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Abstract: Physical health plays an important role in overall well-being of the
human beings. It is the most observed dimension of health among others such
as social, intellectual, emotional, spiritual and environmental dimensions.Due
to exponential increase in the development of wireless communication tech-
niques, Internet of Things (IoT) has effectively penetrated different aspects
of human lives. Healthcare is one of the dynamic domains with ever-growing
demands which can be met by IoT applications. IoT can be leveraged through
several health service offerings such as remote health and monitoring ser-
vices, aided living, personalized treatment, and so on. In this scenario, Deep
Learning (DL) models are employed in proficient disease diagnosis. The cur-
rent research work presents a new IoT-based physical health monitoring and
management method using optimal Stacked Sparse Denoising Autoencoder
(SSDA) technique i.e., OSSDA. The proposed model utilizes a set of IoT
devices to collect the data from patients. Imbalanced class problem poses
serious challenges during disease diagnosis process. So, the OSSDA model
includes Synthetic Minority Over-Sampling Technique (SMOTE) to generate
artificial minority class instances to balance the class distribution. Further, the
hyperparameter settings of the OSSDA model exhibit heavy influence upon
the classification performance of SSDA technique. The number of hidden
layers, sparsity, and noise count are determined by Sailfish Optimizer (SFO).
In order to validate the effectiveness and performance of the proposed OSSDA
technique, a set of experiments was conducted on diabetes and heart disease
datasets. The simulation results portrayed a proficient diagnostic outcome
from OSSDA technique over other methods. The proposed method achieved
the highest accuracy values i.e., 0.9604 and 0.9548 on the applied heart disease
and diabetes datasets respectively.
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1 Introduction

Human body generates a lot of vital health signals seamlessly and this information can be
validated using physiological models to decode the bio-signals such as blood pressure, heart rate,
and blood glucose. In recent years, numerous advanced technologies have emerged in the field
of healthcare such as mobile applications, advanced computing, biosensors, portable tools, home
virtual assistants and block chain-relied electronic clinical recording machines. The nexus between
the sensors and mobile equipment helps in instant reporting of diverse health attributes. These
attributes can be read, accurately interpreted and sent to clinical organizations. A survey con-
ducted by Grand View Research Inc found that Internet of Things (IoT) is applied in a number
of modern medical applications to accomplish advanced medical assistance. Technavio’s market
research report mentioned that IoT, in global medical sector, aspires to yield impressive CAGR
in the coming years. Numerous studies have been conducted recently focusing the application
of ‘smart’ clinical tools in Diabetes Mellitus (DM) such as ‘smart inhaler’, ‘smart syringe pen’,
‘smart pills’ etc., Besides, handy biosensor is one of the significant applications and a product
of advanced digital transformation used in healthcare sector. An extensive range of biosensors is
used these days since it forwards the clinical data to mobile and web applications through wireless
networks. Likewise, physicians are provided with an option to balance the treatment rendered to
patient and track their health condition from anywhere, anytime. Moreover, biosensors are applied
in routine life which gathers data from physical actions, sleeping patterns, food consumption, and
common health in unobtrusive fashion. Clinically, biosensors enable the users to calculate their
blood glucose levels, arterial pressure, heartbeat, oxygen level, pulse rate and alcohol levels. This
sensitive healthcare information is transmitted via practical applications, which in turn alarms the
patients in case of emergency [1]. Reporting a patient’s health status is one of the significant
parameters in remote health care systems.

Numerous modules have been proposed in Patient Health Portals (PHP) which are still in
progress. These modules are likely to play an important role in medical chain to provide single
window online services for patients through which one can attain patient satisfaction. These
portals enables the users to execute different activities such as physician consultation, Consultation
with specialists through web applications, sampling for laboratory analysis, payments, commu-
nication between the patient and others, simple procedures for healthy lifestyle, appointment
scheduling. Being patient-friendly and effective, these modules further mitigate the overhead of
hospital employees who work on regular functions. In the past few decades, a static increase has
been observed in different health monitoring domains. Numerous works have proposed distinct
recommendations for personal remote health observations and portable & uniform implantable
solutions on the basis of cost-effective sensors and diverse wireless systems.

UbiMon (Ubiquitous Monitoring Environment for Wearable and Implantable Sensors)
project [2] was developed to examine Arrhythmic Heart Disease (HD). It was aspired to include
common features present in mobile and wearable sensor systems like handy sensors for remote
and protective observation of heart functions. In this project, a model was newly developed
with five major elements namely, Body Sensor Network (BSN) nodes, processing unit, central
webserver, patient database and PC. In this model, wireless Electrocardiogram (ECG) and pulse
oximeter (SpO2) sensors are combined with typical sensors and embedded on specific wireless
cards to generate a BSN loop. Also, compact flash card is also applied in PDAs to collect signals
and observe and examine the router between BSN and central servers via cellular network (Wi-
Fi/GPRS). Then, the PC host user-interface is developed to predict and balance the input patient
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sensor information. The resultant product i.e., newly developed software enables one to forward
the required data to concerned individuals.

1.1 Role of IoT in Healthcare Sector
In the recent years, effective models like Long Term Evolution (Long-Term Evolution),

M2M (Machine-to-Machine communication), and NFC (Near Field Communications) have been
developed for communication processes under the application of IP (Internet Protocol) address.
Cellular and wireless communications occur on the basis of IP-based schema. IoT is a novel
paradigm in which the devices are connected together and are made to work remotely through
diverse communication systems. Further, it also refers to a collection of smart devices which is
applied in the transformation of intelligent networks to gather and process data with or without
explicit human contribution. Therefore, home appliances like refrigerators, TV, washing machines
and heaters are embedded with IP addresses and connected through internet to make it suitable
for frequent communications [3]. IoT was first presented by Kevin Ashton in 1999 who defined
that the devices communicate with each other through RFID (Radio Frequency Identification)
technique. However, today’s IoT is inclusive of devices that enable massive and comprehensive
data collection and monitoring. Fig. 1 shows the research area in IoT healthcare system.

Figure 1: Research areas in IoT healthcare systems

It is possible to allot IP to a number of devices using IPv6 (Internet Protocol Version 6)
protocol with 128-bit address. This pattern of numbering the devices is feasible, only in addressing
undecillion number of entities. In IoT, intelligent devices which are implanted in a house or
factory setting communicate with each other and generate useful information for human beings in
the form of simple definitions. IoT heavily relies on inherent quality of the devices that function
in a sophisticated fashion under diverse communication methods. Using IoT, the health condition
of a patient can be observed frequently on a real-time basis. This sophistication is preferred by
most of the patients, especially their caretakers and those who are ill with chronic disorders [4].
When a system becomes impotent in emergency cases, it gets immediately replaced by first aid
team. Thus, the patient’s instantaneous data regarding blood and other critical signs are collected
and transmitted to clinical database. Hence, medical intervention becomes highly robust and better
outcomes are achieved, where eminent changes are presented. When a patient suffers from heart
attack, blood values are reported to the doctor instantly before admitting the patient at hospital.
Moreover, IoT and nano communication models are combined together and processed effectively.
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1.2 Contribution of the Paper
The current research article developed an effective IoT-based physical health monitoring and

management method using optimal Stacked Sparse Denoising Autoencoder (SSDA) technique i.e.,
OSSDA. The proposed model utilizes a set of IoT devices to collect data from the patients.
Imbalanced class problem poses serious challenges during disease diagnosis process. So, the
OSSDA model includes Synthetic Minority Over-Sampling Technique (SMOTE) to overcome this
challenge. Moreover, the hyperparameters are set for the proposed OSSDA model via sailfish
optimizer (SFO). To assess the effectiveness of the proposed OSSDA technique, in terms of
performance, a set of experiments was conducted on diabetes and heart disease datasets.

The remaining sections of the paper are organized as follows. Section 2 briefs about the
related works. Sections 3 and 4 discuss the working of OSSDA. Followed by, Section 5 presents
the information on performance validation and Section 6 concludes the paper.

2 Related Works

‘Patients Like Me’ concentrated on guiding patients and responding their queries. A patient
can be responded through different forms for instance, examining them with same health issues
and sharing their experiences repeatedly. However, data integrity and system applicability are
the challenging issues in this regard. Alternatively, ‘Daily Strength’ a relevant social networking
system was developed which functions based on supportive groups. The users provide emotional
support and respond by defining the merits and demerits of this therapy. It is composed of web
applications which provide information on diverse clinical attributes. This application is similar to
‘Patients Like Me’ by means of free environments where patients-doctors communicate with each
other. There are two major discrepancies in these two models one of which is that the ‘Daily
Strength’ is not applicable in research centers and mobile applications. In this scenario, these
models are non IoT-based approaches. Hence, an effective approach was deployed in the literature
with different pulse attributes, EEG, and skin examination sensors [5].

A model was deployed in the literature to link facial expressions and voice analysis with
EEG patterns [6]. As a result, the developers have ensured that EEG implies the features that
correspond to different emotions. Facial analysis software was compared with heart rate variations
to understand the patterns regarding different emotions [7]. Moreover, the software has ensured
that specific pulse patterns can be correlated with stress because the information on latter cannot
be acquired from emotional state. In spite of being dynamic systems, IoT was not applied as a
tool in these applications.

Alternatively, comprehensive medical network, named ‘Omnio’ was defined as an all-in-one
application for clinical resources [8]. It offers a wide range of medical resources, diagnostic
resources, disease guides, and drug details. Everyday Health [9] is an organization that has websites
and generates content related to normal and abnormal features. Moreover, ‘Connected eHealth
Mobile Applications’ have provided smart search ability along with simple access. Though the
above-mentioned medical service approaches are effective, it lacked to provide modern devices
that can monitor the regular actions of the user, whenever required. A Smart Elderly Home
Monitoring System (SEHMS) was introduced in the literature and applied in Android mobiles
using accelerometer. The system aims at predicting the fall of an individual [10]. Smartphone user
interface was developed to collect and analyze the healthy data collected from system. One of
the benefits of SEHMS is that it can monitor remote sites for aged and weak patients. It is also
responsible for providing warning signals for patients in case of emergency.
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Remote Mobile Health Monitoring (RMHM) is a well-known method that observes the
health attributes of a patient, for instance heart rate, using portable sensors [11]. It helps the
physicians to monitor the health condition of a patient remotely. But, it could not be applied in
monitoring practical scenarios. Yet, the prediction of heart attack remains a serious issue which
has been focused in this study. Hence, the integration of body temperature and ECG are applied
in the prediction of heart anomalies using real-time applications. Different methods have been
executed using distinct hardware in the previous studies. The developed system applies a low power
Bluetooth to wirelessly collect the longitudinal information under the application of smartphone.

In literature [12,13], the researchers compared Data Mining (DM) models for heart attack
detection. A predictive mechanism was applied in complete system with data collection device
under computing environment. Some of the reputed methods applied in the prediction of heart
problems are Decision Tree (DT), Näıve Bayes (NB), Neural Network (NN), K-mean, etc. A
complete system with IoT and processing platform that makes use of DM is used for the
prediction of heart diseases. Finally, this phenomenon has become one of the remarkable features
in sensing low power smart IoT systems in which a DM method is applied. Hence, testing the
prediction model has gained better results with optimal accuracy in both abnormal and normal
samples.

In new electricity generation and transmission systems, theft detection technique has been
presented using DL model. In order to improve the feature extraction capability and its robustness,
both sparsity and noise were incorporated into autoencoder. Particle Swarm Optimization (PSO)
algorithm was employed in the literature upon optimization of hyperparameters. The method
proposed in the current study is inspired from the literature [14].

3 The Proposed System

The efficiency of this model depends upon previous wireless communications that consume
minimum power and offer extreme freedom for the users to move and perform other physical
actions. In addition to the above, few small, light-weight and user-friendly smart IoT tools have
been applied such as smartphones, wrist-band, smartwatch, and so on. The implanted sensors are
simulated to integrate it and to perform different computations so as to estimate and differentiate
the heart rate of healthy ones from that of the unhealthy ones. Sensor-enabled smartphones or
handy sensors are carried by the subjects which collects the data and transmit it to servers.
Embedded ECG and temperature sensors are mainly applied in the collection of heart variables
of the subject who leads a typical lifestyle. Once the data is received by low power Bluetooth
communication unit, the smartphone computes the data and classifies it as either normal or
abnormal based on the patients’ condition. Effective heart rate and diabetes examination can be
computed in Android platform that offers an option for the patient to view their own ECG reports
as well as body temperature.

In order to detect unhealthy heart patterns, a basic criterion has been developed for normal
heart rate. A significant analysis of heart rate stability and pulse symmetry is done through
eminent parameters such as heart rate, RR intervals (RR interval is a time period between
subsequent R peaks in an ECG signal), and ST segregates (ST-segment is defined as a flat section
in ECG signal from one end of a S wave and the beginning of the upcoming T wave). It depicts
the interval between ventricular depolarization and repolarization. Then, early alert system is
deployed to observe these parameters for any heart attack symptoms during day-to-day activities.
Even though the system frequently observes ECG patterns, the systematic patterns simulate an
alert when ECG and body temperature of the patient reach a specific threshold i.e., when a
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user suffers from cardiac arrest. IoT device is focused on gathering information regarding users
and forwards it to smartphone through Bluetooth communication unit. Next, the information is
forwarded to cloud servers. The computations are carried out using OSSDA model which also
determines the physical health state of the patient.

4 The Proposed OSSDA Algorithm

The proposed method makes use of IoT devices for data collection. Here, SMOTE technique
is applied to resolve class imbalance problem in medical data. Followed by, the SSDA algorithm is
employed to detect the disease in which the hyperparameters are tuned by SFO. Fig. 2 illustrates
the overall working process involved in the proposed model.

Figure 2: The overall working process of the proposed method

4.1 SMOTE Technique
The fundamental process of SMOTE is to manage samples by producing novel minority class

samples [15]. Instead of copping a minority class sample, SMOTE provides samples with the help
of linear interpolation among class samples which suits one another. The major procedures are
given below: At first, according to oversampling rate N, this mechanism selects N samples for all
minority class instances from K neighbor samples which comes under minority classes. Secondly,
SMOTE model produces N new instances as Eq. (1) for a minority class. At last, it unifies novel
instances with quondam data sets.

New Sample= x+ rand (0, 1)× (xi−x) , (1)
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where i = 1, 2, . . . ,N, rand(0, 1) refers to the random values between 0 and 1, x denotes
the minority class samples, xi denotes the selected neighbor samples, whereas the ‘New sample’
represents a newly-produced instance.

Fig. 3 is a schematic representation of SMOTE method in which the white circles denote
majority class, whereas black color indicates minority class. X defines the minority class sample,
and X1, X2, X3, X4, X5 are five neighbors of X. Here, Y1, Y2 imply the freshly-comprised
minority class samples which are considered as the line between X and corresponding neighbors,
X2, X4 under minority class. By enhancing the number of minority class samples, this method
limits the degree of imbalance.

Figure 3: Structure of SMOTE

4.2 SSDA Technique
Prior to the introduction of SSDA detector, AE and Sparse Denoising Autoencoder (SDAE)

are presented herewith. In general, AE is composed of two portions such as Encoder and Decoder,
whereas the tasks of encoding and decoding are projected by Eqs. (2) and (3), respectively

f = s (ωx ∗ x+ bx) (2)

y= s
(
ωy ∗ f + by

)
(3)

where x and y denote the input and output respectively, f shows the feature representation of a
system, ωx, and ωy refer to input-to-hidden and hidden-to-output weights, bx and by imply the
biases in hidden as well as output units, and s depicts the activation function. AE is one of the
common NNs in which the output y is defined as reformation of input, x. The main aim of
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training is to reduce the reconstruction errors. The proximity between x and y is demonstrated
through a loss function L, where

LAE = 1
n

n∑
i=1

(xi− yi)2 (4)

RE could be depicted as given herewith.

RE=
n∑
i=1

(xi− yi)2 (5)

An extended version of AE, with certain function, can be produced by developing different
limitations in a loss function. SAE calculates the number of neurons to be reduced for achieving
two things i.e., to enhance speed and processing efficiency of the network variables and to simplify
the function of high-dimensional data. Assume H(x) is a activation degree of mth neuron, and

ρ̂m = 1
N
Hm(x(i)) (6)

where ρ̂m denotes the maximum activation, x(i) implies a sample dataset, and N defines the
number of datasets. In order to ensure the presence of neurons in hidden layer, it satisfies the
sparse demands as given herewith.

ρ̂m = ρ (7)

where ρ denotes a sparse attribute and ρ = 0. If ρ̂m is not convinced with the Eq. (6), the given
modifications are deployed.

KL
(
ρ||ρ̂m

)
= ρ ∗ log ρ

ρ̂m
+ (1−ρ)∗ log 1−ρ

1− ρ̂m
(8)

where KL(ρ‖ρ∧) refers to relative entropy between the variables. Followed by, LSAE is depicted
as

LSAE = 1
n

n∑
i=1

(xi− yi)2+β
∑
m=1

KL
(
ρ||ρ̂m

)
(9)

where β denotes the weight of sparseness penalty. Generally, the robustness of DAE can be
enhanced with the help of noised input. The noised input x̂ is generated by random noise, induced
for initial input,x, and corresponding output i.e., ∧y ∧ y. When ∧y ∧ y regenerates x to certain
limit, it represents that the AE is extremely standardized. Thus, LDAE is

LDAE = 1
n

n∑
i=1

(xi− ŷi)2+ λ

2

(∥∥∥W2
1

∥∥∥2
F
+
∥∥∥W2

2

∥∥∥2
F

)
(10)

where λ denotes a weight constraint to eliminate over-fitting. At the same time, sparsity and noise
with AE are named as SDAE. By means of Eqs. (9) and (10), LSDAE is

LSDAE = 1
n

n∑
i=1

(xi− yi)2+β
∑
m=1

KL(ρρ̂m)+ λ

2

(∥∥∥W2
1

∥∥∥2
F
+
∥∥∥W2

2

∥∥∥2
F

)
(11)
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SSDA detector is developed using SDAE and trained with the help of greedy layer-wise
fashion [14], in which a hidden layer from previous AE is applied as input for next one. Fig. 4
shows the architecture of SSDA.

Figure 4: Structure of SSDE

Basically, Multilayer Neural Network (MNN) training experiences gradient issues. When net-
work weights are improved by applying backpropagation (BP) method, the hidden layer gradients
become inputs. Hence, greedy layer-wise training applies two steps in defining the diminishing
gradient problem: bottom-up, unsupervised pre-training and top-down supervised fine-tuning.
SSDA applies layer-by-layer pre-training strategy from SDAE1 to SDAE. By considering SDAE1
as illustration, the system variables such as ω1, b1, and f1 are processed with the help of forward
propagation. Also, f1 is considered as the input of SDAE2 to estimate f2, after which the training
is concluded. As a result, SDAEs are piled up to offer SSDA for future supervised training and
invoke fine-tuning of network weights.

4.3 Hyperparameter Tuning
The hyperparameter setting of OSSDA has created a remarkable impact upon the classifi-

cation performance of SSDA technique. So, hidden layer count, sparsity, and noise count are
determined by SFO. SFO [16] is defined as a population-based meta-heuristic approach which
has evolved from attack-alternation principle of hunting sailfishes that steal a shoal of sardines.
This hunting procedure provides upper hand to hunters, since it offers a chance to preserve the
energy. It assumes two populations namely, sailfish population and sardine population. Initially,
the sailfishes are assumed to be the candidate solutions, where the problem variables denote the
place of sailfishes in search space. This model attempts to randomize the movement of search
agents to a great extent. Sailfishes are distributed in a search space, while the location of sardines
helps in finding d as the optimal solution.
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A sailfish with optimal fitness is named as ‘elite’ sailfish and its corresponding position at ith

round is offered by PiSlfBest. For sardine, the ‘injured’ fish with maximum fitness value and the

position at ith iteration is illustrated by PiSrdInjured. In all rounds, the places of sardines as well as

sailfishes are upgraded. From i+ 1th iteration, novel position Pi+1
Slf of a sailfish is increased under

the application of ‘elite’ sailfish and ‘affected sardine as given in Eq. (12).

Pi+1
Slf =PiSlfBest−μi×

(
rnd×

PiSlfBest+PiSrdInjιιred
2

−PiSlf

)
(12)

where PiSlf denotes the former place of Slf th sailfish, rnd denotes the random value between 0

and 1 and μi refers to a coefficient produced on the basis of Eq. (2).

μi = 2× rnd×PrD−PrD (13)

where PrD represents a prey density and it depicts the count of prey from all iterations. Hence,
the measure of PrD, is calculated by Eq. (3) which in turn reduces, when the count of prey is
limited at the time of group hunting.

PrD= 1− NumSlf

NumSlf +NumSrd
(14)

where NumSlf and NumSrd describe the number of sailfishes and sardines correspondingly.

NumSlf =NumSrd ×Prcnt (15)

where Prcnt represents the ratio of sardine population from which initial sailfish population is
calculated. The actual count of sardines are often higher than sailfishes. The place of sardine is
maximized in all iterations as projected below.

Pi+1
Srd = rnd (0, 1)×

(
PiSLfBest−PiSrd +ATK

)
(16)

ATK =A× (1− (2× itr× κ)) (17)

where PiSrd and Pi+1
Srd signify the former and latter locations of sardine, whereas ATK shows

the sailfish’s attack at iteration, itr. Then, the number of sardines which upgrade the place
and displacement is calculated on the basis of ATK. The minimization of ATK guides in the
convergence of searching agents. Under the application of ATK, the count of sardines which
maximizes the position (γ ) and number of parameters (δ) are determined as given herewith.

γ =NumSrd ×ATK (18)

δ = v×ATK (19)

where v signifies the number of variables and NumSrd denotes the count of sardines. When the
sardines are optimal, then sailfish upgrades the place of sardine. Then it is removed from the
population.
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A random decision of sailfishes and sardines ensures that the search space is explored. Since
the attack power of sailfishes are reduced in all the iterations, it offers a chance for sardines to
leave the optimal sailfish, which helps in exploitation. ATK variable manages to identify a balance
between exploration and exploitation. Fig. 5 depicts the steps involved in SFO model.

Figure 5: Steps of SFO model

5 Experimental Validation

The performance of the presented OSSDA technique was evaluated using two benchmark
datasets namely heart disease dataset and diabetes dataset from UCI repository [17,18]. For exper-
imental validation, 10-fold cross-validation was performed. Tab. 1 shows a detailed comparison
on OSSDA technique and existing methods under varying number of instances in heart disease
dataset. Fig. 6 shows the results of sensitivity analysis attained by OSSDA technique and existing
techniques. The figure shows that the SVM model produced ineffective outcomes and attained
a minimum sensitivity value. The NB model reached a slightly higher sensitivity value. Besides,
KNN and DT models exhibited closer and competitive sensitivity values. But the presented
OSSDA model achieved the highest sensitivity value over other methods. For instance, under 2000
instances, the OSSDA model accomplished a maximum sensitivity of 0.952, whereas the KNN,
NB, SVM, and DT models achieved only minimum sensitivity values such as 0.926, 0.879, 0.832,
and 0.933 respectively.

In line with this, under 4000 instances, the OSSDA method produced a high sensitivity of
0.955, while the KNN, NB, SVM, and DT approaches illustrated the least sensitivity values
such as 0.884, 0.846, 0.824, and 0.923 respectively. Similarly, with 6000 instances, the OSSDA
approach attained an optimal sensitivity of 0.97, whereas the KNN, NB, SVM, and DT schemes
produced the least sensitivity values such as 0.932, 0.864, 0.839, and 0.936 correspondingly. The
OSSDA method accomplished a supreme sensitivity of 0.981 under 8000 instances, whereas other
approaches such as KNN, NB, SVM, and DT produced the least sensitivity values such as 0.924,
0.886, 0.824, and 0.969 respectively. Followed by, under 10000 instances, the OSSDA technique
ended up with supreme sensitivity of 0.985. But KNN, NB, SVM, and DT approaches depicted
the least sensitivity values such as 0.936, 0.891, 0.842, and 0.96 respectively.
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Table 1: Performance analysis of existing and the proposed methods on heart disease dataset

Number of instances K-NN NB SVM DT OSSDA

Sensitivity analysis
2000 0.926 0.879 0.832 0.933 0.952
4000 0.884 0.846 0.824 0.923 0.955
6000 0.932 0.864 0.839 0.936 0.970
8000 0.924 0.886 0.824 0.969 0.981
10000 0.936 0.891 0.842 0.96 0.985
Specificity analysis
2000 0.842 0.834 0.802 0.926 0.939
4000 0.861 0.836 0.821 0.912 0.929
6000 0.873 0.869 0.834 0.924 0.949
8000 0.883 0.821 0.784 0.886 0.909
10000 0.893 0.864 0.843 0.904 0.931
Accuracy analysis
2000 0.894 0.768 0.734 0.916 0.949
4000 0.913 0.786 0.777 0.924 0.957
6000 0.876 0.778 0.756 0.904 0.949
8000 0.864 0.801 0.784 0.932 0.963
10000 0.893 0.824 0.816 0.928 0.956
F-score analysis
2000 0.924 0.856 0.812 0.976 0.990
4000 0.903 0.844 0.824 0.936 0.962
6000 0.924 0.872 0.864 0.932 0.955
8000 0.914 0.846 0.804 0.927 0.954
10000 0.909 0.837 0.819 0.933 0.961

Fig. 6 examines the specificity of the proposed OSSDA technique against previous models.
From the figure, it is evident that the SVM approach implied poor results by gaining the least
specificity measure. Further, the NB scheme too attained a moderate specificity value. In line with
this, KNN and DT methodologies represented identical and competing specificity values. However,
the proposed OSSDA model accomplished the maximum specificity value in comparison with
existing models. For example, under 2000 instances, the OSSDA scheme resulted in high specificity
of 0.939, whereas the KNN, NB, SVM, and DT methodologies exhibited the least specificity val-
ues such as 0.842, 0.834, 0.802, and 0.926 respectively. Likewise, under 4000 instances, the OSSDA
approach generated an optimal specificity of 0.929, and the KNN, NB, SVM, and DT frameworks
garnered minimal specificity values such as 0.861, 0.836, 0.821, and 0.912 correspondingly. In line
with this, with 6000 instances, the OSSDA model resulted in high specificity of 0.949, whereas the
KNN, NB, SVM, and DT models achieved the least specificity values such as 0.873, 0.869, 0.834,
and 0.924 respectively. At the same time, under 8000 instances, the OSSDA approach resulted
in the highest specificity of 0.909, while the KNN, NB, SVM, and DT technologies illustrated
the least specificity values such as 0.883, 0.821, 0.784, and 0.886 respectively. Afterwards, the
OSSDA approach accomplished better specificity of 0.931 under 10000 instances whereas KNN,
NB, SVM, and DT frameworks demonstrated the least specificity values such as 0.893, 0.864,
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0.843, and 0.931 respectively. Further, in the same figure, the OSSDA approach was assessed for
accuracy against previous models. The figure portrays that the SVM method implied poor results
by accomplishing the least accuracy. Additionally, NB approach attained a moderate accuracy
value. Followed by, KNN and DT methodologies attained similar and competing accuracy values.
However, the proposed OSSDA scheme achieved the maximum accuracy compared to previous
models. For example, with 2000 instances, the OSSDA framework produced a high accuracy of
0.949 whereas KNN, NB, SVM, and DT approaches depicted the least accuracy values such as
0.894, 0.768, 0.734, and 0.916 respectively. In line with this, the OSSDA technology has attained
a supreme accuracy of 0.957 under 4000 samples while the KNN, NB, SVM, and DT schemes
produced minimal accuracy values such as 0.913, 0.786, 0.777, and 0.924 respectively. In line
with this, under 6000 instances, the OSSDA model resulted in a considerable accuracy of 0.949
whereas KNN, NB, SVM, and DT methods displayed the least accuracy values such as 0.876,
0.778, 0.756, and 0.904 respectively. Concurrently, under 8000 instances, the OSSDA framework
achieved an acceptable accuracy of 0.963 while KNN, NB, SVM, and DT methods attained
the least accuracy values such as 0.864, 0.801, 0.784, and 0.932 respectively. Subsequently, under
10000 instances, the OSSDA mechanism accomplished a high accuracy of 0.956. On the other
hand, KNN, NB, SVM, and DT techniques demonstrated low accuracy values such as 0.893,
0.824, 0.816, and 0.928 respectively. The figure further conveys the F-score analysis results of
OSSDA scheme against traditional models. The figure depicts that the SVM approach produced
an insignificant outcome and gained the least F-score value. Moreover, the NB scheme attained
a moderate F-score value. Followed by, KNN and DT technologies resulted in identical and
competing F-score values. However, the proposed OSSDA scheme obtained the maximum F-score
when compared with other models. For instance, under 2000 instances, the OSSDA framework
resulted in high F-score of 0.952 whereas KNN, NB, SVM, and DT approaches produced the
least F-score values such as 0.926, 0.879, 0.832, and 0.933 correspondingly. Likewise, with 4000
instances, the OSSDA technique generated a supreme F-score of 0.955 while other approaches
such as KNN, NB, SVM, and DT implied low F-scores such as 0.884, 0.846, 0.824, and 0.923
correspondingly. Under 6000 samples, the OSSDA scheme excelled with optimal F-score of 0.97
while KNN, NB, SVM, and DT methodologies attained minimal F-scores such as 0.932, 0.864,
0.839, and 0.936 respectively. In line with this, with 8000 samples, the OSSDA model achieved
an acceptable F-score of 0.981, and KNN, NB, SVM, and DT frameworks produced the least
F-score values such as 0.924, 0.886, 0.824, and 0.969 respectively. Finally, under 10000 instances,
the OSSDA approach ended up with a superior F-score of 0.985 and conventional methods such
as KNN, NB, SVM, and DT demonstrated the least F-score values such as 0.936, 0.891, 0.842,
and 0.96 correspondingly.

Tab. 2 provides a brief comparison of OSSDA model against classical approaches under vari-
ous number of instances in diabetes disease dataset. Fig. 7 shows the sensitivity value attained by
OSSDA approach against previous methods. The figure reveals that the SVM technology implied
poor results and accomplished the least sensitivity value. In addition, the NB scheme attained
a moderate sensitivity value. Both KNN and DT methodologies gained nearby and competing
sensitivity values. Furthermore, the FNC model represented a considerable sensitivity value too.
However, the newly-presented OSSDA approach gained the maximum sensitivity value compared
to conventional technologies. For example, with 2000 instances, the OSSDA scheme resulted in
high sensitivity of 0.973, while KNN, NB, SVM, DT, and FNC methodologies produced the least
sensitivity values such as 0.92, 0.875, 0.83, 0.93, and 0.945 correspondingly. In line with this,
under 4000 instances, the OSSDA mechanism accomplished a supreme sensitivity of 0.956, and
the KNN, NB, SVM, DT, and FNC frameworks depicted the least sensitivity values such as 0.88,
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0.86, 0.825, 0.92, and 0.935 correspondingly. In line with this, under 6000 instances, the OSSDA
technique gained an optimal sensitivity of 0.985, whereas the conventional techniques such as
KNN, NB, SVM, DT, and FNC displayed the least sensitivity values such as 0.928, 0.88, 0.838,
0.93 and 0.945 correspondingly. Meantime, under 8000 instances, the OSSDA scheme gained the
highest sensitivity of 0.991 whereas KNN, NB, SVM, DT, and FNC technologies showcased
minimal sensitivity values as given herewith; 0.935, 0.88, 0.83, 0.97, and 0.98 correspondingly.
Finally, under 10000 instances, the OSSDA scheme resulted in the best sensitivity value of 0.983,
whereas the KNN, NB, SVM, DT, and FNC models produced the least sensitivity values such as
0.942, 0.9, 0.834, 0.96, and 0.7 correspondingly.

Figure 6: Comparative analysis of OSSDA model
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Table 2: Performance analysis of existing and the proposed method on diabetes dataset

Number of instances k-NN NB SVM DT FNC OSSDA

Sensitivity analysis
2000 0.920 0.875 0.830 0.930 0.945 0.973
4000 0.880 0.860 0.825 0.920 0.935 0.956
6000 0.928 0.880 0.838 0.930 0.945 0.985
8000 0.935 0.880 0.830 0.970 0.980 0.991
10000 0.942 0.900 0.834 0.960 0.970 0.983
Specificity analysis
2000 0.840 0.830 0.820 0.925 0.940 0.967
4000 0.900 0.830 0.830 0.910 0.942 0.972
6000 0.870 0.860 0.830 0.930 0.941 0.961
8000 0.875 0.850 0.800 0.880 0.900 0.934
10000 0.900 0.870 0.840 0.905 0.920 0.964
Accuracy analysis
2000 0.890 0.770 0.740 0.920 0.930 0.945
4000 0.910 0.810 0.760 0.940 0.940 0.967
6000 0.870 0.760 0.750 0.900 0.910 0.956
8000 0.880 0.820 0.780 0.935 0.945 0.961
10000 0.900 0.830 0.800 0.925 0.940 0.973

Fig. 7 shows the results for specificity analysis of OSSDA approach against previous models.
The figure illustrates that the SVM method achieved insignificant results by gaining a low speci-
ficity value. Additionally, NB scheme has accomplished a moderate specificity value. In line with
this, KNN and DT methodologies exhibited closer and competing specificity values. Moreover,
the FNC model implied an acceptable specificity value. However, the newly proposed OSSDA
approach attained the maximum specificity value compared to alternate approaches. For example,
under 2000 instances, the OSSDA technique resulted in high specificity of 0.967, whereas KNN,
NB, SVM, DT, and FNC schemes showcased the least specificity values such as 0.84, 0.83,
0.82, 0.925, and 0.94 respectively. Likewise, under 4000 instances, the OSSDA model obtained a
supreme specificity of 0.972 whereas KNN, NB, SVM, DT, and FNC methodologies displayed
minimum specificity values such as 0.9, 0.83, 0.83, 0.91, and 0.942 respectively. Along with that,
with 6000 instances, the OSSDA mechanism achieved an optimal specificity of 0.961, whereas
the KNN, NB, SVM, and DT models achieved the least specificity values of 0.87, 0.86, 0.83,
0.93, and 0.941 respectively. Meantime, with 8000 instances, the OSSDA approach obtained a
remarkable specificity of 0.934, whereas KNN, NB, SVM, DT, and FNC techniques showcased
the least specificity values such as 0.875, 0.85, 0.8 0.88, and 0.9 respectively. Finally, under 10000
instances, the OSSDA model achieved a standard specificity of 0.964 whereas KNN, NB, SVM,
DT, and FNC models accomplished minimum specificity values such as 0.9, 0.87, 0.84, 0.905, and
0.92 respectively. The figure shows the accuracy achieved by OSSDA model and previous methods.
The figure implies that the SVM approach achieved poor outcome since the accuracy was the least
one. Further, NB method too attained a moderate accuracy. Both KNN and DT methodologies
depicted closer and competing accuracy values. Here, FNC method accomplished a reasonable
accuracy. However, the projected OSSDA approach obtained a remarkable accuracy compared
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to conventional frameworks. For example, with 2000 samples, the OSSDA technique attained a
superior accuracy of 0.945, while KNN, NB, SVM, DT, and FNC technologies showcased the
least accuracy values such as 0.89, 0.77, 0.74, 0.92, and 0.93 respectively. In line with this, under
4000 instances, the OSSDA method achieved an optimal accuracy of 0.967, while KNN, NB,
SVM, DT, and FNC schemes attained the least accuracy values such as 0.91, 0.81, 0.76, 0.94,
and 0.94 respectively. In line with this, under 6000 instances, the OSSDA algorithm achieved a
high accuracy of 0.956, and other methods such as KNN, NB, SVM, DT, and FNC produced the
least accuracies such as 0.87, 0.76, 0.75, 0.9, and 0.91 respectively. Meantime, with 8000 instances,
the OSSDA model obtained a better accuracy of 0.961 whereas the KNN, NB, SVM, DT, and
FNC techniques accomplished the least accuracy values i.e., 0.88, 0.82, 0.78, 0.935, and 0.945
respectively. Finally, with 10000 instances, the OSSDA method obtained a supreme accuracy of
0.973 whereas other methods such as KNN, NB, SVM, DT, and FNC implied the least accuracy
values such as 0.9, 0.83, 0.8, 0.925, and 0.94 respectively.

Figure 7: Comparative analysis of OSSDA model

From the above-discussed results, it is apparent that the OSSDA technique produced excel-
lent results on the applied datasets. Therefore, it can be employed as an effective tool in
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IoT-based healthcare monitoring and management. The superior performance of the OSSDA
model is attributed to two aspects i.e., SMOTE-based class imbalance data handling and SFO-
based hyperparameter tuning process.

6 Conclusion

The current research article developed a new physical health OSSDA model for IoT-based
healthcare monitoring and management. The proposed method involved a pair of IoT devices for
data collection. IoT device constantly collects the data from users and sends it to smartphone
via Bluetooth communication module. Then the data is transmitted to a cloud-based application
which process and analyze the data. The current study implemented OSSDA algorithm to deter-
mine the health condition of patients. SMOTE technique is applied to resolve the class imbalance
problem in medical data after which the SSDA algorithm is also employed to classify the disease.
The hyperparameters, for this algorithm, are tuned by SFO algorithm. The proposed OSSDA
technique was validated experimentally and an effective performance was observed on the applied
datasets i.e., diabetes and heart disease. In future, the energy efficiency of the IoT devices in smart
healthcare applications can be improved.
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