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Abstract: The binocular stereo vision system is often used to reconstruct
3D point clouds of an object. However, it is challenging to find effective
matching points in two object images with similar color or less texture. This
will lead to mismatching by using the stereo matching algorithm to calculate
the disparity map. In this context, the object can’t be reconstructed precisely.
As a countermeasure, this study proposes to combine the Gray code fringe
projectionwith the binocular camera as well as to generate denser point clouds
by projecting an active light source to increase the texture of the object, which
greatly reduces the reconstruction error caused by the lack of texture. Due to
the limitationof the camera viewing angle, a one-perspective binocular camera
can only reconstruct the 2.5D model of an object. To obtain the 3D model of
an object, point clouds obtained from multiple-view images are processed by
coarse registration using the coarse SAC-IA algorithm and fine registration
using the ICP algorithm,which is followedby voxel filtering fusion of the point
cloud. To improve the reconstruction quality, a polarizer is mounted in front
of the cameras to filter out the redundant reflected light. Eventually, the 3D
model and the dimension of a vase are obtained after calibration.
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1 Introduction

Artificial intelligence-based computer vision has been replacing human vision in many fields,
because of its excellent performance in describing and recognizing the objective world by process-
ing camera-captured images. Specifically, it is expected to perform like the human visual system to
process three-dimensional (3D) images, achievement of which can be greatly helpful for research
and development in the industry [1–3]. For instance, it can help accurately identify the defective
parts of an object with a high efficiency, which greatly reduces the workload that is originally
done by humans.

As one of the most representative technologies in the field of optical 3D measurement, the
fringe projection technology is favored by various features, including non-contact, high universal-
ity, high resolution, high precision, and high speed [4,5]. Meanwhile, the binocular stereo vision
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and coded light method has been commonly used to reconstruct and measure 3D objects in many
fields (e.g. industrial production, cultural relic protection, and 3D printing) [6–8], and they have
the advantages of low equipment cost and high model accuracy. In this study, the fringe projection
technology is used to reconstruct and measure a 3D object, which is accompanied by analyses
of (1) the principle of binocular camera imaging, calibration, and correction, (2) stereo matching
algorithms, such as the block matching (BM) algorithm and the semi-global stereo matching
(SGBM) algorithm, (3) performances of the integrated binocular camera and Gray code fringe
projection in reconstructing a single perspective model of an object, (4) roles of coarse- and fine-
registration algorithms in generating point clouds, and (5) effects of the integration of sample
consensus initial alignment (SAC-IA) and iterative closest point (ICP) algorithms. Eventually, a
complete 3D model of a vase is established after point cloud fusion processing, followed by the
corresponding reconstruction error analysis.

2 Principle

2.1 Binocular Stereo Vision
The principle of stereo vision technology is to reverse the camera imaging process that

projects 3D points in the real world to a 2D image plane, which can be simply described by the
pinhole imaging model [9], as illustrated in Fig. 1.

Figure 1: Pinhole imaging model

According to the similar relationship of the triangles, the following relationship exists:

Z
f
=− X

X ′ = − Y
Y ′ (1)

where Z is blabla, f is the focal length of the camera, X is blabla, X’ is blabla, Y is blabla, Y’
is blabla, and the sign in the formula indicates the direction, which is positive from left to right.
P (X , Y , Z) and P′ (X ′, Y ′, Z′) are respectively the object space point and the corresponding
image point in the camera coordinate system O−xyz.

There are three coordinate systems, namely the pixel coordinate system, the camera coordinate
system, and the world coordinate system (Fig. 2). Therefore, it is necessary to establish a conver-
sion relationship between the object point and the image point. P (X , Y , Z), P′ (X ′, Y ′, Z′), and
P(u, v) are corresponding point coordinates in the world coordinate system, the camera coordinate
system, and the pixel coordinate system, respectively. The image becomes upright if the imaging
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plane is projected symmetrically in front of the pinhole. In this context, formula (1) can be
rewritten as:

Z
f
= X
X ′ =

Y
Y ′ (2)

Figure 2: The relationship between three coordinate systems

2.2 Calibration
Camera calibration is to calculate the internal and external parameters of the imaging system.

Specifically, the structured light system calibration essentially determines the relationship between
a point in the world coordinate system and the counterpart in the camera coordinate system [9].
A diffuse reflection board is used in this study for calibration (Fig. 3), which has a black and
white checkerboard pattern with 12×9 grids. Each grid size is 20m×20mm. The top right vertex
is selected as the origin Ow of the world coordinate system, the horizontal and longitudinal
sides of the checkerboard are the Xw axis and the Yw axis, respectively, while the Zw axis is
perpendicular to the checkerboard. The three coordinate axes Xw, Yw, and Zw conform to the
right-hand rule. The Z-coordinate of each point on the checkerboard plane is 0. The internal and
external parameter matrices are obtained according to the chessboard camera calibration method
by Zhang et al. [10].

2.3 Stereo Matching
Stereo matching is the key to 3D reconstruction, since it affects directly the accuracy of

the reconstructed 3D model. BM and SGBM algorithms are commonly used for local stereo
matching [11], and the matching units are generally associated with the image features, such as
corners, contour edges, and inflection points. When applying the feature-based stereo matching
algorithm, the first step is to extract the feature regions of the left and right images, while
the second step is to take the left image as the reference and find the matching points on the
corresponding bipolar line in the right image. The sparse disparity map can be obtained after
repeating the above process to find all the feature point pairs.
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Figure 3: Diffuse reflection calibration board

2.4 Structured Light Coding and Decoding
As an active 3D measurement method [12], the coded structured light method is favored by

its high measurement speed, high matching accuracy, and thus suitability for images with few
features. It is able to add some texture information to the measured object and obtain better
stereo matching by projecting a series of coded patterns to the object.

Binary coding is commonly used in structured light, where black is denoted as 0 and white
is denoted as 1. In this way, different stripes can be distinguished in the projected image.
Gray code is developed from, and more reliable than, binary code [13,14]. Assuming that a
binary code can be represented as Bn−1Bn−2 . . .B2B1B0 and its corresponding Gray code as
Gn−1Gn−2 . . .G2G1G0, the transformation relationship between them can be expressed by formula
(3), where Gn−1Gn−2 . . .G2G1G0 and Bn−1Bn−2 . . .B2B1B0 have the same highest bit, and the rest
are the XOR values between the current bit binary code and the previous bit binary code. The
operational symbol ⊕ represents the XOR operation.{
Gn−1 =Bn−1

Gi =Bi+1⊕Bi, i= 0, 1, 2 . . . n− 2
(3)

Compared with binary code, gray code is advantageous in the aspect that only one code value
is different in the corresponding bits between adjacent numbers. As shown in Tab. 1, two bits
in the binary code change their values when 1 becomes 2 in decimal; in contrast, only one bit
changes in the Gray code. Therefore, Gray code has a certain self-correcting ability in the process
of decoding, and correspondingly it has improved error tolerance during coding and decoding.

2.5 Point Cloud Registration and Fusion
In order to reconstruct a complete 3D model, it is necessary to first obtain point clouds

from different angles and then splice multiple overlapping point clouds into a complete 3D model
through point cloud registration and fusion [15,16]. However, the point cloud data of the object
to be constructed are vulnerable to the influences of camera lens distortion, light intensity, and
surface texture. Therefore, it is required to first preprocess the point cloud data before registration
(e.g. point cloud smoothing and filtering).

Point cloud registration is essentially the process of obtaining the rotation and translation
matrices between the source point cloud and the target point cloud.

CT =R ·CS+ t (4)
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Table 1: Binary and gray code comparison

Decimal Binary Gray code

0 000 000
1 001 001
2 010 011
3 011 010
4 100 110
5 101 111
6 110 101
7 111 100

where CT and CS are the target point cloud and the source point cloud, respectively, R is the
rotation matrix, and t is the translation matrix.

Point cloud registration is generally divided into two categories, namely coarse registration
and fine registration. Coarse registration is to find an approximate relationship matrix that can
render the target point clouds and source point clouds in the same coordinate system, whereas
fine registration is to further optimize the relationship matrix when the initial value is known. In
this paper, the SAC-IA algorithm is used for the coarse registration of point clouds [17,18], while
the ICP algorithm is used for the precise registration of point clouds [19].

An average fusion method named voxel filtering is used to keep the integrity and smoothness
of the point cloud model. Specifically, the object space is divided into many 3D voxel grids with
small side lengths, where all points will fall inside. The area with high density has more points
in one voxel grid, whereas the area with low density has fewer points in one voxel grid. The side
length of the voxel grid can be set to ensure that there is approximately one point inside one
voxel grid. The voxel grid is also used for filtering, and the average value of all points in one grid
is used as the new point value. This method can not only merge the overlapping areas, but also
ensure that the density of the point cloud after fusion tends to be consistent.

3 Experiments

The experimental platform consists of a binocular camera with a resolution of 1280× 720
pixels, a projector with a maximum resolution of 1980×1080 pixels, a diffuse reflection calibration
plate, a rotating turntable, a black background cloth, and a laptop. A small vase (127.0 mm high,
72.0 mm wide, and 18.0 mm bottle mouth) is selected for 3D reconstruction and measurement
(Fig. 4). Experiment steps are as follows:

Step 1: Image calibration. The binocular camera calibration algorithm from the OpenCV
library is used, and it requires the calibration images to be taken from different angles. A total
of 13 images are taken by the left camera to solve the internal and external parameter matrices
of the left camera, and the same operation is carried out for the right camera (Fig. 5).



1844 CMC, 2021, vol.69, no.2

After calibration, the camera parameter matrices Kl and Kr, distortion coefficients Dl and Dr,
rotation matrices Rl and Rr and translation vectors tl and tr of the left and right cameras are
obtained:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Kl =

⎡
⎢⎣1446.20 0 692.80
0 1447.26 400.42
0 0 1

⎤
⎥⎦

Kr=

⎡
⎢⎣1450.53 0 661.14
0 1451.76 386.93
0 0 1

⎤
⎥⎦

(5)

⎧⎪⎨
⎪⎩
Dl =

[
0.0645 −0.0387 0.1786 6.2745e− 04 −9.5160e− 04

]T
Dr =

[
0.0414 0.2708 −1.2122 3.4274e− 04 −6.6006e− 05

]T (6)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rl =

⎡
⎢⎣ 9.964e− 01 −4.599e− 02 7.093e− 02

2.222e− 02 9.520e− 01 3.052e− 01
−8.156e− 02 −3.025e− 01 9.496e− 01

⎤
⎥⎦

Rr=

⎡
⎢⎣ 9.971e− 01 −4.205e− 02 6.326e− 02

2.018e− 02 9.495e− 01 3.131e− 01
−7.323e− 02 −3.109e− 01 9.476e− 01

⎤
⎥⎦

(7)

⎧⎪⎨
⎪⎩
tl =

[
−7.631e+ 01 −7.725e+ 01 4.938e+ 02

]T
tr =

[
−1.409e+ 02 −7.266e+ 01 4.926e+ 02

]T (8)

Two images of non-coplanar alignment are corrected to conform to coplanar alignment.
Fig. 6 shows the images of the chessboard before and after the correction.

Figure 4: Experiment platform
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Figure 5: Calibration process diagram of left and right camera

Figure 6: The images of chessboard before and after correction

Figure 7: Point cloud maps obtained by BM and SGBM algorithms

Step 2: Image matching. The feature areas of the left and right images are first extracted, and
then the polar lines are taken in sequence. For each feature point in the left image, the point on
the polar line in the right image that conforms to the given matching threshold is identified as the
matching point. The above process is repeated to find all the matching points of the binocular
image to obtain a sparse disparity map. The experiment proves that the BM algorithm is favored
by rapid image processing, but the accuracy is poor. In contrast, the SGBM algorithm takes a
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slightly longer time than the BM algorithm, but the accuracy is greatly improved. The disparity
map is then transformed into the 3D space, and the point cloud map under one perspective is
obtained (Fig. 7).

Step 3: Coding and decoding. A vase is projected by Gray code patterns in vertical and
horizontal directions (Fig. 8). It is necessary to first decode the Gray code in two directions
separately and then merge the decoded images to obtain a whole image.

Figure 8: Gray code pattern projected on the vase

Figure 9: Point cloud image before and after registration
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Step 4: Point cloud registration. The decoding results of the left and right images are used to
reconstruct the point clouds. The rotating platform is to get the multi-viewpoint clouds. SAC-IA
and ICP algorithms are used to register the point cloud data. Fig. 9 shows the point cloud images
before and after registration.

Step 5: Point cloud fusion. Since the distance between the camera and the object is almost
constant, the density of the object point cloud is basically the same. Therefore, a fixed side length
of the voxel grid, which is 1.0 mm, is suitable for all the point clouds in this experiment, with
which the obtained 3D point cloud model has a uniform density (Fig. 10).

Figure 10: Comparison of point clouds before and after fusion

4 Results

In order to determine the accuracy of the reconstruction, it is necessary to measure the
reconstructed 3D model and compare it with the actual vase. A polarizer is mounted in front of
the cameras to filter out the redundant reflected light, which can help improve the reconstruction
quality. The measurement results of the 3D model are shown in Fig. 11, and the comparison
between the model and the actual vase is shown in Tab. 2. In general, the reconstruction errors for
vase height and width are less than 1 mm in all groups no matter whether the polarizer is place.
However, the placement of the polarizer improves the reconstruction error of the vase mouth
from > 1 mm to <1 mm. The object reconstruction and measurement accuracy can achieve the
millimeter level, which should be improved in the next step.
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Figure 11: Measurement results of reconstructed vase model

Table 2: Comparison table of measurement results

Measured parameters Vase height (mm) Vase width (mm) Vase mouth diameter (mm)

Actual value 127.00 72.00 18.00
Group 1 without polarizer 127.22 71.27 19.15
Group 2 without polarizer 127.83 72.92 19.24
Group 3 without polarizer 127.68 71.05 18.89
Group 1 with polarizer 127.21 72.37 18.18
Group 2 with polarizer 127.47 72.34 18.26
Group 3 with polarizer 127.34 72.61 18.12

5 Conclusion

In this study, the principle of the binocular stereo vision is first described, followed by the
calibration of the binocular camera, the acquisition of internal and external parameter matrices
of the cameras, the generation of the disparity map and point cloud map of the vase based on the
stereo matching algorithm, and the investigation into the registration and fusion methods for the
point cloud. Experiment results show that the reconstructed 3D model of a vase has a satisfactory
performance, which can meet the need for rapid measurement of an object.
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