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Abstract: In the healthcare system, a surgical team is a unit of experienced per-
sonnel who provide medical care to surgical patients during surgery. Selecting
a surgical team is challenging for a multispecialty hospital as the perfor-
mance of its members affects the efficiency and reliability of the hospital’s
patient care. The effectiveness of a surgical team depends not only on its
individual members but also on the coordination among them. In this paper,
we addressed the challenges of surgical team selection faced by a multispe-
cialty hospital and proposed a decision-making framework for selecting the
optimal list of surgical teams for a given patient. The proposed framework
focused on improving the existing surgical history management system by
arranging surgery-bound patients into optimal subgroups based on similar
characteristics and selecting an optimal list of surgical teams for a new surgical
patient based on the patient’s subgroups. For this end, two population-based
meta-heuristic algorithms for clustering of mixed datasets and multi-objective
optimizationwere proposed. The proposed algorithmswere tested using differ-
ent datasets and benchmark functions. Furthermore, the proposed framework
was validated through a case study of a real postoperative surgical dataset
obtained from the orthopedic surgery department of a multispecialty hospital
in India. The results revealed that the proposed framework was efficient in
arranging patients in optimal groups aswell as selecting optimal surgical teams
for a given patient.

Keywords: Multi-objective optimization; artificial electric field algorithm;
mixed dataset clustering; surgical team; strength Pareto

1 Introduction

During a preoperative procedure, surgical team members, surgical specialty and experience,
and coordination among the members play essential roles. Although various factors can affect
surgical procedures, positive outcomes mainly depend on the individual surgical team members.
Appropriate coordination and cooperation among those can reduce unavoidable conflicts during
the procedures [1]. Hence, the selection of an optimal surgical team is indispensable for a rapid
patient recovery, decreased complications, and more favorable surgical management. However,
the selection process is a considerably time-consuming and difficult task [2]. In recent years,
several studies have examined the performance of surgical team members. Many vital factors, such
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as understanding diagnostic complications and patient characteristics, and the surgical practice
environment, can result in more satisfactory outcomes. In the field of medicine, appropriate
management of surgical care is a difficult task as most surgical complications occur during intra
operative surgical care [3]. An efficient team can help in providing effective healthcare services [4].
Hospitals and physicians always focus on providing a safe environment for patients and enhancing
their wellbeing [5]. A study investigated human factors associated with operating rooms and ana-
lyzed the relationship between their poor performance and the surgical procedures outcomes [4].
Similarly, several studies adopted approaches such as malpractice claim analysis [6], root cause
analysis [7], and prospective analysis [8] to reduce intra operative surgical complications. Although
these studies tried to analyze the relationship between the performance of operating room and
outcomes of surgery, however, contribution of significant factors affecting the performance of
operating room were not considered [3]. Studies examining factors such as teamwork in the
operating room [9] and intensive care [10] focused on the effect of coordination and synergy
among surgical team members. These studies have indicated the necessity and significance of
surgical team selection procedure. As performing surgical procedures is often a risky and uncertain
task, therefore high synergy is always expected among team members possessing different levels of
experience and expertise. Various factors such as availability of surgeons, limitation of resources,
and time etc. affect the surgical team selection in a multispecialty hospital; thus, selection of the
surgical team is a challenging task [11]. In a surgical team, different responsibilities are assigned to
different individuals [12]. As the responsibilities and the individuals to whom responsibilities are
assigned change frequently with time, thus selecting an efficient team for the desired activity, con-
sidering time and resource limitation, becomes a complicated procedure. All the aforementioned
studies have focused on personnel preferences for the day, shift, and units. However, none of these
studies have considered the history of the surgical team, characteristics of patients, and feedback
of patients who underwent surgery in the past. In this study, an optimal framework based on
the characteristics of patients, history of the surgical team, and the feedback of previous surgical
patients is proposed to assist in decision-making for the selection of optimal surgical teams. An
optimal list of surgical teams contains more than one suitable surgical team that can be assigned
to a surgical patient according to their availability.

The rest of the paper is organized as follows. Section 2 presents an overview of the existing
literature. Section 3 describes preliminary and background algorithms. Section 4 discusses the
proposed framework in detail. Section 5 presents a detailed case study of the orthopedic surgery
department at a multispecialty hospital in India. Section 6 summarizes the findings of this research
and provides concluding remarks.

2 Related Work

2.1 Literature Review
In a modern healthcare system, the provision of high-quality surgical services typically

depends on symptoms of various patients. Classifying patients on the basis of their symptoms
assist the decision-makers in identifying the target patient and making corresponding remedial
decisions [13]. In recent years, several methods have been proposed by the authors for clustering
of patients. One of the studies used k-means clustering algorithm to partition the patients based
on their health status [13]. Another study used a multilayer clustering approach for partition-
ing of Alzheimer disease patients into male and female groups [14]. In addition, few studies
have used agglomerative hierarchical clustering for partitioning of patients based on presence
of comorbidities such as chronic pain and mental illness; obesity and mental illness; cancer;
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diabetes and renal disease [15,16]. A Bayesian nonparametric clustering approach was applied
to divide patients having cancer into sub-groups to measure their anxiety and depression scores
before psychotherapy [17]. Further, in a study authors proposed a hierarchical clustering algorithm
incorporating genetic concept for partitioning the patients with or without depression [18]. Fur-
thermore, many intelligent nature-inspired algorithms have also been proposed for data clustering.
A study proposed a hybrid algorithm combining particle swarm optimization (PSO) and artificial
bee colony (ABC) algorithms for data clustering [19]. Additionally, k-means [20] and k-harmonic
means [21]—clustering algorithms have been -used for performing—clustering of mixed datasets.
The functioning of most of these clustering algorithms is dependent on the predefined number
of clusters. However, in real-life problems, for most of the datasets the number of clusters is
not known beforehand. Hence, the accurate estimation of an optimal number of clusters is a
challenging task, and can affect the performance of a clustering algorithm also. Therefore, several
algorithms, such as the gravitational search algorithm [22], harmony search algorithm [23], and
differential evolution algorithm [24], have been proposed for automatic clustering to address the
aforementioned challenge. Automatic clustering algorithms require no prior information regarding
the number of clusters. Instead, they evaluate the optimal number of clusters based on the
dataset only. In this paper, an efficient clustering algorithm for mixed datasets based on the
artificial electric field algorithm (AEFA) [25] is proposed to categorize patients based on their
characteristics (symptoms). A recent study utilized k-prototypes algorithm for partitioning of
patients and genetic algorithm (GA) for the selection of optimal surgical team [5]. Although
the study reported favorable outcomes, it focused only on the complication ratio for the surgical
team selection. However, the success of a surgical procedure depends on various factors also such
as a lower surgical readmission rate, lower mortality and complication rates, and higher patient
satisfaction (surgical feedback) etc. Therefore, this study considered the feedback of patients who
underwent surgery in the past along with complication rates to select an optimal surgical team.
Further, the GA [26,27] utilized by Ebadi et al. [5] is likely to experience premature convergence
and diversity loss. In addition, Srinivas et al. [28], Gu et al. [29], Hassanzadeh et al. [30], Yuan
et al. [31], and Nobahari et al. [32] have proposed several meta-heuristic approaches to prevent
premature convergence. These algorithms have been found efficient in finding the optimal solution
in a single computation. In this paper, an improved AFEA for multi-objective optimization is
proposed to select optimal surgical teams. To the best of our knowledge, no study has focused on
considering surgical feedback along with complication rates for selecting optimal surgical teams
by utilizing AEFA. Tab. 1 summarizes the existing work related to surgical decision-making.

Table 1: Summary of the existing work related to surgical decision making

Author(s) Objective/Work performed Technique
proposed/used

Performance
parameters

Research Gap(s) identified

Gamberger
et al. [14]

To partition patients with
Alzheimer disease into
homogeneous subgroups

A multilayer
clustering approach

Clinical dementia
rating score

The segmentation of
patients with cognitive
problems was not
considered.

Li et al. [17] To partition patients with
cancer into subgroups for
measuring their anxiety
and depression scores

Bayesian
nonparametric
clustering approach

Within cluster
contrast

The proposed algorithm
was sensitive to the initial
sample size.

(Continued)
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Table 1: Continued

Author(s) Objective/Work performed Technique
proposed/used

Performance
parameters

Research Gap(s) identified

Yu et al.
[18]

To identify the subgroups
of patients with and
without depression

1. Hierarchical
clustering based on
the genetic concept
2. Distance matrix

1. Approximately
unbiased probability
value
2. Bootstrap
probability value

This study considered the
genetic data of a specific
population only.

Karthikeyan
et al. [19]

Proposed hybrid PSO and
ABC algorithm for data
clustering.

Hybrid PSO and
ABC

1. Accuracy
2. Classification
error percentage

The proposed algorithm
focused on numeric
attributes only.

Ahmad
et al. [20]

Proposed k-mean
clustering for mixed data.

K-mean Clustering 1. Micro-Precision
2. Micro-Recall

The centroid initialization
problem persists.

Ahmad
et al. [21]

Proposed k-harmonic
mean for mixed data.

K-Harmonic
clustering
algorithms

1. Intra-cluster
distance
2. Inter-cluster
distance

The proposed algorithm
focused on numeric
attributes only.

Kumar
et al. [22]

Proposed automatic data
clustering and feature
selection using the
gravitational search
algorithm.

Gravitational search
algorithm

1. Silhouette index
2. Classification
error

The proposed algorithm
focused on numeric
attributes only.

Kumar
et al. [23]

Proposed automatic data
clustering using an
adaptive harmony search
algorithm.

Adaptive harmony
search algorithm

1. Inter-cluster
distance
2. Intra-cluster
distance
3. Trace

The proposed algorithm
focused on numeric
attributes only.

Srinivas
et al. [28]

Proposed genetic
algorithm based on
nondominant sorting for
multi-objective
optimization

Nondominant
sorting genetic
algorithm

Chi-square test The proposed algorithm
exhibited a slow
convergence rate.

Gu et al. [29] Proposed an evolutionary
algorithm based on the
projection of the current
nondominant solutions
and equidistance
interpolation for
multi-objective
optimization

Dynamic weight
design method with
MOEA/D

1. Benchmark
functions
2. Mean
3. Standard
deviation
4. Inverted
generational
distance

The algorithm lacked
efficiency in solving
higher-dimensional
complex problems.

Hassanzadeh
et al. [30]

Proposed a gravitational
force-based algorithm for
multi-objective
optimization

Multi-objective
gravitational search
algorithm

1. Spacing metric
2. Generational
distance metric

The algorithm
experienced diversity loss
in solving
higher-dimensional
complex problems.

Yuan et al. [31] Proposed a gravitational
search algorithm based on
strength Pareto for
multi-objective
optimization.

Strength Pareto
gravitational search

1. Convergence
metric
2. Space metric
3. Generational
distance metric
4. Diversity metric

Population diversity
requires further
improvement.

(Continued)
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Table 1: Continued

Author(s) Objective/Work performed Technique
proposed/used

Performance
parameters

Research Gap(s) identified

Nobahari
et.al. [32]

Proposed a
multi-objective
gravitational search
algorithm based on
nondominant sorting for
power transformer design

Nondominant
sorting gravitational
search algorithm

Normalized
arithmetic mean

The algorithm
experienced scalability
loss while dealing with
complex cases of power
transformer design.

2.2 Our Contribution
(1) A decision-making framework is proposed to assist medical practitioners while selecting

optimal surgical teams for a given patient.
(2) Two population-based meta-heuristic algorithms are proposed for clustering of mixed

datasets and multi-objective optimization, which are used for the partitioning of patients
and the selection of optimal surgical teams, respectively.

(3) The proposed algorithms are validated using a real surgical dataset of a multispecialty
hospital in India.

3 Preliminary and Background

This section briefly discusses the basic concepts of partitioning clustering, distance measure
for mixed datasets, multi-objective optimization, and artificial electric field algorithm (AEFA).

3.1 Partitioning Clustering
In data clustering, partitioning clustering arranges data points into distinct clusters (CLCi).

Let us consider a dataset D = {D1, D2, D3, . . . , Dn} of n datapoints each with d attributes. For
example, Dj = (Dj1, Dj2, . . . , Djd) is a vector representing the jth datapoint, where Dji represents

the ith attribute of Dj. The partitioning clustering algorithm should satisfy the following condition:

CLCi �= φ, i= 1, 2, . . . , Nk,
Nk∑
i=1

CLCi =D, CLCi ∩CLCj �= φ∀ i, j

where, Nk represents the number of clusters.

3.2 Distance Measure for Mixed Datasets
The closeness between a data point and clusters is measured by computing the distance

between them. The distance measure confirms homogeneity among the data points of a cluster
and heterogeneity between different clusters. Arranging a mixed dataset into distinct clusters is
a challenging task. In this paper, the distance measure (ϑ) [20] is used to compute the distance
between the ith data point (Pi) and jth centroid (CLCj) as follows:

ϑ
(
Pi, CLCj

)= mr∑
t=1

(
wt
(
Prit−CLCr

jt

))2+ mc∑
t=1

�
(
Pcit, CLC

c
jt

)2
(1)
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where
(
Prit−CLCr

jt

)
represents the distance between the tth numeric attribute value of Pi and the

centroid (CLCr
jt), (Pcit, CLC

c
jt) represents the distance between the tth categorical attribute value of

Pi and centroid (CLCc
jt), and wt implies the significance of the tth numeric attribute. The distance

between the two values of a categorical attribute is measured by computing the co-occurrence of
these values with the values of other categorical attributes.

3.3 Multi-objective Optimization
A multi-objective problem (MOOP) can be a minimization or a maximization problem. It

involves O distinct target objectives that are defined as follows:

Minimize/Maximize: Fitness (Pr)= [Fitnessi (Pr) , i= 1, 2, . . . , O]

Subject to constraints:

{
ECj (Pr)≤ 0, j= 1, 2, . . . , j

ICk (Pr)≤ 0, k= 1, 2, . . . , k

where, Fitnessi (Pr) represents the ith objective function of the Pth
r solution, and ECj (Pr) and

ICk (Pr) represent jth equality and kth inequality constraints, respectively. In MOOP, Pareto
dominance theory [31] is utilized to determine optimal solutions in global search space.

3.4 Artificial Electric Field Algorithm (AEFA)
AEFA, a population-based meta-heuristic algorithm, simulates Coulomb’s law of electrostatic

attraction force (EAF) and the law of motion. Each candidate solution in AEFA is represented
as a charged particle. The charge present on each charged particle assists in evaluating the
performance of a candidate solution. Because of EAF, each charged particle attracts another
charged particle, resulting in the global movement of all charged particles toward a heavier
charged particle.

4 Proposed Framework

This section provides a detailed description of the proposed framework. The proposed frame-
work consists of two modules: surgical history management (SHM) and surgical team selection
(STS). The SHM module involves two activities: (1) clustering of existing surgical patients based
on their characteristics and (2) filtering of existing surgical team details. The STS module produces
an optimal list of surgical teams for a given patient. The SHM module is designed to assist the
STS module in decision-making. Fig. 1 presents the workflow of the proposed framework.

4.1 Surgical History Management (SHM) Module
Surgical history is a vital aspect of medical records and includes the social and demographic

information of surgical patients, the details of surgical teams, and the outcomes of diagnostic and
procedural tests. For multispecialty hospitals that provide surgical services to numerous patients,
efficient management of surgical records is essential. An efficiently organized surgical history helps
hospitals to enhance their patient care and resource efficiency. To utilize these surgical records,
the following two activities are performed in the SHM module.

4.1.1 Clustering of the Existing Surgical Patients
Arranging existing surgical patients in disjoint clusters based on their characteristics can help

hospitals to find a suitable subgroup for a newly referred surgical patient. In this study, an
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efficient data clustering algorithm for mixed datasets [33] is proposed to cluster surgical patients.
The proposed clustering algorithm (Algorithm 1) based on the AEFA focuses on finding optimal
clusters automatically. The steps of the proposed clustering algorithm are as follows:

Surgical History Management Module

Postoperative surgical dataset (POS)
Patient and surgical team details

Clustering existing 
surgical patients using 

proposed algorithm

Patient 
optimal 
cluster1

Patient 
optimal 
cluster2

Patient 
optimal 
cluster3

Patient 
optimal 
clustern

Surgery-based record 
of individual team 

member

Filtration of existing 
surgical team 

(surgery-based 
record)

Surgical Team Selection 
Module

Retrieval of exiting surgical team

Selected suitable optimal clustern for the patient

Selection of optimal surgical Team using proposed 
multi-objective algorithm

Details of newly
patient referred for 

surgery

Start

Figure 1: Workflow of the proposed framework

A. Improved Electrostatic Force Computation and Velocity Update

In a traditional AEFA, the total electrostatic attraction force (TEAF; Eq. (2)) on ith charged
particle is computed by multiplying a random number to EAF exerted by jth charged particles on
it. This force affects acceleration and velocity, thus resulting in the global movement of all charged
particles. Furthermore, the velocity (Eq. (4)) of ith charged particle is updated by multiplying a
random number to its existing velocity value. These random numbers add stochastic behavior in
an algorithm’s search process, resulting in an imbalance between exploration and exploitation,
thus causes the algorithm to trap in local optima. To maintain a balance between exploration
and exploitation, instead of using only random number we have considered charge of a charged
particle (qi) also. The charge of a charged particle controls the stochastic behavior during the
computation of TEAF and velocity; this, in turn, reduces the acceleration and velocity values of
the charged particle, thus balancing exploration and exploitation. The modified equations (Eqs. (3)
and (5)) are shown as follows:

TEAFDi (T)=
N∑

j=1, j �=i
rand () ∗EAFDij (T) (2)

TEAFDi (T)=
N∑

j=1, j �=i

(
randi ∗ r1+

(
1− e

√
qi
)
∗ r2

)
∗EAFDij (T) (3)

velDi (T + 1)= randi ∗ velDi (T)+ aDi (T) (4)
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velDi (T + 1)=
(
randi ∗ r1+

(
1− e

√
qi
)
∗ r2

)
∗ velDi (T)+ aDi (T) (5)

where, r1 and r2 are two non-negative integers and r1+ r2 = 1. Furthermore, in case of r1 = 1 and
r2 = 0, Eqs. (3) and (5), and Eqs. (2) and (4) are treated identically.

B. Selection of Active Centroids

For each candidate solution, active centroids are selected from CLCmax centroids based on
the following condition:

CLCij =
{
1, THVij >TCOV

0, Otherwise
(6)

where, TCOV is the cutoff value for each centroid, and is set to a random value between [0,1].
TCOV depends on the selection threshold value (THVSL) of a centroid and is computed as follows:

TCOV = 1
CLCactive

CLCactive∑
l=1

THVSLl , THVSL =
√√√√ 1
nSL

( mr∑
i=1

�
(
Pri ,CLC

r
SL

)2)+
( mc∑
i=1

�
(
Pci ,CLC

c
SL

)2)

(7)

where, CLCactive represents the number of active centroids in each candidate solution.

Algorithm 1: Proposed algorithm for clustering surgical patients
Input: A postoperative surgical dataset
Output: Patients with their optimal clusters
Begin
Define the maximum number of iterations (MaxIT), the maximum number of clusters (CLCmax),
population size (PS), selection threshold (THVSL) and cutoff threshold (TCOV )

Compute the dimension and randomly initialize a population of patients (PT) as a cluster
centroid from the dataset
Initialize iteration counter, It = 1
While It <MaxIT do
for i= 1 to PS do
for j= 1 to CLCmax do
if (THVij > TCOV ) then
Verify and activate the centroid PTj

i by using Eq. (6)
else
PTj

i is set to inactive
end if

end for
for each patient (PTi) in given mixed dataset
A. Compute the distance between PTi and active PTj

i by using Eq. (1) and assign PTi to the
nearest active PTj

i
B. Verify and reinitialize the empty PTj

i as described in Section 4.1.1
end for

(Continued)
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end for
Update the population by following the AEFA algorithm (Section 4.1.1). The fitness function in
Eq. (8) and the distance measures in Eq. (1) are used to direct the exploration process.
Update THVSL and TCOV for each PT in the updated population by using Eq. (7)
It = It+ 1
end while
Return patients (PT) and their optimal clusters.

C. Validation of Empty Clusters

A centroid having less than two data points is termed as an empty cluster. In such cases, the
corresponding centroid of the candidate solution is reinitialized, and m/CLCactive data points are
assigned to each nearest active centroid.

D. Computation of Fitness

The efficiency of a clustering algorithm depends on the cluster validation criteria. In this
study, we have used silhouette index (SI) criteria for cluster validation. The fitness of the candidate
solution is computed as follows:

Fitness (QPi)= SI (QPi) ∗ CLCmax−CLCactive
CLCactive+ 1

, SI (QPi)= Meang−Meanh
max

(
Meang,Meanh

) (8)

where, Meang represents the mean distance to other data points in the same cluster (mean intra-
cluster distance), and Meanh represents the mean distance to other data points in different clusters
(mean inter-cluster distance). A candidate solution with the minimum fitness is selected as an
optimal solution.

4.1.2 Filtration of the Existing Surgical Team
In this section, a postoperative surgical dataset is considered as an input. Subsequently, on

the basis of the required surgery type (e.g., orthopedic surgery, neurosurgery, and pediatric surgery
etc.), the details of existing surgical teams are retrieved. A surgical team involves a surgeon, a
nurse circulator, and an anesthesiologist. For each retrieved surgical team, additional information
such as the complication rate and patient’s surgical feedback rating -are computed and stored in
a database. This stored information helps decision makers in optimizing the process of surgical
team selection.

4.2 Surgical Team Selection (STS) Module
This module is invoked when the proposed framework receives details of a new surgical

patient. Subsequently, an optimal cluster is selected for the new patient. The details of the
corresponding surgical teams are then retrieved from the selected cluster and processed to obtain
the optimal list of surgical teams. In this paper, an efficient meta-heuristic algorithm for multi-
objective optimization based on AEFA is proposed to generate an optimal list of surgical
teams.

4.2.1 Proposed Multi-objective Optimization Algorithm for Surgical Team Selection
The proposed multi-objective optimization (MOOA) algorithm begins with parameter initial-

ization. Subsequently, the population of candidate solutions is generated. The proposed algorithm
has two populations: search population (PSearch) and external population (PExternal). The PSearch,
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which contains initial candidate solutions, computes non dominant solutions and stores them in
Pexternal. The surgical team retrieved in the STS module serves as an initial PSearch, and along
with the surgical team extracted in the SHM module, it is used to conduct the exploration process
of the proposed algorithm. The maximum size of the initial population is computed as follows:

PSSize =
√
PComb (9)

where,
√
PComb is the number of possible combinations of surgical teams extracted from the

selected suitable patient cluster.

Finally, on the basis of the fitness value of each candidate solution, the best solution is
selected. This process is iteratively performed until the convergence condition is satisfied and opti-
mum solutions are obtained. To improve convergence, bounded exponential crossover (BEX) [34]
and polynomial mutation operator (PMO) [35] are used in the proposed MOOA. Furthermore,
to enhance exploration and exploitation, modifications are introduced in the electrostatic force
computation and velocity update (Section 4.1.1) in the proposed MOOA. The proposed MOOA
is presented in Algorithm 2.

Algorithm 2: Proposed multi-objective optimization algorithm for surgical team selection
Input: Details of the existing surgical teams (obtained from STS and SHM modules)
Output: Optimal list of surgical teams
Begin
Define the search population size (PSSize), external population size (PESize), and the maximum
number of iterations (MaxIT)

Initialize the search population (PSearch) of the surgical team (ST) obtained from the STS module.
Initialize the external population PExternal =∅ and set an iteration counter It = 1.
while (It < MaxIT)

for each ST ∈PSearchItUPExternalI t
(i). Compute the fitness (Fitness (ST)) by using Eqs. (10) and (11)
(ii). Compute the additional density value (Density) by using the kth nearest neighbor algo-

rithm.
end for
for each ST ∈PSearchIIUPExternalI t do

if Fitness (ST) < 1 then
PExternalI t+1 =PExternalI t+1U {ST}

end if
end for
if (size of

(
PExternalI t+1

)
<PESize), then

PExternalI t+1 =PExternalI t+1U
((
PSearchItUPExternalI t

) [
1: PESize

∣∣PExternalI t+1

∣∣])
else
Compute the additional density values for each non-dominant ST in PExternalI t+1 and delete
an ST with the smallest density value.
end if
(i). Select surgical team (ST) into the mating pool PIt+1 from PSearchI tUPExternalI t+1
(ii). Compute charge, update the velocity and position of POPIt+1, and obtain the new STs
(iii). Apply BEX and PMO on population PIt+1

(Continued)
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for each ST ∈PExternalI t+1 do
Compute the additional density value of each ST
end for

Compute the additional density value of each ST in PExternalI t+1 and perform nondominant
sorting
It = It+ 1
end while
Return the optimal list of surgical teams (ST)

4.2.2 Fitness Evaluation of the Surgical Team
In this study, two factors are considered to evaluate the performance of a surgical team:

complications associated with surgery [5] and patients’ surgical feedback rating. Surgical feedback
is defined as the experience of patients during the surgical period. In this study, the feedback
ratings of existing surgical teams were collected in terms of a surgical team’s behavior and activity.
The fitness functions are computed as follows:

Minimize

Fitness (ST)=CompFt (ST) , where CompFt (ST)= α ∗Compt (ST)+ (1−α) ∗ noCompt (ST) (10)

Maximize

Fitness (ST)= SFt (ST)

where, CompFt (ST) is a fitness value that represents a combination of complication ratio Compt
and no-complication ratio noCompt associated with the surgical team (ST) at time t. SFt represents
surgical feedback rating and is computed as follows:

SFt = 1
n

n∑
i=1

∑SP
J=1RatingSTji
SPSTi

(11)

where, RatingSTji represents mean of the feedback rating provided by jth patient for ith team

member. SPSTi and n are the number of surgical patients treated by the ith team member and the
total number of team members, respectively. Thus, the overall objective is to find surgical teams
with a lower complication ratio and higher feedback rating.

Because the definition of charge in the conventional AEFA was not found to be suitable for
solving MOOPs [25], thus this study uses multi-objective function given by SPEA2 [36] as the
fitness function of the AEFA.

Fitness (STi)=Raw_Fitness (STi)+Density (STi)

RawFitness(STi) =
∑

j∈POPStUPOPextt

dom (j) , where dom (j) |{i|i ∈ POPStUPOPexti}|

where, Fitness (STi), Density (STi), and Raw_Fitness (STi) represent the fitness value, additional
density value, and raw fitness value of the ith surgical team, respectively. For each surgical
team,Raw_Fitness (STi) is computed in terms of Compt (ST) and SFt (ST), and it exhibits the
strength of a solution (surgical team) by computing the number of other solutions on which
it dominates and assigns a rank to the solution. In a situation where multiple solutions are
non-dominant and are assigned similar ranks, the additional density value (Density) is used to
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differentiate various solutions. In this paper, kth nearest neighbor algorithm is used to estimate
the density.

5 Experimental Results and Discussion

Experiments were performed using a real case study of a multispecialty hospital in India. The
proposed framework was implemented using a postoperative surgical dataset (POS) [33], which
was obtained from the orthopedic surgery department of the hospital. Sub-section 5.1 discusses
the performance of the SHM module. Subsection 5.2 discusses the performance of the STS
module. Performances of the SHM and STS modules are discussed in sub-sections 5.1 and 5.2
respectively. Tab. 2 lists symbols used in the proposed framework.

Table 2: Symbols used in the proposed framework

Symbol Definition Symbol Definition

PSSize Size of the initial search population SFt Surgical feedback rating
PSearch Search population RatingSTji Mean of surgical feedback ratings

provided by the jth patient of the
ith team member

PESize Size of the external population size SPSTi The total number of surgical
patients treated by the ith surgical
team

PExternal External population CompFt Combination of the complication
ratio (Compt) and the
no-complication ratio (noCompt)

QPi Position of the ith charged particle
(candidate solution)

Fitness (STi) Fitness of the ith surgical team

CLCmax Maximum number of cluster
centroids

Density (STi) Additional density value of the ith

surgical team
THVSL Selection threshold value RawFitness (STi) The raw fitness value of the ith

surgical team
CLCactive Number of active cluster centroids Meang It represents the average distance to

other data points in the same
cluster

ϑ Distance between data points and
cluster centroids

Meanh It represents the average distance to
the data points of different clusters.

Prit tth numeric attribute value of Pi TCOV Cutoff threshold value
Pcit tth categorical attribute value of Pi MaxIT Maximum number of iterations
D Objective space dimension TEAFDi Total electrostatic attraction force

on a ith charged particle in the Dth

dimension.
PComb Number of possible combinations

of the surgical team
aDi (T) Acceleration of a ith charged

particle in the Dth dimension
velDi Velocity of a ith charged particle in

the Dth dimension
qi Charge on a ith charged particle
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5.1 Performance Evaluation of the SHMModule
The performance of the SHM module was evaluated in three steps. Firstly, the performance

of the proposed clustering algorithm was measured using nine real-life datasets (Tab. 3). Secondly,
it was compared with six existing clustering for non-mixed dataset: (i) PSO, (ii) hybrid atom
search optimization (ASO) and PSO (ASOPSO), (iii) ASO, (iv) hybrid PSO and gravitational
search algorithm (PSOGSA), (v) hybrid PSO and firefly algorithm (PSOFA), (vi) hybrid ASO and
sine-cosine algorithm (ASOSCA) [37]. The results revealed that the proposed clustering algorithm
outperformed existing algorithms (Tab. 4). Subsequently, the performance of the proposed clus-
tering algorithm was also compared with five existing clustering algorithms for mixed dataset:
(i) k-means clustering algorithm, (ii) KHMCMD, (iii) k-prototypes clustering algorithm [38], (iv)
Improved k-prototypes clustering algorithm [39], (v) algorithm proposed by Ji et al. [40]. The
comparative results are shown in Tab. 5. Thirdly, the performance of the proposed clustering
algorithm was evaluated using the POS dataset. The results revealed that considering all iterations,
six active patient clusters with a selection frequency of 1.6, an average fitness of 0.96, and a
standard deviation of 0.13 were selected as an optimal solution (Tab. 6).

Table 3: Characteristics of real-life datasets

Dataset Data points Attributes Classes

Numeric Categorical Others

Breast tissue 106 9 – – 6
CMC 1473 2 4 3 2
Wine 178 13 – – 3
Iris 150 4 – 3 3
Ecoli 336 7 – – 8
Heart disease (1) 303 5 8 – 2
Heart disease (2) 270 6 8 – 5
Credit approval 690 6 8 – 2
Soybean 47 – 35 – 4

Table 4: Comparison of the performance of proposed and existing clustering algorithms for non-
mixed dataset

Dataset Index Algorithm

PSO ASOPSO ASO PSOGSA PSOFA ASOSCA Proposed algorithm

Breast tissue Silhouette index 0.74 0.71 0.29 0.77 0.69 0.77 0.82
Dunn index 0.43 0.26 0.17 0.52 0.31 0.66 0.71
Davies-Bouldin index 0.61 0.51 1.07 0.57 0.56 0.63 0.44

CMC Silhouette index 0.25 0.17 0.20 0.21 0.22 0.247 0.38
Dunn index 0.08 0.07 0.06 0.10 0.09 0.04 0.12
Davies-Bouldin index 0.61 0.78 0.61 0.61 0.68 0.31 0.30

Wine Silhouette index 0.29 0.32 0.23 0.36 0.37 0.52 0.55
Dunn index 0.07 0.06 0.05 0.08 0.07 0.12 0.14
Davies-Bouldin index 0.52 0.56 0.60 0.41 0.43 0.12 0.12

Ecoli Silhouette index 0.001 0.06 0.13 0.05 0.00 0.19 0.20
Dunn index 0.05 0.06 0.07 0.06 0.06 0.11 0.12
Davies-Bouldin index 0.69 0.80 0.82 0.72 0.7 0.76 0.51

(∼ shows results not available)
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Table 5: Comparison of the performance of proposed and existing clustering algorithms for mixed
dataset

Dataset Proposed
algorithm

Improved
k-prototypes

k-prototypes KHMCMD KMCMD Ji et al. [40]

AC (STD) AC (STD) AC (STD) AC (STD) AC (STD) AC (STD)

Heart disease (1) 0.853 (±0.13) 0.826 (∼) 0.577 (∼) 0.840 (±0.15) 0.838 (±0.15) 0.853 (±0.13)
Heart disease (2) 0.830 (±0.19) 0.653 (∼) 0.546 (∼) 0.816 (±0.33) 0.807 (±1.20) 0.830 (±0.19)
Credit approval 0.864 (±0.11) 0.779 (∼) 0.562 (∼) 0.852 (±0.38) 0.822 (±12.77) 0.864 (±0.11)
Iris 0.95 (±0.17) 0.822 (∼) 0.819 (∼) ∼ ∼ 0.95 (±0.17)
Soybean 0.93 (±0.17) 0.90 (∼) 0.856 (∼) ∼ ∼ 0.93 (±0.17)

AC: Average accuracy, STD: Standard deviation. (∼ shows results not available)

Table 6: Performance evaluation of the proposed clustering algorithm on the POS dataset

Number of
active
clusters
selected

Parameters Iterations

1–10 11–20 21–30 31–40 41–50

2 Selection frequency 0.0 0.3 0.0 0.5 0.0
Average fitness 0.0 0.70 (±0.42) 0.0 0.52 (±0.33) 0.0

3 Selection frequency 0.4 0.3 0.4 0.0 0.6
Average fitness 0.74 (±0.56) 0.71 (±0.52) 0.58 (±0.61) 0.0 0.66 (±0.25)

4 Selection frequency 0.6 0.8 0.4 0.6 0.6
Average fitness 0.65 (±0.40) 0.83 (±0.34) 0.76 (±0.39) 0.80 (±0.36) 0.52 (±0.64)

5 Selection frequency 0.3 0.7 0.6 0.8 1.0
Average fitness 0.36 (±0.47) 0.60 (±0.36) 0.69 (±0.23) 0.55 (±0.37) 0.91 (±0.22)

6 Selection frequency 1.0 0.8 1.2 1.6 0.4
Average fitness 0.62 (±0.16) 0.74 (±0.35) 0.92 (±0.18) 0.96 (±0.13) 0.50 (±0.32)

7 Selection Frequency 0.4 0.7 0.5 0.5 0.4
Average Fitness 0.57 (±0.58) 0.67 (±0.40) 0.30 (±0.28) 0.40 (±0.40) 0.52 (±0.59)

8 Selection frequency 0.3 0.1 0.3 0.0 0.0
Average fitness 0.53 (±0.32) 0.22 (±0.38) 0.50 (±0.41) 0.0 0.0

5.2 Performance Evaluation of the STS Module
The performance of the STS module of the proposed MOOA is evaluated on the basis of

parameters listed in Tab. 7 using three benchmark functions, namely SCH, FON, and ZDT1 [41].
Subsequently, the performance of the proposed MOOA was compared with four existing MOOAs:
SPGSA [31], NSGA II [41], NSPSO [42], and BCMOA [43], on the basis of three performance
parameters, namely converge metric [CM], diversity metric [DM] [41], and generational distance
metric (GD) [44]. A minimum value of all these parameters is desired for optimal solutions.
The results demonstrated that the proposed algorithm achieved a minimum value for CM, DM,
and GD (in terms of the mean) for all considered benchmark functions (Tab. 8). This finding
indicated that the proposed algorithm outperformed existing MOOAs in terms of the convergence
rate while maintaining the diversity among optimal solutions. The results shown in Tab. 8 are
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presented as a graph in Fig. 2. For better representation, results in the graphs are shown using
a logarithmic scale, where higher logarithmic value represents minimum value of the mean. As
shown in Fig. 2, the proposed algorithm achieved a high logarithmic value of the mean (minimum
value of the mean) for all metrics, indicating that the proposed algorithm is more efficient and
robust in comparison to existing MOOAs.

Table 7: Parameters used in the proposed multi-objective optimization algorithm

Description Parameter Value for benchmark
functions

Value for surgical
team selection

Population (Surgical team)
size

PSSize 100 135

External population size PESize 100 for SCH, FON, and
ZDT1

6

Initial value of Coulomb’s
constant

K0 500 500

The maximum number of
iterations

MaxIT 100 for SCH and FON, and
250 for ZDT1

50

Initial, Final crossover
probability

PCR, PCF 1.0, 0.0 1.0, 0.0

Initial, Final mutation
probability

PMI ,PMF 0.01, 0.001 0.01, 0.001

Table 8: Comparison of the performance of proposed and existing multi-objective optimization
algorithms

Performance
metric

Benchmark
functions

Algorithm

Proposed
algorithm

SPGSA NSGA II NSPSO BCMOA

CM Metric SCH Mean 1.59× 10−1 1.65× 10−1 3.8× 10−1 8.6× 10−1 7.60× 10−1

FON Mean 1.58× 10−1 1.61× 10−1 4.14× 10−1 5.81× 10−1 4.8× 10−1

ZDT1 Mean 1.56× 10−1 1.61× 10−1 4.06× 10−1 6.38× 10−1 5.9× 10−1

DM Metric SCH Mean 2.81× 10−3 3.2× 10−3 3.14× 10−3 3.40× 10−1 3.2× 10−3

FON Mean 1.68× 10−3 1.7× 10−3 2.36× 10−3 2.84× 10−1 2.7× 10−3

ZDT1 Mean 1.09× 10−3 1.1× 10−3 4.02× 10−3 3.81× 10−1 1.1× 10−3

GD Metric SCH Mean 3.19× 10−4 3.78× 10—4 3.68× 10—4 4.5× 10—4 3.78× 10—4

FON Mean 3.65× 10−5 2.13× 10—4 2.94× 10—4 3.6× 10—4 3.62× 10—4

ZDT1 Mean 3.02× 10−5 2.4× 10—4 5.56× 10—4 4.3× 10—4 2.02× 10—4

(∼ shows results not available)

The details related to a surgical patient (Tab. 9) were submitted as input to the STS module.
Then, a suitable active patient cluster was selected from the six optimal active patient clus-
ters (obtained from the SHM module), and associated surgical teams were extracted from it.
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The selected cluster contained 400 orthopedic surgical records in which 15 distinct surgeons,
40 anesthesiologists, and 30 nurses were involved. It resulted in 18000 possible combinations of
surgical teams. Finally, 135 surgical teams were generated as an initial search population, and
the proposed algorithm was implemented on it. The results are shown in Figs. 3 and 4. Figs. 3a
and 3b show the comparison between the proposed and existing algorithms in terms of the
complication ratio and surgical feedback rating, respectively. From Fig. 3a it is clear that the
proposed algorithm converged faster to the optimal solution and obtained the lowest value of
the complication ratio in comparison to existing algorithms. Similarly, Fig. 3b illustrates that the
proposed algorithm achieved maximum value of surgical feedback rating also. The final results
presented in Fig. 4 revealed that six optimal surgical teams were selected for the referred surgical
patient. This can be assigned to the patient as per availability of the team members.
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Figure 2: Comparison of performance between proposed and existing MOOAs based on (a) CM,
(b) DM, and (c) GD

Table 9: Attributes of a surgical patient

Attribute Type Description

Age Numeric 62
Gender Categorical Male
BMI Numeric 42
ASA fitness grade Numeric 2
Marital Status Categorical Married
Ethnicity Categorical Indian
Comorbidity Numeric 3
Type of Surgery Categorical Minor
Surgery Duration Numeric Length of surgical procedure
Procedural code Categorical 0KQV0ZZ
Diagnose code Categorical S82.91XA
Surgery Domain Categorical Orthopedic
Grade of Surgery Categorical Mild
Urgency of surgery Categorical Elective
LOS Numeric 3.4 days
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Figure 3: Comparison of performance between proposed and existing MOOAs for surgical team
selection based on (a) complication ratio and (b) surgical feedback rating score
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Figure 4: Optimal Pareto list of the selected surgical team

6 Conclusion

High-quality surgical services are essential from the perspective of hospitals and patients
both. Surgical outcomes depend on the performance of dedicated surgical teams, which in turn
affects hospital’s efficiency and patients’ trust towards that hospital. In multispecialty hospitals
many surgical patients are treated concurrently. Therefore, arranging a suitable surgical team for
achieving success of a surgical procedure is crucial and challenging. This study addresses the
challenge of selection of an optimal list of surgical teams for a referred patient, so that each
patient can receive high-quality surgical care. In this paper a framework is proposed to assist
decision makers in selecting an optimal list of surgical teams. The proposed framework contains
two modules: SHM and STS. SHM focuses on arranging existing surgical patients into optimal
patient subgroups. This arrangement of patients further assists the STS module in selecting the
optimal list of surgical teams. In this paper, an efficient clustering algorithm for mixed data is
proposed to identify optimal subgroups of patients. Besides, a MOOA is proposed to select opti-
mal surgical teams. The proposed framework is validated through a case study of the orthopedic
surgery department at a multispecialty hospital in India. Data related to existing surgical records
is obtained from the hospital. The performance of the proposed algorithms is evaluated based on
different benchmark functions and datasets, and is compared with the existing algorithms also.
The experimental evaluation revealed that the proposed algorithm yielded more favorable and
significant results in comparison to the existing algorithms, indicating the efficient functionality of
the proposed framework.
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Alzheimer’s disease patients in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database,”
Brain Informatics, vol. 3, no. 3, pp. 169–179, 2016.

[15] H. Petwal and R. Rani, “Prioritizing the surgical waiting list-cosine consistency index: An optimized
framework for prioritizing surgical waiting list,” Journal of Medical Imaging and Health Informatics,
vol. 10, no. 12, pp. 2876–2892, 2020.

[16] S. R. Newcomer, J. F. Steiner and E. A. Bayliss, “Identifying subgroups of complex patients with
cluster analysis,” American Journal of Managed Care, vol. 17, no. 8, pp. e324–32, 2011.

[17] Y. Li, B. Rosenfeld, H. Pessin and W. Breitbart, “Bayesian nonparametric clustering of patients with
advanced cancer on anxiety and depression,” in IEEE Int. Conf. on Machine Learning and Applications,
Cancun, Mexico, pp. 674–678, 2017.



CMC, 2021, vol.69, no.2 2581

[18] C. Yu, B. T. Baune, K. A. Fu, M. L. Wong and J. Licinio, “Genetic clustering of depressed patients and
normal controls based on single-nucleotide variant proportion,” Journal of Affective Disorders, vol. 227,
no. 17, pp. 450–454, 2018.

[19] S. Karthikeyan and T. Christopher, “A hybrid clustering approach using artificial bee colony (ABC)
and particle swarm optimization,” International Journal of ComputerApplications, vol. 100, no. 15, pp. 1–
6, 2014.

[20] A. Ahmad and L. Dey, “A K-mean clustering algorithm for mixed numeric and categorical data,” Data
& Knowledge Engineering, vol. 63, no. 2, pp. 503–527, 2007.

[21] A. Ahmad and S. Hashmi, “K-Harmonic means type clustering algorithm for mixed datasets,” Applied
Soft Computing, vol. 48, pp. 39–49, 2016.

[22] V. Kumar and D. Kumar, “Automatic clustering and feature selection using gravitational search algo-
rithm and its application to microarray data analysis,” NeuralComputing andApplications, vol. 31, no. 8,
pp. 3647–3663, 2019.

[23] V. Kumar, J. K. Chhabra and D. Kumar, “Automatic data clustering using parameter adaptive harmony
search algorithm and its application to image segmentation,” Journal of Intelligent Systems, vol. 25,
no. 4, pp. 595–610, 2016.

[24] S. Das, A. Abraham and A. Konar, “Automatic hard clustering using improved differential evolution
algorithm,” in Metaheuristic Clustering. Vol. 178. Berlin, Heidelberg: Springer, pp. 137–174, 2009.

[25] A. Yadav, “AEFA: Artificial electric field algorithm for global optimization,” Swarm and Evolutionary
Computation, vol. 48, no. 1, pp. 93–108, 2019.

[26] A. Y. Hamed, M. H. Alkinani and M. R. Hassan, “A genetic algorithm to solve capacity assignment
problem in a flow network,” Computers, Materials & Continua, vol. 64, no. 3, pp. 1579–1586, 2020.

[27] W. Liu, Y. Tang, F. Yang, Y. Dou and J. Wang, “A multi-objective decision-making approach for the
optimal location of electric vehicle charging facilities,” Computers, Materials & Continua, vol. 60, no. 2,
pp. 813–834, 2019.

[28] N. Srinivas and K. Deb, “Muiltiobjective optimization using nondominated sorting in genetic algo-
rithms,” Evolutionary Computation, vol. 2, no. 3, pp. 221–248, 1994.

[29] F. Gu, H. L. Liu and K. C. Tan, “A multi-objective evolutionary algorithm using dynamic weight
design method,” International Journal of Innovative Computing, Information and Control, vol. 8, no. 5(B),
pp. 3677–3688, 2012.

[30] H. R. Hassanzadeh and M. Rouhani, “A multi-objective gravitational search algorithm,” in IEEE
Int. Conf. on Computational Intelligence, Communication Systems and Networks, Liverpool, UK, pp. 7–
12, 2010.

[31] X. Yuan, Z. Chen, Y. Yuan, Y. Huang and X. Zhang, “A strength pareto gravitational search algorithm
for multi-objective optimization problems,” International Journal of Pattern Recognition and Artificial
Intelligence, vol. 29, no. 6, pp. 1–39, 2015.

[32] H. Nobahari, M. Nikusokhan and P. Siarry, “Non-dominated sorting gravitational search algorithm,”
in Int. Conf. on Swarm Intelligence, Cergy, France, pp. 1–10, 2011.

[33] H. Petwal and R. Rani, “An efficient clustering algorithm for mixed dataset of postoperative surgical
records,” International Journal of Computational Intelligence Systems, vol. 13, no. 1, pp. 757–770, 2020.

[34] M. Thakur, S. S. Meghwani and H. Jalota, “A modified real coded genetic algorithm for constrained
optimization,” Applied Mathematics and Computation, vol. 235, no. 3, pp. 292–317, 2014.

[35] Y. Liu, B. Niu and Y. Luo, “Hybrid learning particle swarm optimizer with genetic disturbance,”
Neurocomputing, vol. 151, no. 3, pp. 1237–1247, 2015.

[36] E. Zitzler, M. Laumanns and L. Thiele, “SPEA2: Improving the strength Pareto evolutionary algo-
rithm,” TIK-report, vol. 103, pp. 1–19, 2001.

[37] M. A. Elaziz, N. Nabil, A. A. Ewees and S. Lu, “Automatic data clustering based on hybrid
atom search optimization and sine-cosine algorithm,” in IEEE Congress on Evolutionary Computation,
Wellington, New Zealand, pp. 2315–2322, 2019.



2582 CMC, 2021, vol.69, no.2

[38] Z. Huang, “Clustering large data sets with mixed numeric and categorical values,” in First Pacific-Asia
Conf. on Knowledge Discovery and Data Mining, Singapore, pp. 21–34, 1997.

[39] J. Ji, T. Bai, C. Zhou, C. Ma and Z. Wang, “An improved k-prototypes clustering algorithm for mixed
numeric and categorical data,” Neurocomputing, vol. 120, no. 1, pp. 590–596, 2013.

[40] J. Ji, W. Pang, Y. Zheng, Y. Z.Wang and Z. Ma, “An initialization method for clustering mixed numeric
and categorical data based on the density and distance,” International Journal of Pattern Recognition and
Artificial Intelligence, vol. 29, no. 7, pp. 1–16, 2015.

[41] K. Deb, A. Pratap, S. Agarwal and T. A. Meyarivan, “A fast and elitist multi-objective genetic
algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[42] X. Li, “A non-dominated sorting particle swarm optimizer for multi-objective optimization,” in Genetic
and Evolutionary Computation Conf., Berlin, Heidelberg, Springer, pp. 37–48, 2003.

[43] M. A. Guzmán, A. Delgado and J. De Carvalho, “A novel multi-objective optimization algorithm
based on bacterial chemotaxis,” Engineering Applications of Artificial Intelligence, vol. 23, no. 3,
pp. 292–301, 2010.

[44] D. A. Van Veldhuizen and G. B. Lamont, “On measuring multi-objective evolutionary algorithm
performance,” in Congress on Evolutionary Computation. La Jolla, CA, USA, 204–211, 2000.


