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Abstract:During the COVID-19 pandemic, the treatment of aortic dissection
has faced additional challenges. The necessary medical resources are in serious
shortage, and the preoperative waiting time has been significantly prolonged
due to the requirement to test for COVID-19 infection. In this work, we
focus on the risk prediction of aortic dissection surgery under the influence
of the COVID-19 pandemic. A general scheme of medical data processing
is proposed, which includes five modules, namely problem definition, data
preprocessing, data mining, result analysis, and knowledge application. Based
on effective data preprocessing, feature analysis and boosting trees, our pro-
posed fusion decision model can obtain 100% accuracy for early postoperative
mortality prediction, which outperforms machine learning methods based on
a singlemodel such as LightGBM,XGBoost, andCatBoost. The results reveal
the critical factors related to the postoperative mortality of aortic dissection,
which can provide a theoretical basis for the formulation of clinical operation
plans and help to effectively avoid risks in advance.

Keywords: Risk prediction; aortic dissection; COVID-19; postoperative
mortality; boosting tree

1 Introduction

With the rapid development of information technology, huge amounts of medical data have
been generated and preserved, which have various sources, diverse types, and potential informa-
tion. It is difficult to use the traditional data analysis methods to process them. The algorithms
and models based on machine learning are needed to mine valuable information.

Most medical data are obtained in the process of the diagnosis and treatment of patients,
including the records of talking with patients, physical parameters, laboratory results and medical
device inspection results. In general, the four main characteristics of medical data are as follows:

1) Polymorphism: There are multiple forms of medical data, including numerical data, text
and images. The data obtained from the physical examination of patients are usually numerical,
computed tomography (CT) and ultrasonography generate images, and in diagnostic records,
there is mainly text. In order to process polymorphic data, we need to consider the different
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characteristics and adopt corresponding methods. For example, the statistical characteristics and
topics are usually considered for text processing [1–3].

2) Timeliness: Most medical data come from the records of medical activities at a certain
time, which may change over time. For example, the results of electrocardiogram and tomography
are typically relative to time. The changes of patients’ vital signs and laboratory results have an
important impact on diagnosis.

3) Incompleteness: It is impossible to completely record all the physical conditions of the
examinees. In addition, the differences of subjective judgment, improper operation and other
factors may also cause incompleteness [4].

4) High dimensionality: Due to the complexity of inspection items and medical information,
medical data generally have high dimensionality. For example, routine blood and urine exami-
nations usually include dozens of examination sub-items, which will produce multiple attribute
dimensions.

Therefore, the specific characteristics of medical data make the mining procedure different
from other data mining. The goal is to find the important factors that can improve diagnosis
accuracy and inform disease treatment, potentially leading to a better prognosis. In recent years,
researchers have carried out some studies in this field and made numerous improvements. Tayefi
et al. [5] established a coronary heart disease prediction model based on a decision tree and found
that serum hs-CRP was strongly associated with coronary heart disease. Gu et al. [6] proposed a
method based on GeoDetector and long short-term memory neural network to predict hand-foot-
mouth disease with good performance. Ricciardi et al. [7] tested several data mining and machine
learning tools, including random forests and gradient boosting trees, on a dataset consisting of
patients with suspected or known coronary artery disease, and the tools showed high accuracy.
With the rapid development of machine learning, methods based on deep learning have been
widely used in image clustering and target recognition [8,9]. Convolutional neural networks have
been widely used in the field of medical image processing, and have surpassed traditional methods
in terms of accuracy [10]. An aortic dissection detection method based on morphology and deep
learning was proposed by Tan et al. [11] and achieved good performance.

Since the beginning of 2020, with the spread of COVID-19 across the world, the use of med-
ical data analysis and mining to assist with diagnosis, prognosis and other medical predictions has
become more prominent. Ayyoubzadeh et al. [12] predicted COVID-19 incidence based on linear
regression and a long short-term memory (LSTM) model, which used data from the Google Trend
website. Keshavarzi [13] used decision trees, random forests, logistic model trees and naive Bayes
classifiers to model the development of COVID-19, from which evidence of geographical signals
was found. Jibril et al. [14] proposed an algorithm to predict the recovery possibility of COVID-
19 patients. The data mining of prescription records could help to protect infected individuals
from severe COVID-19 symptoms and identify potential effective drugs [15]. Marhl et al. [16]
revealed three diabetic factors related to COVID-19. Through meta-regression and analysis based
on decision trees, Toraih et al. [17] revealed that cardiac biomarkers and comorbidities might lead
to increased mortality, severity, and cardiac injury among COVID-19 patients, which was expected
to improve the identification rate of high-risk patients.

Acute type A aortic dissection is a rare but dangerous disease. The incidence is 5–30 cases
per million persons every year. The aortic wall of the human body needs to bear the pressure
of arterial blood and the impact of blood flow. In patients with aortic dissection, the quality
of the aortic wall is decreased. Under the pressure of blood flow, the vascular wall is torn into
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two layers, and the breach spreads rapidly. Once the vessel wall is completely ruptured, massive
hemorrhaging occurs, which is fatal. The mortality is as high as 50% in 24 h and 60%–70% in
48 h. Therefore, timely life-saving surgery is usually required. Even after surgical treatment, the
mortality is still 10% in 24 h and nearly 20% in one month.

During the outbreak of COVID-19, the treatment of aortic dissection has faced more chal-
lenges than usual. One challenge is that medical resources are in serious shortage, which can
prevent patients from being treated in time. Another challenge is that the medical staff face the
risk of COVID-19 infection. Hence, traditional treatments must be implemented differently, such
as by increasing the preoperative preparation time to exclude COVID-19 infection or adjusting the
operation procedure for aortic dissection patients with COVID-19 infection. Therefore, a scientific
and effective method is required to predict the surgery risk, which can help to guide the surgical
process. However, the traditional statistical methods are still widely used at present, which have
deficiencies in accuracy and efficiency [18,19].

In this work, based on data obtained from medical institutions, we focus on the risk prediction
of aortic dissection surgery. The main contributions of this paper are as follows. First, we propose
a general scheme of medical data processing, which includes five modules: problem definition,
data preprocessing, data mining, result analysis and knowledge application. Second, according
to the characteristics of medical data, we propose a reasonable data supplement and feature
selection method. Finally, we propose a model for risk prediction of aortic dissection surgery.
The experimental results show that our proposed model can obtain 100% accuracy to predict the
risk of early postoperative death. It also reveals the critical factors related to the postoperative
mortality, which can provide an effective basis for the formulation of clinical operation.

2 Preliminaries

2.1 Decision Tree
Decision tree is a classical machine learning algorithm. Its main idea is to establish a set of

trees to judge the decision conditions according to the input characteristics of the training set.
Every leaf node only stores one category, whereas non-leaf nodes may contain multiple categories.
The decision process divides the samples into small sets according to attribute values. The goal
of splitting attributes is to make as many subsets of classification as possible belong to the same
category. Therefore, the key problem is how to select the root node and determine the next branch
direction. According to the discreteness or continuity of the output variables, decision trees can
be divided into classification trees and regression trees.

The steps of decision tree construction are as follows:

Step 1: Set all the data as the root node.

Step 2: According to the rule of feature selection, select an input feature that can reduce data
impurity to a branch and generate sub nodes.

Step 3: Judge every child node, and if the preset stop condition is met, continue to Step 4.
Otherwise, return to Step 2.

Step 4: Set the node as a leaf node. If the output variable is discrete, the value with the
largest proportion is the output result of the node. Otherwise, the average, maximum or median
value can be used for output.

A decision tree can be used as the base learner in an ensemble algorithm, and the strong
learning model can be generated by a certain combination strategy. “Bagging” and “boosting”
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are two types of ensemble learning algorithms, which differ in the combination methods of weak
learners. The former usually generates strong learners by connecting multiple weak learners in
parallel, causing the weak learners to be independent of each other. The latter generates strong
learners by connecting multiple weak learners in series, causing the weak learners to be strongly
dependent on each other. The base learner is trained on the initial training set. The weights of
training samples are adjusted according to the performance of the base learner, so the wrong
training samples will receive more attention in the subsequent learners. Then the next learner
is trained based on the adjusted samples. The algorithm iterates in this way until the preset
conditions are reached, at which time the final result is a strong learner.

2.2 XGBoost
XGBoost is a gradient lifting integrated learning method [20] that has the abilities of a tree

learning algorithm and a linear model solver. Parallel computing on a single machine improves
the speed greatly.

If the model consists of K base trees, then the predicted value of the ith sample can be
expressed as follows:

p̂i =
K∑
k=1

fk (xi) (1)

where fk is the kth base tree. The loss function represents the deviation of the model, which is
defined as

Loss=
M∑
i=1

l
(
pi, p̂i

)
(2)

where M is the number of samples.

To reduce the complexity of the model, the regular term Ω is introduced. Then the objective
function can be represented as

Obj=
M∑
i=1

l
(
pi, p̂i

)+ K∑
k=1

Ω (fk) . (3)

In (3),

�(fk)= γTk+
1
2
λ‖wk‖2 (4)

where Tk is the number of leaves, wk is the score of the ith leaf, and γ and λ are the coefficients
of the regular term. After the second-order expansion of the Taylor formula, the objective
function can be simplified as

Obj=−1
2

K∑
k=1

G2
k

Hk+λ
+ γT (5)

where Gk and Hk are respectively the sum of the first derivatives and the sum of the second
derivatives of all samples at the current leaf node. The complexity of the decision tree model is
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determined by the number of leaf nodes and the norm of the vector composed of the weights of
all nodes.

2.3 LightGBM
LightGBM is a highly efficient gradient boosting tree [21] that has the characteristics of fast

training speed and low memory consumption. Compared with XGBoost, the main improvements
of LightGBM are as follows:

1) The strategies of splitting trees are different. XGBoost is based on a level-wise strategy,
which splits all nodes in every layer without any difference. Even nodes with very small gain are
split, which will bring some unnecessary expense. However, LightGBM uses the leaf-wise strategy,
which selects the leaf node with the most current loss reduction to split every time. Therefore, the
loss of the overall model can decrease efficiently.

2) The strategies of processing features are different. XGBoost presorts the features, which
requires a lot of memory to store the sorted matrices of features. Since the orders of multiple
features are generally different, the splitting node of every feature needs to be calculated and
compared to determine the best splitting node. However, LightGBM uses a histogram-based
algorithm. The splitting is based on the bins of features, which can greatly simplify the process
of searching for the best splitting nodes.

3) The strategies of parallel processing are different. Feature parallelism and data parallelism
are introduced into LightGBM. Every worker has the complete data of the training set in
LightGBM. Therefore, the best partition can be identified locally, and the cost of communication
can be significantly reduced. When the amount of data is large and the features are relatively
fewer, the data parallelism strategy can be adopted. In addition, LightGBM uses the reduced
scatter method to merge the histograms of different workers without crossing. Then it finds the
local optimal splitting point and finally synchronizes to the global optimal splitting point.

2.4 CatBoost
CatBoost is an improved algorithm under the framework of gradient boosting tree [22]. It

can deal with categorical features efficiently and reasonably based on the following improvements:

1) It automatically processes categorical features statistically. After calculating the frequency
of a category, super parameters are added to generate some new numerical features.

2) It makes use of the relationship between features and greatly enriches the dimensions of
features.

3) It is based on symmetric tree with fewer parameters and optimizes the algorithm of leaf
value calculation, which can prevent the model from overfitting.

3 Our Method

We construct a general scheme of medical data processing, shown in Fig. 1, which includes
five modules as follows:

1) Problem definition: Based on full communication with medical experts of clinical diagnosis
and surgical treatment, the problem and requirements will be defined. It is necessary to determine
the goal of data mining and the evaluation criteria in this module.

2) Data preprocessing: The data of clinical diagnosis and surgical treatment constitute the raw
database, which usually contains fuzzy, incomplete, and redundant information. Therefore, data
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preprocessing is needed. It will clean the information to ensure the certainty, fill in missing data
to ensure the integrity, and convert the data into a suitable form for further mining.

3) Data mining: It mainly includes model construction, model training and model evaluation.
The commonly used data mining algorithms include artificial neural network, rough set, decision
tree, genetic algorithm, nearest neighbor technology and rule induction. The knowledge, relevance
and rules implied in the data are expected to be mined. The rationality of mining results needs
to be verified by repeated experiments.

4) Result analysis: For the results discovered by data mining, it is necessary to judge their
correctness and comprehensibility. In the medical field, we need to evaluate whether the knowledge
mined is reliable and valuable.

5) Knowledge application: It is necessary to make a detailed plan for the implementation and
control of the conclusion so that it can be further applied to clinical diagnosis, surgical treatment,
and prognosis prediction. At the same time, the algorithms and conclusions will be continuously
improved in practice.

Data 
preprocessingDatabase Data mining

Result
analysis

Clinical 
diagnosis

Surgical 
treatment 

Problem definition

Knowledge application

Figure 1: Scheme of medical data processing

3.1 Data Preprocessing
Clinical data are usually disorganized, so they need to be preprocessed and converted to meet

the quality requirement of data mining. For the unstructured and non-numerical data, we have
finished the work of structuring and digitizing the data during our preliminary work.

Missing data is a common problem of medical data. Especially in the early period of insuffi-
cient information equipment, or when the diagnoses and treatments involve multiple departments,
this problem is even more acute.

According to the distribution of missing values, the data loss can be divided into three
types: missing completely at random (MCAR), missing at random (MAR) and missing not at
random (MNAR). MCAR means that the missing data are random and do not depend on any
other variables. MAR means that the missing data are not completely random and are partially
dependent on other complete variables. MNAR means that the missing data depend on the
incomplete variables themselves. According to the attributes, the missing values may be single
value loss or arbitrary loss. The former means that all the missing values have the same attribute,
and the latter means that the missing values have different attributes.

There are two main methods to deal with missing values: deleting the cases with missing
values or imputing the missing values. For subjective data, since imputation will affect the authen-
ticity and reliability of data, it is generally recommended to delete the cases with missing values.
If the type of missing values is MAR or MANR, the deviation can be reduced by giving different
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weights to the complete data and incomplete data. During data mining, the database usually has
dozens of attributes, so case deletion will lead to many other attribute values being discarded,
which is a great waste of information. Therefore, the idea of imputation with possible values is
produced.

For continuous variables, such as time, mean value imputation is frequently used. In our
dataset, the waiting time before operation (WTBO) is a time variable. The value of WTBO
depends on the complexity of the admission process and preoperative preparation as well the
adequacy of medical resources. Therefore, we can fill the missing value with the average of the
remaining data in the same period by

tfill =
1
N

N∑
i=1

ti (6)

where ti is the value of WTBO in other cases and N is the number of cases during the same
period.

For discontinuous variables without a limited range, such as the units of platelet transfusion
and the units of red blood cell transfusion, it is not reasonable to fill them with the average of all
samples. Instead, the missing values can be filled based on the clustering imputation algorithm.
First, the cases will be clustered. Then the average value of clusters will be calculated and used
to fill the corresponding missing data. The specific steps are described in Algorithm 1.

Algorithm 1: Clustering imputation

Input: sample dataset X = {x1,x2, . . . ,xN}, xn ∈RM , number of clusters K
Output: imputation value for the missing data vfill
1: Select K sample data points as the initial cluster centers C = {c1, c2, . . . , cK}. Initialize cluster
set Ψk =∅ (1≤ k≤K).
2: For every sample data point, calculate the distances with the centers of all clusters.
3: For k= 1: K
4: For n= 1: N
5: dkn =

√∑M
m=1 (ckm−xnm)2

6: end
7: Search the smallest distance dki and add the sample data point xi to the cluster set Ψk =
{Ψk,xi} (1≤ i≤N)

8: Update the cluster center: ck = 1
|Ψk|

∑
n∈Ψk

xn.
9: end
10: Repeat Steps 2 to 9 until the centers of clusters no longer change or the number of iterations
is reached.
11: For the sample data with missing value, calculate the average value of the cluster k as the
imputation value: vfill = 1

L

∑
n∈Ψk

vn, where L is the number of existing cases in the cluster.

3.2 Data Mining
3.2.1 Feature Engineering

Feature engineering is the first step of data mining, which aims to extract good features from
the original data. Statistically, it is demonstrated that there should be an optimal number of
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features when performing a machine learning task. If more features than necessary are added,
the performance of model will be degraded because of the added noise. Therefore, we need to
determine which features are the best, which depends on the size of the provided dataset and
the complexity of the task. We can obtain benefits by feature engineering based on the following
aspects:

1) Too many features may cause dimensional disasters and excessive complexity of the model.
Fewer redundant features mean fewer opportunities to make decisions based on noises. Thus, it
will reduce the overfitting risk of the model.

2) Irrelevant and redundant features may mislead model training. By reducing misleading
data, the accuracy and quality of the model can be improved.

3) The complexity of the algorithm will be reduced if less data are involved. The training
speed will also be accelerated.

4) By feature analysis and selection, the interpretability of model can be increased and the
data visualization can be improved.

The process of feature engineering in our method is shown in Fig. 2. First, the data values
are analyzed. If there is one unique value for one feature, it indicates that the feature does
not contribute to the prediction and can be deleted. Second, the correlations between features
are analyzed to further eliminate redundant features. Finally, the importance of each feature is
calculated, and the important features are selected for prediction.

Correlation
analysis

Original 
features

Importance 
analysis

Unique value 
analysis

Selected 
features

Figure 2: Process of feature engineering

Correlation Analysis Medical data often contain a variety of attributes, some of which are asso-
ciated with others. Data correlation describes the relationship between multiple variables and
attributes in a dataset. For example, one attribute may depend on another attribute, or it may
influence another attribute. The correlation characteristics can help to predict one attribute from
another attribute. Therefore, correlation analysis is a fundamental procedure for modeling.

Generally, there are three types of feature correlation:

1) Positive correlation: One feature increases with the increase of another feature. These two
features are synchronous, and there is a relationship between them.

2) Negative correlation: One feature increases when another feature decreases, and vice versa.
There is a negative effect between these two features.

3) No correlation: There is no relationship between the features, which means that the
variation of one feature will not affect the other features.

The correlation coefficient of features X and Y can be obtained by

r=
∑M

i=1
(
Xi−X

) (
Yi−Y

)
√∑M

i=1
(
Xi−X

)2√∑M
i=1

(
Yi−Y

)2 (7)
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where M is the dimension of features. The range of r is [−1, 1]. Based on the analysis of feature
correlation, the features are selected. If the correlation coefficient is close to 1, it indicates that
there is a clear linear relationship between the two variables. For the features with high correlation,
the redundant features can be discarded.

Importance Analysis Feature importance represents the usefulness or value of every feature in
building a decision tree. If an attribute is used for a key decision, its importance is relatively high.
The importance of a feature is usually assessed in three ways:

1) Gain: Gain indicates the relative contribution of the feature in the model. A higher value
of this metric means the feature is more important for prediction than other features.

2) Cover: Cover refers to the relative number of observations associated with the feature.

3) Frequency: Frequency is the percentage of instances in which this feature occurs in the
model tree.

Gain is the most important attribute related to feature importance. For the objective function
represented by Eq. (5), the gain can be evaluated by

Gain= 1
2

[
G2
L

HL+λ
+ G2

R

HR+λ
− (GL+GR)2

HL+HR+λ

]
− σ (8)

where
G2
L

HL+λ
is the score of the left sub-tree,

G2
R

HR+λ
is the score of the right sub-tree, (GL+GR)2

HL+HR+λ
is

the score of no split and σ is the cost introduced by adding a new leaf node.

3.2.2 Fusion Decision
Our prediction is implemented by fusion decision based on boosting trees, which include

LightGBM, XGBoost, and CatBoost, as shown in Fig. 3. Assuming the output of boosting trees
is Y = {y1,y2, . . . ,yN}, the weighting coefficients for different models are W = {w1,w2, . . . ,wN}, and
the results of fusion decision can be obtained by

z=
N∑
n=1

ynwn (9)

where N is the number of base models. The final prediction labels are judged according to the
fusion results by

Labeli =
{
1, zi ≥ threshold
0, zi < threshold (10)

where i is the ID number of the predicted case, and threshold is the judge condition.

4 Experimental Results and Analysis

Intel (R) Core i7-6500X CPU@2.5 GHz is used for the experiments. The algorithm is
simulated by PyCharm 2018.1.5.

Our dataset includes 206 cases of patients with acute type A aortic dissection who underwent
total arch replacement and frozen elephant trunk treatment by a single surgeon in the Second
Xiangya Hospital of Central South University. Among them, 195 cases were from 2014 through
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2018, and 11 cases were from Jan. through Mar. 2020 during the COVID-19 epidemic in China.
We train the model based on the previous clinical data and identify the key factors related to
postoperative 30-day mortality. Then the risk of postoperative 30-day mortality is predicted.

LightGBM

Feature 
engineering

Database

XGBoost CatBoost

Weighted fusion

Predicted results

Figure 3: Process of fusion decision

For convenience and simplification, some feature variables use abbreviations, and their mean-
ings are listed in Tab. 1.

Table 1: Feature variables and the meanings

Feature variable Meaning

Marfan Whether suffer from Marfan syndrome
RBC transfusion Units of red blood cells transfusion
CRRT before operation Continuous renal replacement therapy

before operation
ALT before operation Alanine amino transferase before

operation
IA or LCCA involved Innominate artery or left common carotid

artery being involved
Total Involved Length of IA or
LCCA

Total involved length of innominate
artery or left common carotid artery

cTnl before operation C troponin I before operation

4.1 Unique Value Analysis
From unique value analysis, we find one feature with a single value. This feature is removed

since it does not contribute to the model. The histogram of unique values is shown in Fig. 4.
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Figure 4: Unique value analysis

4.2 Feature Correlation Analysis
The correlation matrix, shown in Fig. 5, is constructed by correlation coefficients, which

represent the correlations between pairs of features. Different colors represent different correlation
values, which can be used as a basis for subsequent feature selection. As can be seen from
Fig. 5, the correlations between the selected features are not high, which benefits the effective data
cleaning in the data preprocessing stage.

From Fig. 6, it can be seen that more than 10 features have a positive correlation with post-
operative 30-day mortality, including RBC transfusion, plasma transfusion and cardiopulmonary
bypass time. The risk of early death increases with the growth of these positively correlated
features. As shown in Fig. 7, other features have a negative correlation with postoperative 30-day
mortality, including rectal temperature, nasopharyngeal temperature, and operative type. The risk
of early death decreases with the growth of these negatively correlated features, which provides
an effective theoretical basis for the formulation of clinical operation plans.

4.3 Feature Importance Analysis
The feature importance analysis is performed for feature selection. The 10 features with

the highest contributions to early postoperative death are shown in Fig. 8 in order of impor-
tance. RBC transfusion, cardiopulmonary bypass time and rectal temperature are the three most
important factors that affect early mortality, which is consistent with our clinical experience and
provides an effective basis for surgeons to develop the operation strategy. During the worldwide
COVID-19 pandemic, the waiting time before operation is the factor that has been most directly
affected. From Fig. 8, we can conclude that the COVID-19 pandemic has increased the health
risks to aortic dissection patients.
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Figure 5: Feature correlation analysis

The cumulative feature importance is shown in Fig. 9. With the increment of feature number,
the cumulative importance also increases. A total of 13 features are required to achieve the
cumulative importance of 0.99, which should be used for later prediction. Additionally, 25 features
have no contribution and are excluded from prediction.

4.4 Early Death Prediction
We use the trained model to predict the postoperative death risk of patients with aortic dis-

section under the influence of the COVID-19 pandemic. During this period, we perform surgical
treatment on 11 patients. Data records show that the average waiting time before operation has
been increased by 4–20 h during the COVID-19 pandemic.

We use 146 cases for model training and 60 cases for testing. In the test set, 49 cases occurred
between 2014 and 2018, and 11 cases occurred in the pandemic period.
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Figure 6: Positive correlation with postoperative 30-day mortality

Figure 7: Negative correlation with postoperative 30-day mortality

The accuracy of prediction results is listed in the Tab. 2. It can be seen that our proposed
model can obtain the prediction accuracy of 100%, which is more accurate than any other single
model, such as LightGBM, XGBoost, or CatBoost.
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Figure 8: Feature importance analysis

Figure 9: Cumulative feature importance

We have successfully used this model to predict the postoperative death of patients with aortic
dissection during the COVID-19 pandemic, which has effectively helped us to allocate medical
resources reasonably and avoid risks in advance.

Table 2: Accuracy comparison

Model Accuracy

LightGBM 0.8667
XGBoost 0.9833
CatBoost 0.9833
Proposed model 1.0000
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5 Conclusions

In this work, we focus on the risk prediction of aortic dissection surgery. A general scheme of
medical data mining is proposed. Based on feature analysis and selection, our proposed decision
model can obtain a high accuracy to predict the risk of early postoperative death. The critical
factors related to the postoperative mortality of aortic dissection have been revealed, which offers
a certain theoretical and practical value. In future work, we will try to integrate medical images
and additional research into a more complete prognosis prediction algorithm for aortic dissection.
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