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Abstract: Copy-move forgery is the most common type of digital image
manipulation, in which the content from the same image is used to forge it.
Such manipulations are performed to hide the desired information. There-
fore, forgery detection methods are required to identify forged areas. We have
introduced a novel method for features computation by employing a circular
block-based method through local tetra pattern (LTrP) features to detect the
single and multiple copy-move attacks from the images. The proposed method
is applied over the circular blocks to efficiently and effectively deal with the
post-processing operations. It also uses discrete wavelet transform (DWT) for
dimension reduction. The obtained approximate image is distributed into cir-
cular blocks on which the LTrP algorithm is employed to calculate the feature
vector as the LTrP provides detailed information about the image content by
utilizing the direction-based relation of central pixel to its neighborhoods.
Finally, Jeffreys andMatusita distance is used for similaritymeasurement. For
the evaluation of the results, three datasets are used, namely MICC-F220,
MICC-F2000, and CoMoFoD. Both the qualitative and quantitative analysis
shows that the proposed method exhibits state-of-the-art performance under
the presence of post-processing operations and can accurately locate single
and multiple copy-move forgery attacks on the images.

Keywords: Copy-move forgery; discrete wavelet transform; LTrP features;
image forensic; circular blocks

1 Introduction

In this digital era, digital devices’ economic prices have enabled people to keep using a variety
of smart devices like cell phones, digital cameras, tabs, and laptops, etc. People usually buy these
devices to perform their daily tasks. However, these gadgets also allow them to save their memories
in digital format such as in the form of images and videos [1]. At the same time, it is also very

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2021.018052


1928 CMC, 2021, vol.69, no.2

easy for them to acquire apps and tools that can easily alter this digital data and change the
information conveyed through them [2,3]. Although the availability of such tools and apps can
help people to make their data more appealing and delighting. At the same time, it can also make
the conveyed information unreliable and untrusted especially, in such scenarios where these images
and videos are used in investigating a criminal case or processing legal claims. The method of
forging image information is known as digital image forgery. The approaches used to identify the
forensic changes made are known as forgery detection (FD) techniques. These approaches have
been categorized into two classes namely the active and passive methods [4]. Active methods are
only workable for those scenarios where the information of the source images like watermarks or
digital signatures is available [5,6]. Therefore, mostly passive techniques are employed to identify
the two types of image manipulations, namely the copy-move forgery (CMF) and the splicing [7].
In the case of generating a spliced forged image, the contents of different images are merged [8].
While for CMF, the information of the same image is used to manipulate its content. CMF is
more challenging as the overall properties of the image are not altered. Fig. 1 is representing an
example of CMF.

Figure 1: An example of CMF. (a) Original image, (b) Copy-move attack (dublicated object
highlighted)

The FD methods are categorized into two types namely: i) the block-based FD techniques ii)
the keypoints-based FD methods [9]. In the block-based FD approaches, the suspected image is
divided into overlapping blocks where FD techniques are applied on each block. These approaches
usually suffer from high computational costs. In contrast, keypoints-based FD methods work by
computing the key features of the whole suspected image. These approaches are computationally
robust and exhibit better detection performance for the high textured forged images [10]. As
generating CMF content does not require special skills, so, in daily life scenarios, it is very
easy for a person to manipulate image content. Therefore, the need of the hour is to introduce
such techniques that can efficiently detect these forensic changes. Although, until now, several
techniques have been introduced in the field of copy-move forgery detection (CMFD), there is
no generalized method that can give a promising performance under the presence of various
post-processing attacks like scaling, rotation, noise and JPEG compression, etc.

In the proposed method, we have introduced a novel technique for the CMFD. First, the input
image is converted into a grey-scale image, on which the DWT approach is applied for dimension
reduction. The obtained approximate image sub-band is then converted into circular blocks. Next,
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the local tetra pattern (LTrP) algorithm is applied over overlapped circular blocks to calculate each
block’s feature vector. Finally, the Jeffreys and Matusita distance is computed to determine the
similarity among the data points. We have evaluated the proposed method over the different post-
processing image operations like scaling, rotation, blurring, brightness reduction, and compression.
Experimental results indicate that the proposed method exhibits a state-of-the-art performance
while compared with its competitor’s methods.

The following are the main contributions of the proposed method:

• The light encoded features enable the proposed method to identify copied regions from the
input forged image accurately, even under the presence of post-processing attacks like angle
and scale, intensity and chrominance variations, etc.

• The proposed method employs LTrP features over circular blocks to generate the rotation-
invariant feature vector, enabling the efficient and effective localization of regular and
irregular-shaped manipulated areas and minimizes the false detection rate.

• The proposed method can locate single and multiple CMF attacks effectively, even from
tiny and exceptionally flat areas of an altered sample.

• The circular blocks, lightweight feature descriptor, and RANSAC enhance the identification
performance of the proposed method as well as its identification performance and increase
the robustness by faster detection of the optimum key points deduction of false matches
over the manipulated content.

The remaining sections of this article are arranged as follows: related work is discussed in
Section 2. Comprehensive details of the proposed method are given in Section 3. The perfor-
mance evaluation parameters and experimental results are discussed in Section 4, and finally, the
conclusion is presented in Section 5.

2 Literature Review

Form the last decades, numerous approaches have been introduced to detect the manipulations
made within digital images. It is quite a challenging task to identify the CMF because the content
from the same image is used to alter its information. So, the major attributes of an image such
as the light effects, resolution, and brightness, etc. remain the same. Several methods have been
employed by the researchers to deal with the complexities of the CMF. Bilal et al. [11] proposed a
technique to detect the forensic charges of digital images. First, the dynamic histogram equaliza-
tion (DHE) technique was used to adjust the input image’s contrast. Then, the SURF descriptor
was employed to calculate the feature vector of the adjusted image. Finally, the mDBSCAN
clustering algorithm was used to localize the forged area in a given image. The approach [11] is
robust to CMFD. However, this technique is unable to detect the forensic changes made in the flat
regions. Roy et al. [12] presented a framework to detect the forgeries of digital images. First, the
SURF descriptor was used to identify the features of an input image. Then, the Rotated Local
Binary Pattern (RLBP) approach was applied to extract the features from the obtained SURF
keypoints. Next, the generalized two Nearest Neighborhood (g2NN) method was used to compute
the similarity among the extracted keypoints, and finally, the Hierarchical Clustering [13] scheme
was used to cluster the manipulated portion of an input image. This approach is robust to detect
the forgeries against the occurrence of rotational changes, blurring, and compression operations
applied in the forged images. However, the detection accuracy of [12] is affected over the low-
quality input samples. Lin et al. [14] introduced a novel method for CMFD. The hybrid features
were estimated from the input image by applying the SIFT and LIOP feature extraction algorithm.
The g2NN method was applied to perform the feature matching and then transitive matching was
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used to improve the matching results. Finally, the RANSAC algorithm was employed to reduce
the false matching. The technique [14] has shown better results in CMFD as compared to the
latest techniques. However, this work is suffering from a high computational rate.

Agarwal et al. [15] introduced a deep learning-based technique to identify the forensic changes
made within the digital images. First, an input image was segmented into various parts by
using the Simple Linear Iterative Clustering (SLIC) technique. A convolutional neural network
namely the VGGNet (Visual Geometry Group-net) was applied to the individual segments to
extract the key points from the input sample. Finally, the adaptive patch matching (APM) method
was applied to measure the pixels resemblance to show the forged content from the input sample.
This method is robust to various image transformation attacks such as blurring, rotation, and
compression. However, the approach in [15] is computationally expensive. Alkawaz et al. [16]
performed CMFD by dividing an input image into overlapping blocks. Then the discrete cosine
transform (DCT) was applied to each block to compute the DCT coefficients. In the last step,
the euclidian distance was computed to find the correspondence between the DCT coefficients.
This framework shows better detection performance. However, the false choice of block size
may lead to a reduction in forgery detection accuracy. A hybrid feature extraction-based CMFD
methodology was proposed by Bilal et al. [17]. Initially, the DWT technique was applied to an
input image to obtain the approximate sub-band. Then, SURF and BRISK feature extraction
techniques were applied to the obtained sub-band to extract the features. Next, the hamming
distance was computed to measure the similarity between the keypoints. Then, the DBSCAN
clustering approach was employed to the matched features to localize the altered content. Finally,
the RANSAC method was applied to remove the false matches. This approach is robust to
image transformation operations. However, the intense image changes in scaling, brightness, and
color reduction may degrade the detection performance. Bi et al. [18] presented a framework to
detect altered information in digital images. The input image was categorized into non-overlapping
blocks. Then, the SIFT descriptor was used to extract the keypoints from each block. To measure
the similarity between the extracted features, the adaptive patch matching algorithm was employed.
Finally, the identified doubtful patches were combined to show the final results. The technique
in [18] shows better performance to CMFD; however, it is computationally complex. A block-
based CMFDapproach was introduced by Chen et al. [19] that worked by dividing an input digital
image into non-overlapping patches. The similarity between the blocks was computed by using the
block sampled matching with the region growing (BSMRG) algorithm. Finally, the manipulated
regions were shown by using a region growing step. The method in [19] is computationally robust,
however, it is unable to define the block size automatically. Muzaffer et al. [20] proposed a SIFT
descriptor-based approach for CMFD where binarized descriptors were employed to identify the
manipulated regions. The technique [20] has reduced the search space. However, the detection
accuracy is low as compared to a simple SIFT-based approach. Emam et al. [21] presented a
novel method for CMFD that used the SIFT algorithm to extract the key features from the digital
images texture area, and the Harris corner operator to measure the keypoints from the flat areas
in the image. The keypoints from both descriptors were combined by using the Multi-support
Region Order-based Gradient Histogram (MROGH) descriptor. The forged content was computed
by measuring the similarity of fused key features. The technique [21] is robust to additive noise
attacks, however shows a low recall rate.
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3 Materials and Methods

This section presents the details of the method proposed for detecting the forensic changes
made within digital images. The introduced technique works by applying the DWT approach
together with the LTrP feature descriptor on the overlapped circular blocks of the image. The
similarity of the content is computed by employing the Jeffreys and Matusita distance method.
The complete workflow of the proposed method is presented in Fig. 2. The proposed method’s
experimental analysis shows that employing the DWT and the LTrP feature descriptor gives
promising results for identifying the digital image forgeries due to their high robustness, accurate
detection, and low computational cost.

Figure 2: Workflow diagram of the proposed method

3.1 Pre-processing
Initially, the input color image is converted to a grey-scale image by employing the Eq. (1):

imggs = (0.299× rcom)+ (0.587× gcom)+ (0.114× bcom) (1)

Here imggs represents the grey-scale image, while rcom , gcom and bcom show the red, green,
and blue components of the input image.

3.2 Dimension Reduction Using DWT
After the pre-processing step, we applied the DWT to the image for dimension reduction [22].

In DWT, the input image is shifted to the frequency domain, and its components are modified
to acquire a more robust representation of the image. The DWT approach processes the image
in a hierarchal manner, giving both the image’s spatial and frequency details [23]. It processes
the input image in horizontal, vertical, and diagonal directions to compute its four components
namely Low_Low (LL), High_Low (HL), Low_High (LH) and High_High (HH). Here, the first
letter defines the type of frequency pass either as High or Low, while the second letter determines
the type of filter employed on the image column [24]. In the proposed method, the DWT converts
the image into a sequence of wavelet coefficients related to its spatio-frequency sub-bands. Suppose
Imgθ

i shows the image sub-band at i intensity level which is 2 in our case as we have applied the
DWT approach up to level-2 while θ ∈ {LL, LH, HH, HL} . The LL component is known as the
approximate image and has the lowest intensity level. Moreover, the LL sub-band contains more
specific regional details of the original image, so, we have used it for further processing in the
proposed method. The size of the LL component is only 1/4i of the original sample. While the
HH , LH, and HL show the diagonal, horizontal, and vertical components of the input sample,
respectively.
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3.3 Division of the Image into Circular Blocks

After obtaining an approximate image Imgll2 through the DWT, we have divided the image
into circular blocks for further processing. The main reason to select the circular blocks over the
square blocks is that in the case of the square blocks, the information is diverse particularly at
the image’s corners. Therefore, the square blocks make the representation of manipulated blocks
different which affects the correct identification of the forged blocks. Hence, employing rotational
invariant keypoints set along with the circular blocks result in efficient forgery detection.

Suppose Imgll2 is distributed into the square overlapped blocks with the dimensions of L×L.
The elements of circular blocks Bj are computed by using the ratio of circular and matrix areas,
say Ca, Ma, respectively which are given by Eqs. (2) and (3) with radius R.

Ca = πR2. (2)

Ma = 4R2 (3)

and

Prc = Ca

Ma
(4)

where Prc is known as the circle parameter ratio, which is obtained by computing the ratio of
circular and matrix areas. In our method, we have obtained the final representation of blocks Bj
through a kernel window f given by Eq. (5) over each block Bj.

f = (–rSin(2πp /P) , rCos(2πp/P)) (5)

where radius r = 1 and P denotes the number of nearest neighbors for each Bj with the value
of 8 while j = {1, 2, 3, . . ., n} and 2πp is the angular velocity. In our proposed technique, each
circular block Bj has radius R= 8. So, the approximate image Imgll2 of size x× y is divided into
n = (x – 2R+ 1) × (y – 2R + 1) overlapping circular blocks.

3.4 Computing LTrP Features Over Circular Blocks

After the conversion of the approximate image Imgll2 into the circular blocks n , the LTrP [25]
is applied over them to compute the feature vector. The main reasons for selecting the LTrP over
the LBP [26], local ternary pattern (LTP) [27], and the local directional pattern (LDP) [28] are
as follows: i) The LBP, LTP, and LDP techniques work by representing an input image with two
or three different values. While in comparison, the LTrP is capable of encoding the sample image
with four different values. Therefore, the LTrP provides more detailed image information. ii) The
LBP and LTP work by employing the simple relation of central pixel’s grey value to its neighbors,
whereas the LTrP employs the direction-based relation of central pixel to its neighborhoods, there-
fore, it assists in computing efficient keypoints that are robust to scaling and rotation variations
and help in proficiently locating the CMF.
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We have obtained Bj overlapped circular blocks. So, for each block b ∈ Bj, the LTrP along

its nth order will calculate the four different values at central pixel say gcom by computing the
(n−1)th order derivatives along 0◦ and 90◦ through using the Eq. (6):

bn−1
D (gcom)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, bn−1

0o (gcom) ≥ 0 ∧ bn−1
90o (gcom)≥ 0

2, bn−1
0o (gcom) < 0 ∧ bn−1

90o (gcom)≥ 0
3, bn−1

0o (gcom) < 0 ∧ bn−1
90o (gcom) < 0

4, bn−1
0o (gcom) ≥ 0 ∧ bn−1

90o (gcom) < 0

(6)

After determining the direction of computed features, the nth order LTrP of the central pixel
gcom along its 8 neighbors denoted as gp is given by Eq. (7):

f(bn−1
D (gp), b

n−1
D (gcom)=

{
0, if bn−1

D (gp)= bn−1
D (gcom)

bn−1
D (gp), else

(7)

After computing the directions of features, the LTrP further employs three binary patterns.
By assuming the directional orientation of the central feature to 1, the LTrP is computed by using
Eq. (8):

LTrPn
P (gcom)direction=� =

N∑
n=1

2(n−1)∗f (
LTrPn

P (gcom)
)
direction=�

where �= 2, 3, 4 (8)

And

f(LTrPn
P(gcom))direction=� =

{
1, if LTrPn

P(gcom)=�

0, otherwise

}
(9)

After computing the three binary patterns, the fourth pattern known as magnitude pat-
tern (mp) can be calculated by using the values of horizontal and vertical derivatives of eight
neighborhood features, given by the Eq. (10):

mp=
P∑
p=1

2p−1∗f (Mb(gp) −Mb(gcom))|P=8 (10)

where

Mb(gp) =
√

(bn−1
00

(gp))2+ (bn−1
900

(gp))2 (11)

These computed four patterns have been utilized to describe the feature vector vj of each
block Bj which is sorted lexicographically to ease the process of CMFD as it makes similar

features close together. The feature matrix F̂ for the whole image is calculated by combining the
vectors from all the blocks and defined in Eq. (12).
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A visual representation of LTrP is given in Fig. 3 and more details about the LTrPs feature
representation can be found in [25].

F̂=

⎡
⎢⎢⎢⎢⎢⎢⎣

v1
v2
v3
.
.
.
vj

⎤
⎥⎥⎥⎥⎥⎥⎦

(12)

Figure 3: Methodology of computing the LTrP feature descriptors
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3.5 Similarity Measurement
After performing the feature vector estimation, the next step is to compute the resemblance

among them to check the image for CMF. If in the matching process, any similarities are found,
then the image is marked as forged. In the proposed method, we have employed the Jeffreys
and Matusita distance d [29] to measure the similarity between the detected data points. The
main motivation of employing the Jeffreys and Matusita distance over Euclidian and Manhattan
distance formulas is that it generalizes well to all sort of pixel distributions and works well for
high dimensional feature space as compared to Euclidian and Manhattan distances.

For two features, say xi and xj are said to be similar, if the Jeffreys and Matusita distance
dij defined in Eq. (13) is less than T . Here, T is the threshold value which is set as 0.5 for the
proposed method.

dij =
√(√

xi−√
xj

)2 (13)

3.6 Post-Processing
Finally, in the last step, to improve the effectiveness of the proposed method the RANSAC

technique [30] is employed to eliminate the false matches from the computed results. The affine
transformation matrix of the matched area is calculated by choosing the random points from it
and is defined by the Eq. (14):(
a
b

)
=

[
t1
t3

t2
t4

](
x
y

)
+

(
tx
ty

)
(14)

where (a, b) and (x, y) show the corresponding copied and pasted region’s pixels in the image.
While t1, t2, t3, t4, tx, and ty are the values of the affine transformation. Finally, a model is
computed by employing the least square method, which categorized the matched data points into
two sets namely inliers and outlier data points. To show the final results, the outliers are discarded,
and inlier data points are utilized.

4 Results and Discussions

We have performed different experiments for the performance evaluation of the proposed
method against post-processing attacks, i.e., noise, scaling, rotation, and JPEG compression. We
have used MATLAB 2015b software with the Intel core I-7 machine, 32 GB RAM, and 250 GB
hard drive for experiments.

4.1 Datasets
The evaluation experiments are performed by employing three databases namely MICC-

F220 [31], MICC-F2000 [31], and CoMoFoD [32]. A detailed explanation of databases is given in
Tab. 1. The MICC-F220 database comprises 220 samples, of which 110 samples are real, and the
remaining 110 images are forged. The MICC-F2000 dataset contains 2000 images, in which 1300
images are real and 700 are forged images. While the CoMoFoD dataset consists of 260 forged
samples. The images are distributed into 5 classes having applied manipulations i.e., rotation,
translation, scaling, distortion, and combination. Fig. 4 shows the sample images of all the given
datasets.

In Fig. 4, the first row shows images from the CoMoFod dataset while the next row shows
images from the MICC-F220 dataset, and the last row shows images from the MICC-F2000
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dataset. The first and third columns exhibit the original images, while the second and fourth
columns show forged sample images.

Table 1: A detailed description of employed datasets

Dataset name No. of images Forged images Image resolution

MICC-F220 [31] 220 110 722 × 480 pixels, 800 × 600 pixels
MICC-F2000 [31] 2000 700 2048 × 1536 pixels
CoMoFoD [32] 260 260 512 × 512 pixels, 3000 × 2000 pixels

4.2 Evaluation Metrics
We have used the different metrics i.e., precision (P), recall (R), and F1score for the per-

formance evaluation of the proposed method. These metrics are defined mathematically by
Eqs. (15)–(17), respectively:

Figure 4: Sample of images from all employed datasets
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P= Tp
Tp+Fp

(15)

R= Tp
Tp+Fn

(16)

F1score = 2× P×R
P+R

(17)

where Tp presents the forged regions in the image identified as forged, while Fp presents the
original area in the image identified as forged, and Fn represents those cases where the forged
areas are identified as the original.

4.3 Performance Testing
This section presents the proposed method’s evaluation power under the simple attacks of the

CMF strategy. Various tests are performed for the detection of a forged area in the suspected
images. In this operation, the selected region is copied and pasted in the same image. The visual
results are presented in Fig. 5, which shows that the proposed method achieves remarkable results.

Figure 5: Performance evaluation of the proposed method on different CMF datasets

In Fig. 5, the first column presents the original, fake, and the detected image results from the
MICC-F220 dataset. While the second column shows the original, fake, and the detected results of
the MICC-F2000 dataset and the last column contains the original, manipulated, and the detected
results from the CoMoFoD dataset.
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4.4 Robustness Testing
After testing the simple CMF strategy, the presented approach is tested against the post-

processing attacks, i.e., rotation, scaling, additive noise, and JPEG compression. According to the
obtained visual results, we can say that our method also performed well under post-processing
manipulations.

4.4.1 Scaling Case
To analyze the proposed method’s performance against scaling manipulation, where the tem-

pered areas are scaled before pasting using the 10 different parameters of scaling, i.e., s = 91:109
with a step size of 2. Fig. 6, shows the proposed method’s visual results against the scaling
manipulation, which exhibits the robustness of the proposed methodology. In Fig. 6, the first
column presents the visual results from MICC-F220, while the second column shows the results
of MICC-F2000, and the last column exhibits the visual results of the CoMoFoD dataset.

Figure 6: Visual results of the proposed method on the scaling CMF attack

4.4.2 Rotational Case
The effectiveness of the introduced method is also tested under the condition of rotational

manipulation, where the forged portion of the image is rotated to different angles (θ = 0:10
with step 2). The visual results are presented in Fig. 7, which shows that the presented approach
outperforms and effectively detects the forgery under rotation manipulations. In Fig. 7, the first,
second, and third columns show results of the proposed method on the sample images of
MICC-F220, MICC-F2000, and CoMoFoD datasets, respectively.

4.4.3 JPEG Compression Case
The proposed method is also evaluated against the JPEG compression attacks with a quality

factor of 70 and 80 and achieved good results. The visual results are presented in Fig. 8, which
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shows the proposed method’s capability to identify the forensic changes under JPEG compression
attacks.

Figure 7: Visual results of the proposed method on the rotational CMF attack

Figure 8: Visual results of the proposed method on the JPEG compression attack

In Fig. 8, the visual results of the proposed method on the samples from the MICC-
F220, MICC-F2000, and CoMoFoD datasets are shown in the first, second, and third columns,
respectively.

4.4.4 Additive Noise Case
The robustness of the presented method is tested under additive noise operation as well. The

proposed method’s visual results are presented in Fig. 9, in which images contain the Gaussian
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noise with zero mean and varying values of the standard deviation. According to the visual results
shown in Fig. 9, it can be concluded that the proposed method can effectively detect forgery under
the additive noise attack.

Figure 9: Visual results of the proposed method in the presence of additive noise CMF attack

In Fig. 9, the visual results of the proposed method on the samples from the MICC-F220,
MICC-F2000, and CoMoFoD datasets are reported in the first, second, and third columns,
respectively.

4.4.5 Multiple CMF Case
After the robustness testing, we have analyzed the proposed method’s performance on multiple

CMF where when one region is copied and pasted on multiple places of an image. The multiple
forged region results are presented in Fig. 10, which demonstrates that the proposed method can
precisely identify the images of multiple forged areas.

Figure 10: Visual results of the proposed method in the presence of multiple-CMF attacks
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4.5 Comparisons and Discussions
The experimental results of the proposed method against various post-processing operations

are presented in Sections 4.3 and 4.4 that confirmed the efficacy of the proposed method. In this
section, we have evaluated the performance of the presented technique against the state-of-the-art
approaches. For the CoMoFod dataset, we have compared the proposed method’s performance
with [33–35]. Similarly, for the MICC-F2000 dataset, the proposed method’s performance is evalu-
ated with the latest techniques in [36–38], and for the MICC-F220 dataset, we have compared the
performance of the proposed method with [39–41]. The performance comparison of the proposed
method with the state-of-the-art techniques on all the datasets is reported in Tab. 2. The reported
results show that the proposed method exhibits better detection accuracy than the techniques
in [33–41] as the method in [33] works well for rotational variations, however, exhibits lower
detection accuracy for other post-processing operations. While the methods in [34,35] are robust
to the CMDF under the presence of noise and compression in input samples. However, not
perform well for rotational and scale variations in the input image. The frameworks in [36–38] lack
the detection performance under resizing, rotation, and illumination changes attacks. Moreover,
the methods in [39–41] show less CMFD accuracy under the additive noise, scaling, and light
variations post-processing attacks. While the proposed method achieved promising performance
under the presence of all post-processing attacks in comparison to the other CMFD methods. The
main reason for the robust performance of the presented approach is due to the accurate detection
and localization of circular block-based image features computed using the LTrP descriptor. More-
over, the proposed method is more proficient against post-processing operations as compared to
comparative approaches, as using LTrP along with circular blocks enables to generate the rotation
and scale-invariant feature vector. Additionally, features computed by LTrP exhibits more detailed
image information by utilizing the direction-based relation of central pixel to its neighborhoods.
Therefore, the proposed method outperforms the rest of the comparative CMFD methods.

Table 2: Performance comparison of the proposed method with state-of-the-art approaches

Methods Precision Recall F1-Score

CoMoFoD dataset

[33] 65.05 58.19 58.30
[34] 32.35 36.87 32.12
[35] 65.47 73.48 64.07
Proposed mehtod 92.00 80.50 85.86

MICC-F2000 dataset

[36] 71.88 95.83 82.14
[37] 89.36 87.50 88.42
[38] 96.34 89.14 92.60
Proposed method 97.20 96.10 93.43

MICC-F220 dataset

[39] 85.70 84.80 85.30
[40] 90.10 90.80 90.80
[41] 91.67 92.86 95.12
Proposed method 92.30 95.40 96.77
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5 Conclusion

In this article, we have proposed a block-based approach based on the DWT along with the
LTrP features to detect the forensic changes from the digital images. First, a low approximation
image sub-band is obtained through the DWT from the suspected image, which is further divided
into circular blocks. Then, the LTrP descriptor is applied over each circular block to obtain
the final feature matrix. After that, the Jeffreys and Matusita distance formula is applied over
each block’s computed features to measure the similarity. Finally, RANSAC is used to remove
the false matches. The proposed method exhibits promising results as compared to the state-
of-the-art forgery detection methods under the occurrence of different post-processing attacks
such as rotational changes, scale variations, compression, additive noise, and intensity changes.
The experimental results of the proposed method also demonstrate that it performs better than
other CMFD methods in terms of precision, recall, and F1-score. As the proposed method
can effectively detect the single and multiple copy-move forgeries in the presence of different
post-processing attacks on images. It can play a vital role in image forensics-based applications.
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