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Abstract: Due to the inability of the Global Positioning System (GPS) sig-
nals to penetrate through surfaces like roofs, walls, and other objects in
indoor environments, numerous alternative methods for user positioning have
been presented. Amongst those, the Wi-Fi fingerprinting method has gained
considerable interest in Indoor Positioning Systems (IPS) as the need for line-
of-sight measurements is minimal, and it achieves better efficiency in even
complex indoor environments. Offline and online are the two phases of the
fingerprinting method.Many researchers have highlighted the problems in the
offline phase as it deals with huge datasets and validation of Fingerprints
without pre-processing of data becomes a concern. Machine learning is used
for the model training in the offline phase while the locations are estimated
in the online phase. Many researchers have considered the concerns in the
offline phase as it deals with huge datasets and validation of Fingerprints
becomes an issue. Machine learning algorithms are a natural solution for
winnowing through large datasets and determining the significant fragments
of information for localization, creating precise models to predict an indoor
location. Large training sets are a key for obtaining better results in machine
learning problems. Therefore, an existing WLAN fingerprinting-based multi-
story building location database has been used with 21049 samples including
19938 training and 1111 testing samples. The proposedmodel consists of mean
and median filtering as pre-processing techniques applied to the database for
enhancing the accuracy by mitigating the impact of environmental dispersion
and investigated machine learning algorithms (kNN, WkNN, FSkNN, and
SVM) for estimating the location. The proposed SVM with median filtering
algorithmgives a reducedmean positioning error of 0.7959mand an improved
efficiency of 92.84% as compared to all variants of the proposed method for
108703 m2 area.

Keywords: Indoor positioning system; fingerprinting; received signal
strength indicator; mean position error; support vector machine

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2021.018205


1632 CMC, 2021, vol.69, no.2

1 Introduction

Finding the location of a person can be defined as localization [1]. In ancient times, different
systems were developed for localization and navigation of ships in the sea but some were capable
of land navigation. In modern days, tracking an object can be considered equivalent to that.
Currently, the availability of GPS on our smartphones helps us to localize our present location.
Localization can be divided into self-localization and aided localization [2]. The innate ability of
a person to locate his current position using natural abilities like sight, sense, hearing, etc., is
defined as self-localization while making use of electronic devices to perform localization for a
person is known as aided localization. Aided Localization is further classified into outdoor and
indoor localization [2].

During the last decade, there has been a massive development related to the domain of
localization. The expansion of modern communication technologies has resulted in widespread
positioning services. In outdoor environments, adequate services have been provided by GPS
for positioning and localization. GPS works efficiently with LoS and is not suitable for indoor
locations because the signals do not penetrate through hard surfaces. Their attenuation and dis-
persion are mostly caused by the rooftops, walls, and numerous other objects. Therefore, different
localization systems for indoor environments have been proposed and developed by the researchers
with their pros and cons. The fingerprinting method emerges as most prominent amongst them as
it provides better precision, even the practical implementation is relatively arduous, however, the
working is very simple or least complex as opposed to other localization techniques. Moreover,
with fingerprinting no additional equipment is needed and it can be introduced using existing
infrastructure [2].

The measurement of signal power from an Access Point (AP) to a receiver that can be
sampled in the WLAN environment without any additional requirement can be defined as
a Received Signal Strength Indicator (RSSI). RSSI-based fingerprint positioning method uses
location-dependent features and the position is estimated by using these features. Offline and
online are the two phases involved in the fingerprint-based indoor positioning. During the offline
step, a database is developed that has fingerprints in it where RSSI values are collected from
APs at predetermined Reference Points (RPs) over a fixed time. The fingerprints stored in the
database consist of the reference point position and every single RSSI value collected from each
access point in Decibel Milliwatts (dBm). To successfully locate the fingerprint, it is important
to apply some pre-processing techniques on the RSSI readings because of the noise present in
the environment. In the online phase, RSSI readings from APs at random RPs are taken by the
mobile users in the form of queries. Their suitable location would ultimately be determined by
the machine learning algorithms through fingerprint matching. Mean position error is attained as
a result of the difference between the actual and predicted location of a user in motion [3]. The
baseline working of the Wi-Fi fingerprinting method is depicted in Fig. 1.

The main contributions of this paper are as follows.

• We have proposed a solution for indoor localization where mean and median filtering
techniques are used as pre-processing techniques with the machine learning algorithms
(kNN, WkNN, FSkNN, and SVM) to enhance the localization accuracy and efficiency of
an IPS.

• Large training sets are key for obtaining better results in machine learning problems.
Therefore, we have used the largest database available online created by authors in [4] and
further processed it by applying the mean and median filtering.
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• Outliers were removed from the database after the proposed pre-processing techniques and
then machine learning algorithms were used to estimate the position of a mobile user.

• Moreover, to validate the superior performance of the proposed solution, a comparative
analysis was done where machine learning algorithms were compared with one another with
mean, median, and without filtering.

• The results have shown that the proposed SVM with median filtering algorithm outper-
formed other investigated machine learning algorithms with mean and median filtering.

Figure 1: Wi-Fi fingerprinting method

The remaining paper is organized as: Section 2 briefly discusses the related work. Section 3
explains the pre-processing techniques and machine learning algorithms. The proposed model is
elaborated in Section 4 followed by the simulation results and it‘s discussion in Sections 5 and 6.
Section 7 summarizes the paper as conclusions.

2 Related Work

The collection of wireless signal samples as fingerprints from nearby Wi-Fi APs is the most
popular method for an IPS [5–8]. The k-Nearest Neighbors (kNN) algorithm was initially used
in RADAR for indoor positioning that takes k RPs with the least signal distance between the
unspecified RSS vector of the online user and the identified location databases [9,10]. Li et al. [11]
proposed the Improved Fuzzy C-Means (IFCM) algorithm for the regional division in the offline
training phase as well as the Pearson Correlation Coefficient (PCC) based weighted k-Nearest
Neighbor (WkNN) algorithm in the online positioning phase, achieving a mean positioning error
of 2.53 m. However, the proposed model didn’t discuss the optimization of the deployment strat-
egy of APs according to the actual environment to maximize the discrimination of fingerprints
in each region. In [12], a landmark graph-based fingerprint collection technique was suggested
to automatically connect the collected fingerprints that do not require active user participation
and achieved an average positioning error of 1.5 m. Moreover, this model may fail in open
large indoor areas where spatial constraints are insufficient. Abbas et al. [13] integrated a stacked
de-noising deep learning model of auto-encoders and a probabilistic technique for minimizing
noise, obtaining the mean position error of 1.21 m. However, its performance may not be robust
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to different devices and different densities of APs in different environments. Hoang et al. [14]
suggested Recurrent Neuron Networks (RNNs) using Wi-Fi fingerprinting for indoor localization,
where the solution aims to position the trajectory instead of finding the position of the user one
at a time. For both input RSSI data and sequential output positions, a weighted average filter was
suggested, achieving an average position error of 0.75 m. These results were however obtained in
a relatively smaller indoor environment. In [15], an extraction of fingerprint features known as
the Fisher Score-Stacked Sparse Auto-Encoder (Fisher-SSAE) technique was proposed building
a hybrid localization model to prevent major coordinate localization errors accredited to sub-
regional localization errors obtaining a mean position error of 2.09 m. However, the positioning
moving target was not taken into account in this study. Sun et al. [16] suggested a new accurate
machine learning algorithm that first uses RSSI to encode the monitoring area and then grid
regions are trained using Multi-Layer Perceptron (MLP), reducing the size of the fingerprint
database by more than 80% with enhanced localization accuracy. An enhanced neighboring RPs
selection method for Wi-Fi-based indoor localization was suggested in [17]. To enhance their
selection phase, the physical distances between the test point and the neighboring RPs are used
to cluster k’s nearest neighbors. A mean position error of 2.6 m was obtained using the proposed
algorithm that outperformed the standard kNN, WkNN, and TPIC algorithms. Moreover, no
pre-processing techniques were applied in the proposed model. Zhang et al. [18] suggested a
new deep learning architecture based on fingerprint-based localization under commercial Long-
Term Evolution (LTE) systems. The Channel State Information (CSI) is collected from LTE base
stations and the multiple positioning estimates are assembled by a time-domain fusion approach
obtaining a mean position error of 0.47 m with only 15 RPs in an indoor environment. Authors
in [19] proposed Data Rate (DR) fingerprinting to achieve passive localization where DRs were
used to replace the RSSI to form the fingerprints. However, optimizing the distribution of RPs
was not discussed in the study as localization accuracy is highly related to the distribution of
RPs. Bai et al. [20] proposed a Wi-Fi fingerprint-based indoor mobile user localization method
that integrates a Stacked Improved Sparse Auto-encoder (SISAE) and a recurrent neural network
obtaining a mean position error of 1.60 m. However, these algorithms were applied for dimension
reduction of RSSI features and may not be suitable for the scenarios with a few deployed APs.
In [21], a method is devised which learns to localize with high accuracy while minimizing the
total number of processes based on reinforcement learning. The MIT campus dataset is trained
on the proposed model and its superior performance is validated by comparing it with state-
of-the-art techniques. In [22], a semi-supervised deep reinforcement learning model is proposed
which fits smart city applications as it consumes both labeled and unlabeled data to improve
the performance and accuracy of the learning agent. The proposed model learns the best action
policies resulting in a close estimation of the target locations with an improvement of 23%
in terms of distance to the target and at least 67% more received rewards compared to the
supervised deep reinforcement learning model. In [23], a fingerprinting-based kNN and lateration
based Minmax position estimation hybrid technique is proposed. This hybrid approach utilizes
Euclidian distance formulation for distance estimates rather than indoor radio channel modeling
which is used to convert the received signal to distance estimates. Simulation results validate the
superior performance of the proposed hybrid approach in terms of mean error compared to
investigated approaches. However, adaptive filters can also be applied to further minimize the
errors in the offline phase that will eventually increase positioning accuracy. Another technique by
combining the capabilities of different algorithms for AP deployment and AP selection processes
was proposed in [24]. Moreover, the Genetic Algorithm (GA) coupled with Enhanced Dilution
of Precision (EDOP) is used for the deployment of an additional AP in the already existing
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infrastructure, while the AP selection is implemented using Position Vectors (PV) based algorithm
significantly improving the performance of an IPS. Li et al. suggested a Feature Scale k-Nearest
Neighbor (FSkNN) algorithm in [25] to improve localization accuracy when a new model is
created, including a scaling RSS level for measuring efficient signal distances between a signal
vector and fingerprints in the radio map that achieve an average position error of 1.7 m. RSS
level is used for the measurement of efficient scalable signal distances. However, multipath fading
was a major concern in their findings which can vary the RSS values. In [26], a new approach
is suggested to improve the accuracy of the WkNN algorithm by 33.82% by changing the weight
of the neighboring reference nodes obtaining a mean position error of 0.9 m in a relatively small
indoor environment with few RPs. A comparison of different localization methods is shown in
Tab. 1.

Table 1: Comparison of different localization methods

Author Methods Mean position error

Li et al. [11] IFCM & WkNN 2.53 m
Gu et al. [12] Landmark graph-based

fingerprint collection
method

1.5 m

Abbas et al. [13] Deep learning model 1.21 m
Hoang et al. [14] RNN 0.75 m
Wang et al. [15] Fisher-SSAE 2.09 m
Sun et al. [16] MLP 1.73 m
Xue et al. [17] RP selection method 2.6 m
Bai et al. [20] SISAE & RNN 1.60 m
Ayesha et al. [24] GA & EDOP 1.149 m
Li et al. [25] FSkNN 1.7 m
Li et al. [26] WkNN 0.9 m

3 Background

3.1 Pre-Processing Techniques
3.1.1 Mean Filtering

Mean filtering is one of the pre-processing techniques that is used to minimize the noise in
the RSSI database. It plays a vital role in the indoor positioning system as it takes an average of
the recorded RSSI samples thus, minimizing the effect of environmental factors. Mean filtering is
applied to the database before the online phase where machine learning algorithms are used [1–3].
Mean X̄ can be defined as:

X̄ =
∑N

i=1 Xi
N

(1)

where
∑

X the sum of all the x values and N is the number of x values.
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Consider a case when an extreme value ‘y’ is added to the data set due to noise. Then Eq. (1)
becomes:

Xy=
∑N−1

i=1 Xi+ y

N
(2)

Eq. (2) shows that if y > 0 then, Xy > X̄ . However, if y < 0 then, Xy > X̄ . This proves that
mean is affected when an extreme value is added to the data set. Therefore, some sort of filtering
is required which can tackle the extreme values in the data set.

3.1.2 Median Filtering
Median filtering is used to remove outliers from the recorded RSSI values. By applying

median filtering, the RSSI values on a current reference point, from a particular access point are
arranged in ascending order, and the median is calculated. If the number is odd then simply the
central value is taken as median but if the number is even then the median is the average of the
two central values.

If ‘n’ is odd, then median is given by:

Median =
(n+ 1)

2

th

term (3)

However, if ‘n’ is even, we have:

Median =
((

n
2

)th

term +
(
n
2

+ 1
)th

term
)

/2 (4)

Consider two cases when an extreme value ‘y’ is added to the data set due to noise. Then
Eqs. (3) and (4) becomes:

Mediany =
(n+ 1)

2

th

term (5)

Mediany =
((n

2

)th
term +

(n
2

+ 1
)th

term
)

/ 2 (6)

From Eqs. (5) and (6), we can observe that the median remains unchanged when an extreme
value is added to the data set. The samples are arranged in either ascending or descending order
and extreme values are never used while calculating the median. Therefore, median filtering is
immune to outliers.

3.2 Machine Learning Algorithms
3.2.1 k-Nearest Neighbor (kNN) Algorithm

For supervised machine learning, the kNN algorithm can be deployed to unravel the problems
related to both classification and regression. It determines the location through the distance
between patterns and reference patterns present in the database. Various formulas can be used for
distance calculation, e.g., Manhattan distance or Euclidean distance. Depending on their reciprocal
distance, it decides the best matching fingerprints and averages the position of the same k patterns.
Before that, the reference points relating to these k fingerprints are used to find the position
predicted [25]. To find the difference between the RSSI vector being assessed and one of the
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fingerprints, the vectors thus serve as the main component in pattern matching algorithms. We
can also say the similarity between the two matching objects is essential. Euclidean distance can
be calculated according to Eq. (7).

Let (RSS1, RSS2, . . ., RSSN ) represent an RSS vector reported by a mobile station (MS) for
localization, where RSSx represents the RSS value received from the xth AP by the MS. The
distance can be calculated as:

dm =
√√√√ N∑

n=1

(RSSIm,n− rn(t))2 (7)

where the mean RSS value received at the mth RP (1 ≤ m ≤ M) and nth AP (1 ≤ n ≤ N) with
M and N representing the total number of RPs and APs, respectively is represented by RSSIm,n.

The fingerprint associated with the mth RP is represented by the mth row, which has a known
location in terms of coordinates.

3.2.2 Weighted k-Nearest Neighbor (WkNN) Algorithm
Weighted kNN is a modified version of k nearest neighbors. Weight is calculated based on the

weighting function which is the reciprocal of the distance between the neighbors. The choice of
the hyper parameter k is one of the many limitations that influence the kNN algorithm’s efficiency.
The algorithm may become more vulnerable to outliers when the value of k is very small. Too
many points may be included in the field from other groups when k is very high. Another problem
is the way to incorporate class names. The simplest technique is for majority voting, however,
if the closest neighbors are far different from each other and the closest neighbors display the
object’s class more precisely, it could be a problem [26].

Assuming that there are M RPs and N APs, the signal strength vector of ith RP is RSSi=
RSSi1, RSSi2,. . ., RSSij, . . ., RSSiN, where i= 1, 2,. . ., M and j = 1, 2,. . ., N and the fingerprinting
database is formed by all the vectors. Suppose RSSun= RSS1, RSS2,. . ., RSSj,. . ., RSSN is the RSSI
vector measured from all the APs on the unknown points. The distances between RSSun and all
the RSSi are calculated with Eq. (8) to obtain the location of this unknown point (UP), where
Manhattan distance (or sum of absolute differences, SAD) is represented by q= 1 and Euclidean
distance (or sum of the squared differences, SSD) is represented by q= 2 respectively.

Di =
⎛
⎝ N∑
j=1

|RSSij−RSSj|q
⎞
⎠

1/q

, i= 1, 2 . . . . . .M (8)

The minimum distance of k is then chosen for the next step in all Di. An UP’s coordinate
can be represented by:

Cun = 1
k

k∑
t=1

Ct (9)
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The coordinates of UP and the corresponding RP are respectively denoted by Cun and Ct.
The WkNN algorithm assigns a weight according to the distance value to each coordinate. The
weight Wi of the ith selected RP can be calculated as:

Wi =
1
Di∑k

j=1

(
1
Dj

) , i= 1, 2 . . . . . .k (10)

For WkNN, Eq. (9) is updated as:

Cun =
k∑
i=1

Wi Ci (11)

3.2.3 Feature Scaling Based k-Nearest Neighbor (FSkNN) Algorithm
FSkNN algorithm introduces RSS level-based scanning to calculate the effective signal differ-

ence between various signal vectors during the corresponding synchronization [25,27]. d
′
m shows

the fingerprint attached to the mth RP and an appropriate signal distance between the online
applications to measure it by:

d ′m =
√√√√ L∑

l=1

(RSS m,l − RSS l )
2 ∗w(RSS l ) (12)

The quantity of the effective RSS distance is being shown by scaling the weight function w(.).
At the RSS level of RSSl, one unit of RSS shift is comparable and it must also be noted that
its esteem can differ from the actual RSS. The effective distance of the signal is computed by
Eq. (12) in such a way that the relation between actual signal distance and geometrical distance
is explained in a better way. In a complex indoor environment, it is hard to provide a closed-form
expression for w(.) In such a simulation model, the scenario is treated by dividing the entire RSS
plane equally into n (n ≥ 1) intervals, after which a single fixed value as a scaling weight for each
interval is calculated after precise measurements and repeated tuning. If the value of n is equal
to 1, then the FSkNN model will be degraded to the kNN model. RSS-value-to-scaling-weight
plotting is therefore known as a type of a step function, such as:

w(x)=
N∑
i=1

a i X i (x) (13)

where x represents the RSS value and the scaling weight at RSS vector (x) for an actual difference
of the signal is represented by w(x). Let Ai is the ith RSS break 1 ≤ i ≤ n, for that Ai interval
with αi as the coefficient. The sign function xi (x) of the same interval Ai, is expressed as:

X i (x)=
{
1, x ∈ Ai
0, x /∈ Ai

, 1≤ i≤ n (14)

If a value of RSS (x) lying in the interval Ai is collected by the mobile station then, from
Eq. (14), Xi (x) will be equal to one while all other values i.e., Xi (x) having position j �= i,
equal to zero. After that, the accomplished outcome w(x) from Eq. (14) (equivalent αi) is used to
measure the distance of the effective signal in Eq. (13) as a scaling weight for RSS value x.
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3.2.4 Support Vector Machine (SVM) Algorithm
SVM has become popular due to its classification/regression effect, a relatively new multi-

variate statistical approach. A support-vector network that can be used for supervised learning
models is a classic support SVM. This model is a binary, non-probabilistic classifier that can be
used to classify the hyperplane that distinguishes the training set’s classes. It is possible to evaluate
the predicted mark of a previously unobserved data point by the side of the hyperplane it falls
on [28].

SVM is an exceptional supervised learning model that can handle high-dimensional data sets
effectively [28]. Support vectors that can categorize every new data point in the network are the
training points. Not only can SVMs perform binary classification, but they can also do multiclass
classification. Non-linear classification can also be carried out by SVMs, which can help find the
hyperplane of a non-linear operating input vector. An input variable can be mapped into a high-
dimensional space for features.

A linear support vector regression challenge may be designated as a restricted optimization
problem defined as [27].

min
w,b,ε

f (w,b, ε)= 1
2
wTw+C

n∑
i=1

εi

Subject to yi(wTxi+ b)− 1+ εi ≥ 0, i= 1, 2 . . .n

(15)

where w is the standard hyperplane vector, b is the hyperplane offset control parameter, ε controls
the width of the ε-insensitive zone, used to fit the training data. The value of ε can affect
the number of support vectors used to construct the regression function. The value of epsilon
determines the level of accuracy of the approximated function. It relies entirely on the target
values in the training set. If epsilon is larger than the range of the target values, we cannot
expect a good result. If epsilon is zero, we can expect overfitting. Choosing epsilon to be a certain
accuracy does of course only guarantee that accuracy on the training set; often to achieve a
certain accuracy overall, we need to choose a slightly smaller epsilon. Therefore, ε = 0.1 was
chosen as it gives the best results as reported in [28]. The degree of the penalty for the violation
is defined by the parameter C > 0. Besides, the parameter C is a hyperparameter that is chosen
either by cross-validation or by Bayesian optimization.

4 Proposed Model

The proposed model suggests using mean and median filtering as pre-processing techniques
with the investigated machine learning algorithms (kNN, WkNN, FSkNN, and SVM) to improve
the efficiency of an indoor positioning system. The block diagram of our proposed model is
shown in Fig. 2.

Figure 2: Proposed model block diagram
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The pseudo-code of the kNN algorithm for the proposed model is shown below:

Algorithm 1: kNN Algorithm
Input:
• Pre-processed training dataset T.
• Distance defining function D.
• An integer k.
Output:
• Estimated location.
• Mean position error.
Steps:
For a testing dataset X, for which we want to predict its output variable dataset Y:
1. Calculate all the distances of this testing dataset X with the other fingerprints of the
training dataset T.
2. Take k fingerprints from the training dataset T close to X using the distance calculation
function D.
3. Take the values of Y from the k fingerprints taken and calculate the mean of Y deductions.
4. Return the values calculated in Step 3 as the values that were predicted by kNN for testing
dataset X.

For the weighted kNN, any function may be used as a kernel function whose value decreases
as the distance increases. The inverse distance function is the simplest function used for this
purpose. The pseudo-code of the WkNN algorithm for the proposed model is shown below:

Algorithm 2: WkNN Algorithm
Input:
• Pre-processed training dataset T.
• Distance defining function D.
• An integer k.
Output:
• Estimated location.
• Mean position error.
Steps:
For a testing dataset X, for which we want to predict its output variable dataset Y:
1. Calculate all the distances of this testing dataset X with the other fingerprints of the
training dataset T.
2. Predict the class of the query point, using distance-weighted voting.
3. Take the values of Y from the k fingerprints taken and calculate the mean of Y deductions.
4. Return the values calculated in step 3 as the values that were predicted by WkNN for
testing dataset X.

The pseudo-code of the FSkNN algorithm for the proposed model is shown below:



CMC, 2021, vol.69, no.2 1641

Algorithm 3: FSkNN Algorithm
Input:
• Pre-processed training dataset T.
• Distance defining function D.
• An integer k.
Output:
• Estimated location.
• Mean position error.
Steps:
Step 1: Offline phase
• For all RPs on the radio map, save Reference files (Rf )
• w(.): tuning coefficient
• Rf /2: Representation
• C: Evaluation
• αi: Optimization
Step 2: Online phase
• dm: Euclidean distance ×ω(Rfi)
• D: sorting in ascending order and select “k” Rf
• P(x,y): taking an average of set k

Representation, evaluation, and optimization are the three stages of the FSkNN model. In
representation, a filtered training set prepared the fingerprints with known coordinates for local-
izing a mobile user with an unknown position. The testing set was used for iteratively evaluating
the localization performance of adjusted coefficients obtained during different iterations. The sum
of distance errors denoted by cost based on the testing set was calculated by Eq. (16) for each
set of coefficients obtained in the evaluation phase.

Cost=
m∑
i=1

√
(x i − x′i )2+ (y i − y′i )2 (16)

where m is the total no of features and xi and yi are the actual coordinates of the ith element
in the testing set. The RPs present in the testing set was taken as anonymous locations in the
evaluation process. Larger sum results in greater accuracy of the positioning. Thus, the optimal
solution is obtained by using coefficients to make cost = 0. In optimization, new coefficients were
searched by simulated annealing (SA) for obtaining better accuracy. Coefficients were changed
randomly during each iteration. This whole process continued until the iteration number reached
a pre-set maximum number.

Support Vector Regression (SVR) is quite distinct from other models of regression. To predict
a continuous variable, it uses the SVM algorithm. SVR tries to fit the best line within a predefined
or threshold error value while other linear regression models attempt to minimize the error
between the predicted value and the actual value. The pseudo-code of the SVM algorithm for the
proposed model is shown below:
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Algorithm 4: SVM Algorithm
Input:
• Pre-processed training dataset T.
• Distance defining function D.
• Parameters: Epsilon (ε), Tolerance (C).
Output:
• Estimated location.
• Mean position error.
Steps:
1. Choose kernel: kernel type (linear, gaussian).
2. Form Correlation matrix: K̄
3. Vector of values corresponding to training set: Ȳ
4. Evaluate kernel for all pairs of points in the training set and add the regularized results in
the matrix.
5. Model training to get contraction coefficients α = {αi}
6. To estimate the unknown value, Ỹ, for a test point X̃, take the inner product of α and the
correlation matrix K̄.

5 Simulation Setup

The system parameters for an indoor simulation environment have been listed in Tab. 2. The
total area of the real-world environment is 108703 m2 along with 933 RPs and 520 APs. The
RSSI values are the negative integer values that are measured in dBm (−100 dBm is considered as
a very weak signal while 0 dBm is an extremely good signal). It is very important to deploy access
points at suitable positions so that the RSSI signal from every AP is received at the current RP.
When no signal is received at the given RP then that signal is simply replaced by −100 dBm in
the database. Each reading represents the real-world coordinates using three values, the longitude
and latitude coordinates, and the building floor.

Table 2: Simulation parameters

Parameters Values

No. of RPs 933
No. of APs 520
Area 108703 m2

Training samples 19938
Testing samples 1111
k in kNN 3
k in WkNN 3
k in FSkNN 5
ε in SVM 0.1

Fig. 3 shows the map of the Jaume I University (UJI) Campus where red, green, and blue
refer to the multi-floor TI, TD, and TC buildings respectively. A reference point is represented by
the blue dot on the interior of a TI building.
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Figure 3: Map of UJI campus

Data were collected by more than 20 users using 25 different mobile devices [4]. An android
application CaptureLoc was developed in [4] to take readings for the offline phase. All the required
information is gathered by this application and then sent to a centralized server where it is
stored permanently. Due to the challenge of the WLAN signal propagation [29], this phase is
automatically repeated 10 times for every captured spot. To choose the user identifier and the
position where the capture is taken, the user interface framework is essential. Fig. 4 shows the
user-device interaction. Capturing is done (red circle) on the left when the button, SendFingerprint,
starts the collection and send procedure. Four errors are reported on the right side as a result of
the capturing phase when the location is not captured correctly.

Figure 4: User-device interaction using CaptureLoc

To create the training set, all the closed spaces of the three buildings (offices, laboratories,
classrooms) were deemed valuable locations for capturing. Then, for all the considered closed
spaces, an RP is chosen inside each space and at least one RP outside each space (i.e., in
corridors). At the center of the closed space, the point inside the space is located, while the outside
point is located in front of the door. One RP was chosen for each entry if there are several
accesses (door). A graphical example of the positioning and location of the RPs has been shown
in Fig. 5. Red points are the points within closed spaces where RPs took before the door are blue
points (outside the spaces).
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Figure 5: RP positioning

ValidateLoc, an android application created in [4], to further collect the validation points. The
operation phase is performed by the application by sending the necessary information from a
centralized server (only APs detected and RSSI levels) and it gets a point inside a building (due
to its longitude, latitude, floor) from the server. The application validates the location from the
user. If the location is correct, the Wi-Fi fingerprint will be sent to the server and is stored in a
predicted location. The application would otherwise ask the user for the exact location and the
information is submitted to be processed on the server-side. An execution example of ValidateLoc
is shown in Fig. 6. The first picture displays the location and queries the user if the location is
right. The second image tells the user of the successful entry of the fingerprint validation into
the server. The blue point represents the expected location whereas, the position assigned to the
fingerprint is represented by the green dot.

6 Results & Discussion

In this section, simulation results of the pre-processing techniques used with the investigated
machine learning algorithms (kNN, WkNN, FSkNN, and SVM) are compared with one another.
MATLAB software (R2016a) is used for simulation purposes.

The standard metric for performance evaluation of IPS algorithms is localization accuracy
and precision. Localization accuracy is defined as the mean position error diverged from actual
location whereas the distribution of positioning errors is considered as positioning precision [30].

The cumulative distribution function (CDF) of kNN, WkNN, FSkNN, and SVM algorithm
with mean, median, and without filtering is shown in Figs. 7–10 respectively.

Fig. 7 illustrates that kNN using median filtering outperforms kNN with mean filtering and
without filtering. The mean position error obtained with median filtering is 4.2581 m as compared
to the mean position error of 5.0896 m and 5.9638 m with mean and without filtering. So, it is
clear that median filtering when used with un-filtered kNN, the mean position error is improved
by 28.6%.

In Fig. 8, WkNN using median filtering outperforms WkNN with mean filtering and without
filtering. The mean position error with median filtering is 2.7604 m as compared to the mean
position error of 3.1511 m and 3.7602 m with mean and without filtering. So, it is clear that
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median filtering when used with un-filtered WkNN, the mean position error is improved by
26.59%.

Figure 6: ValidateLoc phase

Figure 7: CDF plot of kNN algorithm with mean, median, and without filtering

It can be seen in Fig. 9, FSkNN using median filtering outperforms FSkNN with mean
filtering and without filtering. The mean position error obtained with median filtering is 1.5461
m as compared to the mean position error of 2.2361 m and 2.6743 m with mean and without
filtering. So, it is clear that median filtering when used with un-filtered FSkNN, the mean position
error is improved by 42.19%.

Fig. 10 depicts that SVM using median filtering outperforms SVM with mean filtering and
without filtering. The mean position error obtained with median filtering is 0.7959 m as compared
to the mean position error of 1.1139 m and 1.4791 m with mean and without filtering. So, it is
clear that median filtering when used with un-filtered SVM, the mean position error is improved
by 46.2%.
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Figure 8: CDF plot of WkNN algorithm with mean, median, and without filtering

Figure 9: CDF plot of FSkNN algorithm with mean, median, and without filtering

The mean positioning error of various machine learning algorithms with and without filtering
is shown in Tab. 3. The CDF of different algorithms using mean and median filtering as pre-
processing techniques is shown in Figs. 11 and 12. Results show that when median filtering is
used with the machine learning algorithms, it outperforms the mean and no filtering.

Applying median filtering on kNN, WkNN, FSkNN, and SVM improve the efficiency in
comparison with mean filtering by 16.34%, 12.4%, 30.86%, and 28.55% respectively. From Fig. 11,
it is clear that SVM with mean filtering outperforms other machine learning algorithms as it
improves the mean position error by 78.12% in comparison with kNN. Fig. 12 shows that SVM
with median filtering outperforms other machine learning algorithms as it improves the mean
position error by 81.31% in comparison with kNN.

So, overall proposed SVM with median filtering algorithm gives us the best results in terms
of mean position error as it outperforms other machine learning algorithms which are using both
mean and median filtering as depicted in Fig. 13. It can also be seen from the above results that
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machine learning algorithms perform better when they are used with the pre-processing techniques
of mean and median filtering which is our proposed model.

Figure 10: CDF plot of SVM algorithm with mean, median, and without filtering

Table 3: Mean position error comparison

Algorithms No filtering Mean filtering Median filtering

SVM 1.4791 m 1.1139 m 0.7959 m
FSkNN 2.6743 m 2.2361 m 1.5461 m
WkNN 3.7602 m 3.1511 m 2.7604 m
kNN 5.9638 m 5.0896 m 4.2581 m

Figure 11: CDF comparison of machine learning algorithms with mean filtering
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Figure 12: CDF comparison of machine learning algorithms with median filtering

Figure 13: Mean position error comparison of machine learning algorithms with mean, median,
and without filtering

Determining the value of the ‘k’ parameter is very important when it comes to kNN, WkNN,
and FSkNN as it affects the accuracy of the proposed model. If lower values of k are chosen
then the model will learn to predict more locally. However, if larger values of k are chosen then
the model will learn to predict more globally. Increasing the value of k will improve the mean
position error until it becomes constant. The larger values of k provide more smoothing which
might or might not be desirable [31].

Fig. 14 depicts the performance of machine learning algorithms varying the value of k using
mean and median filtering.
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Figure 14: Performance of machine learning algorithms using mean and median filtering with
varying k

It is obvious from Fig. 14 that k = 3 is a suitable choice for both kNN and WkNN algo-
rithms. Moreover, for both mean and median filtering, the mean position error becomes constant
when k> 3. In the case of FSkNN, the mean position error becomes constant when the value of
k> 5 for both mean and median filtering. Therefore, k= 5 can be used for FSkNN.

Tab. 4 depicts the efficiencies of the investigated machine learning algorithms with mean,
median, and without filtering.

Table 4: Efficiency comparison

Algorithms No filtering Mean filtering Median filtering

SVM 86.69% 89.57% 92.84%
FSkNN 75.93% 79.87% 85.68%
WkNN 66.15% 71.64% 74.85%
kNN 54.19% 57.25% 61.67%

Fig. 15 shows the efficiency comparison of investigated machine learning algorithms with
mean, median, and without filtering in terms of histograms. Machine learning algorithms perform
efficiently when they are used with the pre-processing techniques. SVM with mean and median
filtering outperforms every other machine learning algorithm with the efficiencies of 89.57% and
92.84% respectively.

From the above results and discussion, the SVM algorithm outperformed all the other variants
of the proposed model as it provided better regularization and generalization capabilities by han-
dling non-linear data efficiently [28]. Similarly, median filtering gave better results as compared to
mean filtering because it was immune to the outliers in the dataset. Therefore, the proposed SVM
with a median filtering algorithm enhances the performance of an indoor positioning system.
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Figure 15: Efficiency comparison of machine learning algorithms with mean, median, and without
filtering

7 Conclusion

In this paper, we have proposed an efficient solution for enhancing the positioning accuracy
and efficiency of an IPS. Large training sets are key for obtaining better results in machine
learning problems. Therefore, we have used the largest database available online created by authors
in [4] and further processed by applying mean and median filtering as pre-processing techniques.
The processed data was then fed to machine learning algorithms for training to improve the
efficiency of the proposed model. The research objective was to propose an efficient indoor
positioning solution which not only uses the largest available database but also improves the
performance of an IPS by mitigating the effects of environmental factors. When median filtering
was applied on kNN, WkNN, FSkNN, and SVM, the efficiency was improved in comparison
with mean filtering by 16.34%, 12.4%, 30.86%, and 28.55% respectively. The proposed SVM
with median filtering algorithm outperformed other investigated machine learning algorithms with
mean and median filtering obtaining a mean position error of 0.7959 m and exceptional efficiency
of 92.84% achieving the research objective.

8 Future Work

In the future, authors are interested in investigating the location of a mobile user through
reinforcement learning algorithms. Moreover, the proposed method can also be applied to neural
network algorithms like Dynamic Nearest Neighbor and decision tree algorithms like Random
Forest for mitigating the impact of environmental factors. Spearman, Minkowski, Chebyshev, and
Manhattan distances can also be used instead of Euclidean distance with the current matching
algorithms to minimize the positioning errors. Even larger datasets can be used for improving the
overall performance of the proposed model.
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