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Abstract: Recently, implementation of Battery Energy Storage (BES) with
photovoltaic (PV) array in distribution networks is becoming very popular in
overall theworld. IntegratingPV alone in distributionnetworks generates vari-
able output power during 24-hours as it depends on variable natural source. PV
can be able to generate constant output power during 24-hours by installing
BES with it. Therefore, this paper presents a new application of a recent
metaheuristic algorithm, called SlimeMould Algorithm (SMA), to determine
the best size, and location of photovoltaic alone or with battery energy storage
in the radial distribution system (RDS). This algorithm is modeled from the
behavior of SMA in nature. During the optimization process, the total active
power loss during 24-hours is used as an objective function considering the
equality and inequality constraints. In addition, the presented function is
based on the probabilistic for PV output and different types of system load.
The candidate buses for integrating PV and BES in the distribution network
are determined by the real power loss sensitivity factor (PLSF). IEEE 69-bus
RDS with different types of loads is used as a test system. The effectiveness
of SMA is validated by comparing its results with those obtained by other
well-known optimization algorithms.

Keywords: Slime mould algorithm; optimization; distribution networks;
renewable energy; uncertainty

1 Introduction

Most of electrical energy around the world are coming from fossil fuel to meet the required
electrical demand [1]. The utilization of fossil fuels harms the environment and lead to global
warming and air pollution. Also, the electrical loads are increasing gradually due to world
population growth and technology development that led to increasing in system power losses.
These losses are occurred with percent 70% in the secondary and primary distribution system and
with percent 30% in sub transmission and transmission lines [2]. Therefore, integrating renewable
sources (RSs) in distribution networks is the best solution for decreasing the system power loss
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and support power to the load with clean and sustainable energy compared to fossil fuel [3]. Most
types of RSs that are used in power system are hydropower, biomass, photovoltaic (PV) and wind
turbine [4].

PV converts solar energy into electrical energy in a silent way, so installing PV in distribution
system has increased around the world [3]. PV alone is non-dispatchable source as PV output
depends on variable source (sun) [5,6]. Therefore, BES should be inserted with PV to convert
PV into dispatchable source [7]. As long as PV output is low or zero during 24-hours, BES is
capable of supplying active power to the system [8]. Therefore, installing PV with BES in RDS
decreases the system losses, increases the system capacity, and improves the system voltage. The
best locations (buses) up to fifty percent of system buses for integration PV with BES in RDS
are obtained using RLSF. The presented problem formulation is the real losses of the system as
single objective function.

SMA can be classified as one of recent metaheuristic algorithms that is created from the
behaviors of slime moulds in nature [9]. In SMA, there are weights are used to model the negative
and positive feedback of slime mould when searching for food. SMA has an efficient exploration
and exploitation phases to determine the best solution with minimum search agent. SMA has a
feedback behavior which enhances the characteristic of SMA to avoid the local solutions and go
to the global results so far. SMA is used to obtain the optimal allocation of PV with BES in
RDS. Metaheuristic algorithms are more popular because of their effectively in solving difficult
problems. Many types of metaheuristic algorithms are applied to determine the optimal planning
of PV with BES in RDS such as Genetic algorithm (GA) which is used to determine the sizing of
BES with sizeable PV in RDS to minimize the system power loss [10], Linear programming (LP)
is used to determine the energy storage dispatch for PV with BES connected in a grid [11], whale
optimization algorithm (WOA) for optimal planning of BES in RDS for loss reduction has been
presented in [12], grey wolf optimizer algorithm (GWO) for optimal allocation of BES in RDS
to minimize the total annual cost of the system has been presented in [13], Artificial Bee Colony
(ABC) for optimal placement and sizing of PV and electric vehicle in RDS for loss minimization
has been presented in [14].

The main contributions of this work can be summarized in the following points:

– A new application of a recent metaheuristic algorithm called Slime Mould Algorithm
(SMA) is proposed to determine the best locations and sizes of PV and BES, considering
the probabilistic of PV generation and different types of system load.

– The optimal allocations of PV and BES are obtained with the aim of achieving the
maximum reduction in the total active power losses.

– The obtained results show that integration of PV and BES in RDS reduces the system
power loss, enhances the system voltage, and increases the system capacity.

– The simulation results also prove that integration of PV with BES gives better results than
integration of PV alone in RDS.

This paper can be divided into subsection as follows: The presented problem can be formu-
lated in Section 2, modeling of load and PV with BES is offered in Section 3, the sensitivity is
discussed in Section 4, Section 5 presents the presented algorithm, Section 6 discusses the obtained
results, and Section 7 presents the conclusion.
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2 Mathematical Problem

Fig. 1 represents a section of two nodes in RDS.

PL,1+ JQL,1 PL,2+ JQL,2
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Figure 1: Representation of two buses in main feeder with PV and BES

Forward-backward sweep algorithm is presented to calculate the power flows of RDS [15]. In
backward direction, the reactive and real power can be obtained as follows:

Pu =Pu+1+PL,u+1 +Ru,u+1

(
(Pu+1+PL,u+1)

2+ (Qu+1 +QL,u+1)
2

|Vu+1|2
)

(1)

Qu =Qu+1+QL,u+1 +Xu,u+1

(
(Pu+1+PL,u+1)

2+ (Qu+1+QL,u+1)
2

|Vu+1|2
)

(2)

where, Pu and Pu+1 represent the active power behind bus (u) and bus (u+1), respectively. Xu,u+1
and Ru,u+1 represent the reactance and resistance of the branch among bus (u) and bus (u+1),
respectively. Qu and Qu+1 are the reactive power behind bus (u) and (u+1), respectively. QL,u+1
and PL,u+1 represent the reactive and active loads at bus (u+1), respectively.

In forward direction, the voltage magnitude of bus (u+1) is obtained as follows:

Vu+1

V2
u+1 =V2

u − 2(PuRu,u+1+QuXu,u+1)+ (R2
u,u+1+X2

u,u+1)
(P2

u+Q2
u)

V2
u

(3)

here, Vu and Vu+1 represent the voltage values at bus (u) and bus (u+1), respectively.

System power flows will be changed as PV with BES will inject active power to the distribu-
tion system. Consequently, system power flow equations is updated as shown in Eqs. (4) and (5).

Pu =Pu+1+PL,u+1 +Ru,u+1

(
(Pu+1+PL,u+1)

2+ (Qu+1 +QL,u+1)
2

|Vu+1|2
)
−P(PV+BES) (4)
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Qu =Qu+1+QL,u+1 +Xu,u+1

(
(Pu+1+PL,u+1)

2+ (Qu+1 +QL,u+1)
2

|Vu+1|2
)

(5)

The presenting mathematical problem is defined as shown in Eq. (6).

F =Min

(
24∑
t=1

PLoss(t)

)
(6)

where, PLoss(t) is the total active power loss at time (t).

This function is presented under equality and inequality constraints as shown next [16].

2.1 Equality Constraints
The power supplied by substation and PV with BES must be equal to the system loss and

system load demand as follows:

Po+
N∑
L=1

PPV+BES(L)=
NB∑
r=1

PL(r)+
NBr∑
e=1

PLoss(e) (7)

Qo =
NB∑
r=1

QL(r)+
NBr∑
e=1

QLoss(e) (8)

where, Po and PL are the active power injection from substation and active load demand,
respectively. Qo and QL are reactive power injection from substation and reactive load demand,
respectively. PPV+BES is the power supplying by PV and BES and QLoss is the reactive loss of the
system. NB and NBr are the total number of buses and branches in RDS, respectively. N is the
total number PV with BES in RDS.

2.2 Ineuality Constraints
2.2.1 System Voltage Limits

The bus voltage in RDS should be kept between the low and high operating voltage, as given
in Eq. (9).

VD ≤VB ≤ c (9)

where, VB is the voltage magnitude of bus B that should be obtained between minimum value of
VD and maximum value of VU

2.2.2 PV with BES Sizing Limits
The sizing limits of PV and BES are given as follows:

N∑
L=1

PPV+BES(L)≤
⎛
⎝ NB∑
r=1

PL(r)+
NBr∑
e=1

PLoss(e)

⎞
⎠ (10)

PPV ,D ≤PPV ,B ≤PPV ,U (11)

EBES,D ≤EBES,B(t)≤EBES,U (12)
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where, PPV ,U and PPV ,D represent the maximum and minimum magnitudes of PV output power,
respectively. EBES,U and EBES,D represent the upper and lower magnitudes of energy stored in
BES.

2.2.3 Branches Limits
Lines current should not exceed the limit values [17].

IW ≤ Imax,W W = 1, 2, . . . . . . .,NBr (13)

where, IW and Imax,W represent the actual and limit value of current in branch (w), respectively.

3 Modeling Uncertainty for Load and PV with BES

3.1 Modeling Uncertainty for Load
The uncertainties of system loads can be modeled as different load patterns (residential,

industrial and commercial loads) during 24-hours daily, as shown in Fig. 2 [18]. This model is
based on a time-varying during 24-hours and voltage-dependent load [19]. Therefore, the system
load modeling can be represented by Eqs. (14) and (15).

PB(t)=PL,B(t)×Vnac
B (14)

QB(t)=QL,B(t)×Vnre
B (15)

where, QB and PB represent the reactive and active power injections at bus (B), QL,B and PL,B
represent the reactive and active loads at bus (B), nac is the active load voltage exponent that equal
to 0.18, 1.51 and 0.92 for industrial, commercial and residential load modeling, respectively [19].

Figure 2: Modeling uncertainty for system loads during 24-hours daily

3.2 Modeling Uncertainty for PV Output
PV generates electricity from solar irradiance during 24-hours. From Fig. 3, the modeling

uncertainty for PV output is created by PDF [20]. The standard deviation and mean of solar
radiation are given by [21].

FB(r)=
⎧⎨
⎩

Γ (φ +ϕ)

Γ (φ)Γ (ϕ)
r(φ−1)(1− r)(ϕ−1)

0

0≤ r≤ 1, φ,ϕ ≥ 0
otherwise (16)
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ϕ = (1− e)
(
e(1+ e)
a2

− 1
)
, φ = e×ϕ

1− e
(17)

where, FB(r) represents the the function of Beta distribution for solar radiation (r). φ and ϕ

represent the variables of FB(r); e and a are the standard and mean deviation of (r).

Figure 3: Modeling uncertainty for PV output during 24-hours daily

The output of PV depends on the solar irradiance and air temperature, so the specification
of PV panel are given by [21]. The maximum power of PV can be determined by Eq. (18).

Pmax(r)= n×R×K × d

R= VMP× IMP

Vop× Isc
(18)

K =Vop−Kvo×Tcell (19)

d = r[Isc+Kcu× (Tcell − 25)] (20)

Tcell =Tamb+ r
(
no− 20
0.8

)
(21)

where, Kvo and Kcu are the voltage and current temperature coefficient in voltage per Celsius
and ampere per Celsius, respectively. Tamb and Tcell are the air and cell temperature in Celsius,
respectively. n and no are the total number of PV modules and the nominal temperature of cell
in Celsius, respectively. Isc and Vop and are the short circuit current and the open-circuit voltage,
respectively. Pmax(r) is the upper value of PV output at solar radiation (r). The average power of
PV (PPV ,g) for a period (h) is then calculated as follows:

PPV ,g =
∫ h

0
Pmax(rh)fB(rh)drh=

24∑
h=1

Pmax(rh)fB(rh)Δrh (22)



CMC, 2021, vol.69, no.2 1469

3.3 Battery Energy Storage Modeling
PV alone can be considered as non-dispatchable source, so BES is installed with PV to convert

PV into a dispatchable source. BES is charged when PV output is more than the required output
power and is discharged when PV output is zero during night or less than the required output
power. The energy that is stored in BES at bus (B) during 24-hours can be determined by Eqs. (23)
and (24) [20].

EBES,u(h)=EBES,u(h− 1)−
PdcBES,u

ηdc
Δh, for PBES,u(h) > 0 (23)

EBES,u(h)=EBES,u(h− 1)− ηcPcBES,u(h)Δh, forPBES,u(h)≤ 0 (24)

ηBES = ηc× ηdc (25)

where, PdcBES,u and PcBES,u are the discharging and charging power of BES, respectively. ηdc and

ηc are the discharging and charging efficiencies of BES, respectively. �h and ηBES are the time
period and the efficiency of battery and the time duration, respectively.

3.4 Sizing of BES with PV
The locations and sizes of PV with BES are obtained by the presented algorithm. The

installation bus of BES is identical to the bus of PV. The discharging/charging energies of BES
during a time (h) is determined by Eqs. (26) and (27) [21].

EdcBES,u =
∫ h

0
PdcBES,u(h)dh=

24∑
h=1

PdcBES,u(h)Δh (26)

EcBES,u =
∫ h

0
PcBES,u(h)dh=

24∑
h=1

PcBES,u(h)Δh (27)

The combined energy of PV with BES E(PV+BES),u and the energy of PV EPV ,u at bus (u)
can be evaluated as follows:

E(PV+BES),u =EgPV ,u+EdcBES,u (28)

EPV ,u =EgPV ,u+EcBES,u (29)

where, EdcBES,u and EcBES,u are the discharging and charging energies of BES and EgPV ,u is the

injected energy from PV to the grid. Also, the discharging energy of BES can be determined using
its charging energy and round-trip efficiency as shown in Eq. (30).

EdcBES,u = ηBESE
c
BES,u (30)

Consequently, Eq. (29) can be updated as follows:

EPV ,u =
E(PV+BES),u− (1− ηBES)EGrPV ,u

ηBES
(31)
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PPV ,u=Kn
PVEPV ,u (32)

Kn
PV = PnPV

EnPV
(33)

where, n represents the PV module unit.

The high value of PV can be evaluated by Eq. (34).

PPV ,u=Kn
PV

(
E(PV+BES),u− (1− ηBES)EGrPV ,u

ηBES

)
(34)

where, EnPV and PnPV are the energy from PV and the maximum power of PV, respectively.

The BES energy is determined by Eq. (35).

EcBES,u=
E(PV+BES),u−EgPV ,u

ηBES
(35)

4 Real Power Loss Sensitivity Factor (PLSF)

PLSF measures the sensitivity of all system buses to the active power injection and its effects
on the active power loss. Therefore, this paper determines the best buses for installing PV with
BES up to 50% of system buses by Eq. (36) [22]. The best bus are 57, 58, 7, 6, 61, 60, 10, 59,
55, 56, 12, 13, 14, 54, 15, 53, 8, 64, 49, 11, 9, 17, 65, 16, 5, 48, 21, 19, 41, 63, 68, 34, 20 and 62
as shown in Fig. 4.

PLSF(2)= ∂PLoss(1, 2)
∂P2

=R1,2

(
2P2

|V2|2
)

(36)

Figure 4: PLSF for IEEE 69-bus RDS
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5 Slime Mould Algorithm (SMA)

SMA can be classified as one of recent metaheuristic algorithms that is created from the
behaviors of slime moulds in nature [9]. Slime mould searches for quality food through the odor
in the air. The behavior mechanism of slime mould is based on contraction mode. Slime mould
consists of venous tissues and the width of vein will be increased as long as this vein is closer
to the higher concentration of quality food. When a vein reaches to the higher concentration of
food, the biological oscillator generates waves to change the cytoplasmic flow to this vein and its
width will be increased. The steps of SMA for determining the best position and size of PV with
BES considering uncertainty in RDS is explained in the following steps.

Step 1 : Read system data, number of search agents (N) and maximum iteration (T).
Step 2 : Generate initial population of slime mould between the lower (lo) and upper (up)
controlled variables by Eq. (37).

J(O,Q)= rand(up(O,Q)−LO(O,Q)+LO(O,Q)) (37)

where, Q is the number of control variables (dimensions) and r and represents a random
value between value of 0 and 1.
Step 3 : the produced population represents the slime mould position that can be formu-
lated as follows:

J =

⎡
⎢⎢⎢⎣
J1,1 · · · J1,D−1 J1,D
J2,1 · · · J2,D−1 J2,D
...

. . .
...

...
JN,1 · · · JN,D−1 JN,D

⎤
⎥⎥⎥⎦ (38)

where, J is the position of slime mould.
Step 4 : Evaluate the fitness for all locations of slime mould in all swarms and obtain the
best and worst fitness and the best position of slime mould.
Step 5 : Calculate the weight (w) of each position of slime mould as follows:

w=

⎧⎪⎪⎨
⎪⎪⎩
1+ r× log

(
bf −S(i)
bf −wf

+ 1
)

condition

1− r× log
(
bf −S(i)
bf −wf

+ 1
)
, others

(39)

where, S(i) is the fitness each position of slime mould for search agents and condition refer
to that S(i) ranks first half of search agents
Step 6 : Update the position of slime mould as follows:

Jnew =
⎧⎨
⎩

rand× (ub− lb)+ lb,
Jb(t)+ vb× (w× JA(e)− JB(t)),

vc× J(t),

rand < z
r< p
r≥ p

(40)

r= rand, (41)

p= tanh |S(i)−DF |, (42)

vb= [−a,a], (43)

a= arctanh
(
−
( e
E

)
+ 1

)
, (44)
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vc= [−1, 1], (45)

where JA and JB are the position of slime mould that are selected randomly from the
search agents. DF is the best fitness and z is a parameter that equal to 0.03. e and E
represent the current iteration and the final iteration, respectively vb represents a value
which oscillates between (-a) and (a) and reaches to zero at the maximum iteration. vc is
a value that oscillates between (−1) and (1) and reaches to zero at the maximum iteration.
Step 7 : Back to step 4 until the final iteration is reached.
Step 8 : Obtain the best location of slime mould (sizes and positions of PV alone or with
BES).

6 Results and Discussion

IEEE 69-bus RDS consists of sixty nine buses with reactive load of 2694.6 kvar and active
load of 3801.5 kw as shown in Fig. 5 [23]. In this paper, the simulation results are obtained under
base values of 10 MVA and 12.66 kv. The system constraints and the used parameter algorithm
are given in Tab. 1.

Figure 5: IEEE 69-bus RDS with different load types

Table 1: The used parameters

The used parameters The proposed value

Number of slime mould 50
Maximum iteration 200
Voltage limits 0.9 pu ≤Vi ≤ 1.05 pu
Limits of active output generation from PV with BES 0.3 MW ≤ PPV+BES,i ≤ 3 MW
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Without integration PV alone or with BES in RDS, the power loss is 1867.8 kw with
minimum voltage of 0.9110 pu at bus 65 during 24-hours as shown in Fig. 6. The system power
loss is reduced to 1521.2 kw by integrating one PV in RDS with size of 1288.164 kw at bus 61
as shown in Fig. 7. From Fig. 8, the system power loss is reduced to 1481.7 kw by integrating
two PV alone in RDS with sizes of 1216.7 kw at bus 61 and 416.3 kw at bus 17. From Fig. 9,
integrating three PV alone reduces the system power loss to 1474.5 kw with sizes of 1168.9 kw,
302.2 kw and 398.5 kw at buses 61, 17 and 11, respectively. From obtained results, the reduction
in real power loss by installing one, two and three PV alone in RDS are 18.6%, 20.7% and 21.1%,
respectively. From Tab. 2, the total injection energies from one, two and three PV to the system are
9695.3 kwh, 12290.9 kwh and 14070.8 kwh, respectively. Installing PV with BES achieves better
results than integrating PV alone in RDS as shown in Tabs. 2 and Tab. 3. Integrating one, two
and three PV with BES minimize the system losses to 712.025 kw, 615.13 kw and 596.661 kw,
respectively. From obtained results, the reduction in real power loss by installing one, two and
three PVwith BES in RDS are 61.9%, 67.1% and 68.1%, respectively. From Figs. 10 and 11, the
sizes of PV and BES for installing one PV with BES in RDS are 3797.574 kw and 2772.178
kw at bus 61, respectively. From Tab. 3, integrating one PV with BES, the total energy of PV
is 28582.25 kwh and the total injection energy from PV to the grid is 10780.55 kwh. Also, the
charging and discharging energies of BES by integrating one PV with BES in RDS are 17801.71
kwh and 13676.68 kwh, respectively.

Figure 6: System voltage without integrating PV and BES in distribution network

Figure 7: Output of integrating 1-PV alone in distribution network
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Figure 8: Output of integrating 2-PV alone in distribution network

Figure 9: Output of integrating 3-PV alone in distribution network

Table 2: Simulation results of SMA algorithm for integrating PV alone in distribution network

Item Position (size(kw)) PV Energy (kwh) Total Energy of
PV (kwh)

Ploss (kw)

Without PV - - 1867.829
1-PV 61(1288.164) 61(9695.3) 9695.3 1521.2
2-PV 61(1216.7)

17(416.3)
61(9157.5)
17(3133.4)

12290.9 1481.7

3-PV 61(1168.9)
17(302.2)
11(398.5)

61(8797.3)
17(2274.3)
11(2999.2)

14070.8 1474.5
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Table 3: Simulation results of SMA algorithm for installing PV with BES in distribution network

Item Position
(size(kw))

PV Energy
(kwh)

EPVtogrid
(kwh)

Charging
Energy
(kwh)

Discharging
Energy
(kwh)

Ploss (kw)

Without PV and BES - - - - - 1867.829
1 PV 61(3797.574) 28582.25 10780.55 - - 712.025

BES 61(2772.178) - - 17801.71 13676.68
2 PV 61(3620.606)

17(1037.043)
61(27059.54)
17(7805.258)

61(10038.15)
17(3270.089)

- - 615.13

BES 61(2667.004)
17(690.4277)

- - 61(17021.39)
17(4535.169)

61(13077.18)
17(3474.439)

3 PV 61(3499.238)
17(745.5597)
11(1016.864)

61(26336.85)
17(5611.419)
11(7653.377)

61(9852.457)
17(2361.514)
11(3171.519)

- - 596.661

BES 61(2602.622)
17(499.0399)
11(668.2362)

- - 61(16484.39)
17(3249.905)
11(4481.858)

61(12664.61)
17(2489.786)
11(3433.598)

Figure 10: Output of PV for integrating 1-PV with 1-BES in distribution network

Figure 11: Output of BES for integrating 1-PV with 1-BES in distribution network
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From Fig. 12, the sizes of PV for two PV with BES are 3620.606 kw and 1037.043 kw at
buses of 61 and 17, respectively. From Figs. 13 and 14, the sizes of BES for two PV with BES
are 2667.004 kw and 690.4277 kw at buses of 61 and 17, respectively. From Tab. 3, the charging
energies of BES for two PV with BES are17021.39 kwh and 4535.169 kwh at buses 61 and 17,
respectively. The discharging energies of BES for two PV with BES are13077.18 kwh and 3474.439
kwh at buses 61 and 17, respectively. The energies of PV by installing two PV with BES are
27059.54 kw and 7805.258 kw and the injection energies from PV to the grid are 10038.15 kw
and 3270.089 kw at buses of 61 and 17, respectively. From Fig. 15, the sizes of PV for three PV
with BES are 3499.238 kw, 745.5597 kw and 1016.864 kw at buses 61, 17 and 11, respectively.
From Figs. 16–18, the sizes of BES for three PV with BES are 2602.622 kw, 499.0399 kw and
668.2362 kw at buses 61, 17 and 11, respectively. By installing three PV with BES, the energies of
PV are 26336.85 kwh, 5611.419 kwh and 7653.377 kwh at buses 61, 17 and 11, respectively. Also,
the injection energies from PV to the grid for three PV with BES are 9852.457 kwh, 2361.514 kwh
and 3171.519 kwh at buses 61, 17 and 11, respectively. The charging energies of BES for three
PV with BES are 16484.39 kw, 3249.905 kw and 4481.858 kw at buses 61, 17 and 11, respectively.
From Tab. 3, the discharging energies of BES for three PV with BES are 12664.61 kw, 2489.786
kw and 3433.598 kw at buses 61, 17 and 11, respectively. The size and energy of a combination
of PV and BES are greater than the size and energy of PV alone as shown in Tabs. 2 and 3. In
this paper, the comparative study is presented to determine the effectivness of SMA to minimize
the system losses as objective function without uncertainty. From Tab. 4, SMA is able to obtain
the best results compared with other algorithms. Without uncertainty, integration of one, two and
three PV alone in RDS reduces the system losses to 83.2224 kw, 71.6745 kw and 69,4255 kw,
respectively. The size of one PV is 1872.7 kw at bus 61 and the sizes of two PV are 1781.6 kw
at bus 61 and 531.6 kw at bus 17. From Tab. 4, the best result is obtained by integrating three
PV with sizes of 1718.9 kw at bus 61, 527.1 kw at bus 11 and 380.5 kw at bus 18.

Figure 12: Output of PV for integrating 2-PV with 2-BES in distribution network
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Figure 13: Output of BES1 for integrating 2-PV with 2-BES in distribution network

Figure 14: Output of BES2 for integrating 2-PV with 2-BES in distribution network

Figure 15: Output of PV for integrating 3-PV with 3-BES in distribution network



1478 CMC, 2021, vol.69, no.2

Figure 16: Output of BES1 for integrating 3-PV with 3-BES in distribution network

Figure 17: Output of BES2 for integrating 3-PV with 3-BES in distribution network

Figure 18: Output of BES3 for integrating 3-PV with 3-BES in distribution network
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Table 4: Simulation results of SMA algorithm for installing PV alone without uncertainty in RDS

Item SMA NPO MFO [24] Hybrid [25]

1-PV alone
2-PV alone
3-PV alone

83.2224
71.6745
69.4255

83.2224
71.6745
69.4266

83.224
71.679
-

83.372
71.82
69.52

7 Conclusion

This paper has proposed a new application of Slime Mould Algorithm to deetermine the
optimal allocation of PV alone or with BES considering uncertainty in distribution network. The
simulation results proved that SMA has an effective feedback to avoid the local solution and go to
the global solution so far. BES is installed with PV to convert PV from non-dispatchable source
into dispatchable source. Therefore, BES is used to inject energy to the grid when PV output is
low or during the night. The total active power loss during 24-hours is used as single objective
function under uncertainty for PV output and system load. The system load is modeled for three
types of load that can be defined as residential, industrial and commercial loads. PLSF is used to
determine the best buses for installing PV and BES in RDS. From obtained results, the reduction
in real power loss by installing one, two and three PV alone in RDS are 18.6%, 20.7% and 21.1%,
respectively. Also, the reduction in real power loss by installing one, two and three PVwith BES
in RDS are 61.9%, 67.1% and 68.1%, respectively. From simulation results, installing multiple
PV alone or with BES achieves superiorsolutions than installing one PV alone or with BES in
RDS. Also, integration of PV with BES achieves superior solutions than installing PV alone in
distribution network. Integration of PV and BES reduces the system power loss, increases the
system capacity and enhances the system voltage.
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