighborhood information system. When
combined with neighborhood threshold parameter δ, it defines neighborhood relationship.

Definition 8: In a neighborhood information system NI = (U , A, V , f , δ), the neighborhood
of object x on attribute subset B is:

Nδ
B (x)= {y | x, y ∈U , DistB (x, y)≤ δ} (11)

Definition 9: We define the upper approximation and lower approximation of the attribute
subset B in an object set X , X ⊆U as:

NUδ
B (x)= {

x ∈U |Nδ
B (x)∩X 
=∅

}
(12)

NDδ
B (x)= {

x ∈U |Nδ
B (x)⊆X

}
(13)

Their relationship is expressed in Fig. 3.

Figure 3: Conceptual diagram of upper and lower approximations

Definition 10: We divide the object set U into
U
D

= {D1, D2, . . . , Dm} according to its decision

attributes. The approximate accuracy of the neighborhood of attribute subset B is:

αδ
B (D)=

∑m
i=1ND

δ
B (Di)∑m

i=1NU
δ
B (Di)

(14)

As shown in Fig. 3, NDδ
B (x)⊆NUδ

B (x), so 0≤ αδ
B (D)≤ 1. Compared with the upper approx-

imation, the lower approximation of the set X increases more significantly similar to the set B.
Similarly, the value of the neighborhood approximation accuracy αδ

B (D) increases. However, in a
probability, as the attribute subset B increases, the increase of the lower approximation in the set
X is equal to that of the upper approximation in the set X . Therefore, the value of αδ

B (D), the
neighborhood approximate accuracy, remains unchanged. This case has no impact on the final
result (refer to Definition 13 for a detailed analysis).
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Definition 11:We define the neighborhood information entropy of attribute subset B in the
object set U as:

NE (B)= 1− 1
|U|

|U |∑
i=1

|Nδ
B (xi) |
|U| (15)

|Nδ
B (xi) |
|U| represents the affiliation of the object xi in the neighborhood Nδ

B (xi) and 0 ≤
|Nδ

B (xi) |
|U| ≤ 1. Neighborhood entropy simulates the classic information entropy and provides an

overall uncertainty description for neighborhood information. As the neighborhood information
entropy of a certain attribute subset grows larger, this attribute subset distinguish different objects
in the set U , particularly when B=∅ and NE (∅)= 0.

Definition 12: We define the neighborhood conditional entropy of attribute set Q, P⊆C under
the condition of P as:

NE (Q |P)=NE (Q∪P)−NE (P)= 1
|U|2

|U |∑
i=1

(
|Nδ

P (xi) | − |Nδ
Q (xi)∩Nδ

P (xi) |
)

(16)

Since P ⊆ C is for attribute set Q, attribute set C is a conditional attribute, and Q and
P are conditional attribute sets. Eq. (16) reflects the uncertainty of conditional attribute set P
to conditional attribute set Q. If Q is a set of decision attributes D, NE (D |P) represents the
uncertainty of a set of conditional attributes P to a set of decision attributes D. The entropy
value of neighborhood conditional entropy is monotonous and bounded, and its value decreases
as the conditional attribute set P increases.

Definition 13: We divide the object set U into
U
D

= {D1, D2, . . . , Dm} based on its decision

attribute. The neighborhood combinatorial entropy of Di on attribute subset B is defined as:

NCEδ
B (Di)=

αδ
B (Di)

NE (Di |B)
(17)

From Eq. (17), neighborhood combinatorial entropy is composed of Eqs. (14) and (16),
reflecting uncertainties in set theory and knowledge, respectively. Thus, neighborhood combinato-
rial entropy interprets uncertainty from multiple angles, and its uncertainty is more comprehensive
than that in either set theory or knowledge.

Though αδ
B (Di), the neighborhood approximation accuracy in Definition 10 is non-monotonic

and does not exert influence on the final neighborhood combinatorial entropy. αδ
B (Di) increases

or remains unchanged as the attribute subset B increases. However, neighborhood conditional
entropy affects the result of neighborhood combinatorial entropy. Analysis in Definition 12 shows
that neighborhood conditional entropy has strict monotonicity. Though αδ

B (Di) remains constant
in some cases, the neighborhood combinatorial entropy maintains its monotonicity.

From the above analysis, αδ
B (Di) increases or remains unchanged as attribute subset B

increases. In Eq. (17), the neighborhood conditional entropy NE (Di |B) decreases as the attribute
subset B increases, and the neighborhood combinatorial entropy NCEδ

B (Di) increases as the
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attribute subset B increases. With changes in conditional attribute set, the higher the neighborhood
combinatorial entropy value for a conditional attribute set, the more important a conditional
attribute is to the whole system.

Definition 14: We define the significance of a conditional attribute al ∈C−B (attribute subset
B excluded) to attribute subset B as:

Sig (al, B, D)=NCEδ
B∪al (D)−NCEδ

B (D) (18)

First, we set an attribute subset as an empty set. Then, we compare all conditional attributes
{a1, a2, . . . , am} according to Eq. (18). If Sig (al, B, D) takes the maximum value of Sig (al, B, D)

of all conditional attributes except the attribute subset B, the conditional attribute has the highest
significance of all the conditional attributes except set B, written into attribute subset B. By
iterative procedure, more conditional attributes are obtained in descending order of significance.
Based on a threshold value of significance, conditional attributes are kept in the attribute subset
B; otherwise, they are removed. When this procedure is completed, a data set of the attribute
reduction is available.

3.2 Analysis of Neighborhood Combinatorial Entropy
From an information theory perspective, an entropy value reflects the importance of a condi-

tion attribute in an information system in determining whether the condition attribute is reduced.
Entropy has the following properties: non-negativity, i.e., H (X) ≥ 0; and maximum value, i.e.,

H (p1, p2, . . . , pn) ≤H
(
1
n
,
1
n
, . . . ,

1
n

)
= logn, reflecting a measure of significance in both the set

and knowledge and the uncertainty of the set and knowledge. Therefore, the measurement of
significance is a multi-angle operation.

4 Mixed Data Outlier Detection Algorithm Based on Neighborhood Combinatorial Entropy

Algorithm 1: LOF algorithm
Input:U = {x1, x2, . . . , xn}, k, the fixed value of the kth distance, and m, the number of outliers
Output: outliers, the outlier set
1: for i to n
2: for j to n
3: Calculate Euclidean distance d

(
xi, yj

)
4: End for
5: Calculate the kth nearest distance dk (xi)
6: Calculate Nk (xi), the neighborhood of k nearest neighbors of xi
7: for p to n
8: Calculate reachable distance R_distk

(
xi, xp

)
9: End for
10: Calculate local reachable density LRDk (xi)
11: Calculate the outlier factor LOFk (xi)
12: End for
13: Sort xi by the value of the LOFk (xi)

(Continued)
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14: Initialize outliters=∅

15: for t to m
16: outliters. append(U [t])
17: End for
18: Return outliters

Algorithm 2: Neighborhood combinatorial entropy algorithm
Input: Neighborhood decision information system NI = (U , A, V , f , δ), U = {x1, x2, . . . , xn},
U/D= {D1, D2, . . . , Dm}
Output: NCEδ

B (D), neighborhood combinatorial entropy
1: for i to n
2: Calculate Nδ

B (xi), the δ neighborhood of xi
3: Calculate |Nδ

B (xi) |/|U|
4: End for
5: Calculate NE (B), neighborhood information entropy
6: Calculate NE (D|B), neighborhood conditional entropy
7: for j to m
8: Calculate NUδ

B

(
xj

)
, the upper approximation and NDδ

B

(
xj

)
, the lower approximation

9: End for
10:Calculate αδ

B (D), neighborhood approximate accuracy
11:Calculate NCEδ

B (D), neighborhood combinatorial entropy
12:Return NCEδ

B (D)

Algorithm 3: Attribute reduction algorithm based on neighborhood combinatorial entropy

Input: Neighborhood decision information system NI = (U , A, V , f , δ), U = {x1, x2, . . . , xn}, UD =
{D1, D2, . . . , Dm}
Output: Reduced set B
1: Initialize B=∅

2: Calculate NCEδ
C (D), the neighborhood combinatorial entropy of the conditional attribute C

3: while (Sig (al, B, D) 
= 0)
4: if Sig (amax, B, D)=max {Sig (al, B, D) | al ∈C−B}
5: B=B∪ {amax}
6: End if
7: End while
8: Return B

In Algorithm 1, the LOF algorithm focuses on estimating Euclidean distance. Higher data
dimension implies more squares and longer calculation time. In the LOF algorithm, a lower data
dimension saves significant calculation time.

Algorithm 1 has limited capability for mixed data outlier detection. Algorithm 2 adopts
different calculation methods for different attribute. Categorical and mixed data participate in
data operation. After data treatment with Algorithm 3, attribute-reduced data are obtained and
processed with LOF algorithm (Algorithm 1).

Attribute reduction filters out redundant data and shortens the calculation time without
altering system applicability as some attributes are redundant and cause errors in the system.
Filtering out errors improves the system’s accuracy. In Algorithm 2, neighborhood combinatorial
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entropy determines the significance of a conditional attribute in the attribute subset of the entire
system. Applying Algorithms 2, 3 and the LOF algorithm for data processing reduces the data size
processed by outlier detection, improve the outlier detection accuracy, and reduce misjudgment
proportion.

5 Experimental Analysis

5.1 Experimental Data Set
5.1.1 220 Randomly Generated 2-Dimensional Data

First, 100 2-dimensional data of normal distribution are first randomly generated. To verify
the LOF algorithm detection ability, the 100 random data are translated separately to form two
clusters of data widely apart from one another. Hence, 200 data are generated. As presented in
Fig. 4a, all dense points are divided into two clusters. The distribution of outliers is shown in
Fig. 4b; blue dots are the 200 dense data, and yellow dots are the 20 outliers. The outlier points
are relatively far from the two clusters of dense points, providing better references and contrast
for the experiment on Algorithm 1.

(a) (b)

Figure 4: Two clusters with 2-dimensional attributes: (a) dense points (b) points with man-made
outliers

5.1.2 220 Randomly Generated 8-Dimensional Data
A total of 200 8-dimensional dense data and 20 8-dimensional outlier data are randomly gen-

erated. The method generating the data is as same as that generating the randomly 2-dimensional
data.

5.1.3 220 Randomly Generated 16-Dimensional Data
A total of 200 16-dimensional dense data and 20 16-dimensional outlier data are generated

as the outlined in Fig. 4.

5.1.4 Wisconsin Breast Cancer Data Set
The Wisconsin breast cancer data set contains 699 objects with 10 attributes. From the 10

attributes, 9 attributes are numerical conditional attributes, and 1 is a decision attribute. All cases
are in two categories: benign (458 cases) and malignant (241 cases). Some malignant examples
are removed to form an unbalanced distribution of all the data, assisting the experimental data
in accordance with the cases of few outliers in practical applications. The data set contains 444
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benign instances (91.93%) and 39 malignant instances (8.07%). Fig. 5 presents the results of
malignant objects as outliers.

91.93%

8.07%

Wisconsin breast cancer data set

Benign

Malignant

Figure 5: The distribution pie chart of the Wisconsin breast cancer data set

5.1.5 Annealing Data Set
The annealing data set contains 798 objects with 38 attributes. Among the 38 attributes, 30

are classified condition attributes, 7 are numerical condition attributes, and 1 is decision attribute.
The 798 objects are in 5 categories. The first category contains 608 objects (76.19%), and the
remaining 4 categories contain 190 objects (23.81%). Classes 2–5 are all regarded as outliers. The
distribution is visualized in Fig. 6.

76.19%

11.03%

1.00%

4.26% 7.52%

Annealing data set

Class 1

Class 2

Class 3

Class 4

Class 5

Figure 6: The distribution pie chart of the annealing data set

Tab. 1 lists the multidimensional data, which includes pure numerical data and data compris-
ing numerical and categorical attributes, all of which are within the capacity of the proposed
algorithm and broadened application scope of attribute reduction algorithms.

Table 1: Four multidimensional data sets

Data set Number of
objects

Number of
attributes

Attribute type

Randomly generated 8-dimensional data 220 8 Numerical
Randomly generated 16-dimensional data 220 16 Numerical
Wisconsin breast cancer data set 483 9 Numerical
Annealing data set 798 37 Mixed
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5.2 Analysis of Results
There are 20 outliers in the randomly generated 2-dimensional data set. Given the number of

outliers as 20, the objects corresponding to the first 20 largest values of local outlier factor in
Eq. (6) are the same as those in Fig. 4b, so the detection accuracy rate is 100%.

For the 8-dimensional data, among the 20 detected outlier objects, only 18 are artificially
outliers, and the others are misjudged. The experimental results are not as promising as the
2-dimensional data. In the 16-dimensional data, only 17 of the 20 artificially set objects are
identified as outliers, and the others are misjudged. Tab. 2 shows the accuracy of outlier detection
of the LOF algorithm on the three randomly generated data sets.

Table 2: The accuracy of outlier detection by the LOF algorithm on three randomly generated
data sets

Data set Number of
data

Number of
attributes

Accuracy of
detection (%)

Randomly 2-dimensional data 220 2 100
Randomly 8-dimensional data 220 8 90
Randomly 16-dimensional data 220 16 85

As shown in Tab. 2, the outlier detection accuracy on the randomly 2-dimensional data has
the higher value in LOF algorithm than that on the 8-dimensional data or 16-dimensional data. In
addition, the 8-dimensional data are better than the 16-dimensional data, revealing that detection
accuracy decreases as dimension increases. Data dimension influences the accuracy of the outlier
detection algorithm. Therefore, attributes reduction before outlier detection improves the accuracy
of outlier detection.

The Wisconsin breast cancer data set comprises 39 presupposed outliers. Among the first 39
objects with the largest local outlier factor calculated by the LOF algorithm, 34 are real outliers,
and the other 5 are misjudged dense points. The annealing data set has 190 outliers, of which 72
outliers are real outliers, and the others are misjudged. Tab. 3 shows the accuracy of the algorithm
on real data sets.

Table 3: The detection accuracy of real data sets directly obtained by the LOF algorithm

Data set Real
outliers

Detected
outliers

False outliers
detected

Accuracy of
detection (%)

Wisconsin breast cancer data set 39 34 5 87.18
Annealing data set 190 72 118 37.89

Four multidimensional data sets (excluding 2-dimensional data) separately underwent data
attribute reduction in Algorithm 2. In the process, the attribute subset is determined by calculating
neighborhood combinatorial entropy. After attribute reduction, the attribute number of the ran-
domly generated 8-dimensional data is still 8. By comparing the number of attributes, randomly
generated 16-dimensional data reduced to 15, and 6 for the Wisconsin breast cancer data set, and
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21 for the annealing data set. The variations of their attributes before and after reduction are
illustrated in Fig. 7.
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21

Before reduction After reduction

Comparison of the number of attributes
before and after reduction

Randomly generated
8-dimensional data

Randomly generated
16-dimensional data

Wisconsin breast
cancer data set

Annealing data set

Figure 7: The comparison of the number of attributes before and after reduction analysis of four
data sets

From Fig. 7, the system carries out data dimension reduction on data sets, and dimensions
of some sets are not reduced, e.g., the 8-dimensional data. By comparing the results of the
algorithms, all attributes in a data set have equal influence on the system application (none are
filtered out).

Algorithm 1 is adopted to detect outliers from the data sets with reduced attributes. The
results are listed in Tab. 4. After attribute reduction, among the top 20 objects with the largest
local outlier factors of the 16-dimensional data, 17 are true outliers, and the others are incorrectly
judged. The accuracy rate of outlier detection is 85.00%. For the Wisconsin breast cancer data
set, after attribute reduction, among the top 39 objects with the largest local outlier factors, 36
are true outliers, and the others are misjudged. The accuracy rate rises to 92.31%. After attribute
reduction, for the annealing data set, among the first 190 objects with the largest local outlier
factors, 88 are true outliers, and 102 are erroneous. The detection accuracy rate reaches 46.32%.
Fig. 8 presents the outlier detection results before and after attribute reduction.

Table 4: The detection accuracy of the LOF algorithm after attribute reduction in three data sets

Data set Real
outliers

Detected
outliers

False outliers
detected

Accuracy after
reduction (%)

Randomly 16-dimensional data 20 17 3 85.00
Wisconsin breast cancer data set 39 36 3 92.31
Annealing data set 190 88 102 46.32

As revealed in Fig. 8, attributes identified as useless are reduced by the system, leading to
a smaller data size for processing and shortening detection time. For higher outlier detection
rate, the attribute reduction algorithm filtered out the error-prone attributes from the system. In
addition, enhanced accuracy is obtained in two attribute-reduced data sets, an indication of the
validity and effectiveness of the proposed reduction algorithm.
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Figure 8: The comparison of outlier detection accuracy before and after reduction in three data
sets

The accuracy of the randomly generated 16-dimensional data remains stable before and after
attribute reduction, revealing that the attribute filtering rate is minimal and close to zero, which
influences the system. Thus, detection accuracy is intact through attribute reduction.

6 Conclusion

This study combined an attribute reduction algorithm with the LOF algorithm to improve
the accuracy of outlier detection for highly dimension numerical and mixed data. Following
the algorithms of attribute reduction and the LOF outlier detection, this study analyzed the
monotonicity of the attribute reduction algorithm and explained the application of the data
processed in outlier detection. We performed the experiments to apply the LOF algorithm on
data sets of different dimensions, to assess its performance by calculating its detection accuracy.
We also inserted significance determination and attribute reduction algorithms before the LOF
algorithm for the five data sets and calculated new detection accuracy. Finally, we compared the
feasibility and effectiveness of the two groups of data to assess their detection accuracy before
and after data attribute reduction. In comparison, the proposed method reduced data dimensions,
calculation time, and improved the outlier detection accuracy when attribute reduction algorithm
was combined with outlier detection technology.
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