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Abstract:Obtaining clear images of underwater scenes with descriptive details
is an arduous task. Conventional imaging techniques fail to provide clear
cut features and attributes that ultimately result in object recognition errors.
Consequently, a need for a system that produces clear images for underwater
image study has been necessitated. To overcome problems in resolution and to
make better use of the Super-Resolution (SR) method, this paper introduces
a novel method that has been derived from the Alpha Generative Adversarial
Network (AlphaGAN) model, named Alpha Super Resolution Generative
Adversarial Network (AlphaSRGAN). The model put forth in this paper
helps in enhancing the quality of underwater imagery and yields images with
greater resolution and more concise details. Images undergo pre-processing
before they are fed into a generator network that optimizes and reforms the
structure of the network while enhancing the stability of the network that acts
as the generator. After the images are processed by the generator network, they
are passed through an adversarial method for training models. The dataset
used in this paper to learn Single Image Super Resolution (SISR) is the USR
248 dataset. Training supervision is performed by an unprejudiced function
that simultaneously scrutinizes and improves the image quality. Appraisal of
images is done with reference to factors like local style information, global
content and color. The dataset USR 248which has a huge collection of images
has been used for the study is composed of three collections of images—high
(640× 480) and low (80× 60, 160× 120, and 320× 240). Paired instances of
different sizes—2×, 4× and 8×—are also present in the dataset. Parameters
like Mean Opinion Score (MOS), Peak Signal-to-Noise Ratio (PSNR), Struc-
tural Similarity (SSIM) and Underwater Image Quality Measure (UIQM)
scores have been compared to validate the improved efficiency of our model
when compared to existing works.

Keywords: Underwater imagery; single image super-resolution; perceptual
quality; generative adversarial network; image super resolution

1 Introduction

Procuring high quality and clear images of underwater scenes is often difficult owing to the
complex nature of the ecosystem and environment present underwater [1]. Different hardware and
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software can be used to reduce underwater image distortion but this is difficult and expensive to
implement. Hence, using Super-Resolution (SR) technology is quite convenient and easy. Several
algorithms have been introduced for this purpose. A sparse representation algorithm was proposed
by Kumudham and Rajendran [2] who took into account the sparsity of the High Dimension
(HD) data from sonar images. The image was first split into Low-Resolution (LR) dictionaries
and High Definition (HD) blocks of images. A sparse coefficient along with a dictionary was then
employed to represent each block, which was then used to obtain a high-definition image. But,
the use of sparse representation and interpolation to achieve Super-Resolution (SR) may result
in reduced image information and blurry edges. To rectify this, Lu et al. [3] introduced the use
of self-similarity-based SR algorithms. The SR algorithm produces high-resolution images in a
scattered form.

A generation model based on deep residual networks for Single Image Super Resolution
(SISR) was provided by Islam et al. [4] along with a counter-training pipeline to analyze SISR
from paired data. An objective function that oversees counter-training was developed, which
evaluated the perceptive quality of the images depending on perceptive quality, color, overall
content of the image was developed to supervise the training. In addition, many SR algorithms
exploited adversarial training [5] to augment the perceptual quality of the SR image. SISR
using GAN (SRGAN) using deep residual networks and skip connections [6] was proposed by
Ledig et al. [7]. Furthermore, Liu et al. [8] recommended an image enhancement technique for
underwater images using deep residual networks. Synthetic underwater images were utilized for
training a Convolutional Neural Network (CNN) model with CycleGAN. ANN has been in trend
in recent years and finds its applications in a variety of domains including medicine [9,10]. A
model to uplift the resolution and quality of SONAR images taken underwater using Generative
Adversarial Network (GAN) was introduced by Sung et al. [11]. A network consisting of 8
convolutional layers and 16 residual blocks was trained using underwater Sound Navigation and
Ranging (SONAR) images studied from many angles. The results showed that this model could
successfully enhance images and produce a greater Peak Signal to Noise Ratio (PSNR) than the
interpolation method. Liu and Li [12] introduced an enhanced method to enhance the problem of
gradient disappearance for super-resolution of images (based on gradient penalty and Wasserstein
distance). Shamsolmoali et al. [13] introduced a Generative Adversarial Network method that
can give comprehensive information with refined image quality and network stability and be
trained in steps. Another method for generating images using the SR technique was developed by
Xie et al. [14] that used time-coherent 3D volume data and a novel temporal discriminator for
identification. An architecture based on residual networks that combined structural information
and facial information spectrum to produce better quality SR images was also proposed by Bulat
and Tzimiropoulos [15].

In this paper, an attempt to resolve the problems faced previously by introducing a super-
resolution model for underwater images for real-time applications is made. The problem defined
here is a translation issue (image-to-image) and assumes that a mapping that is non-linear in
nature exists between the distorted images (which make up the input data) and the enhanced
images (of which the output is made of). Next, an Alpha-SRGAN-based model is designed, which
learns the mapping between the two images by adversarial training on the USR-248 dataset. After
careful consideration of the design, implementation and experimental results and validations of
the model, we make the following inputs in this contribution.
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2 Related Works

2.1 GAN—Generative Adversarial Networks
Several models and techniques have been introduced for unsupervised learning. However, for

image generation, GAN [5] has emerged to be the most efficient technique for unsupervised learn-
ing. Unlike previously used strategies, high-resolution and vivid images can easily be produced
by GANs. In essence, GANs gives a strategy to gather information from the implicit distribution
of a specified target dataset; X. GAN networks are made up of two blocks of networks—a
generator network and a discriminator network. GANs have been making tremendous advances
in several applications like image-to-image translation [16], image SR [17], and image and video
generation [18]. In the past decade, a lot of consideration has been given to improve convergence
stability and the competence to generate high quality images. One such example is the Least
Square Generative Adversarial Network (LSGAN) [18] which exploits the Pearson c2 divergence
and uses the least square loss for critic output. Arjovsky et al proposed an efficient mechanism
to overcome the problems faced in GANs, the Wasserstein-GAN (WGAN) [19]. Two major
upgrades were made in WGAN—a weight clipping method and a contemporary aim based on the
Earth Mover Distance or the Wasserstein distance. Subsequently, convergence performance of the
Wasserstein distance method was found to be better than that of Jensen-Shannon divergence and
Kullback-Leibler divergence in [19].

The LR-HR domain is used in DeblurGAN Yuan et al. [20] also proposed a cycle-in-cycle-
based GAN model that used unpaired data to train itself. This system was brought around due
to the triumph of the DualGAN [21]. But, GAN-based SISR models that were given unpaired
training were found to produce inconsistent results and were susceptible to instability. As an
attempt to rectify this, a model that learned the noise prior to super-resolution using Dual-
GAN [21] was proposed and was called Super Resolution Dual Generative Adversarial Networks
(SRDGAN) [22]. Similarly, generating high-quality images through tensor structures was another
approach and was introduced as deep Tensor Generative Adversarial Networks (TGAN) [23].
Contrarily, RankSRGAN [24] has two parts, the SRGAN at the core and the newly introduced
Ranker. The model inherits the traits of Super Resolution-GAN and aims to perform better in
terms of perceptual metrics. Another model, the Image Sequence Generative Adversarial Network
(ISGAN) [25], is an SR method based on aquatic image sequences obtained using multi-focus at
similar angles. This method has made obtaining more details and thereby improving the resolution
of the images possible.

Another work by Yu et al. [26] introduces a multiscale featured fusion generator (MSFF-
GAN) based on the GAN network. The network was designed such that the images generated
preserved more details and information. Slow extraction of characters by the generator was
resolved using a residual dense module. Yuan et al. [27] proposed a Class-condition Attention
Generative Adversarial Network (CA-GAN) as an attempt to improve the quality of underwater
images. They successfully built a dataset composed of simulated underwater images under varying
water depth and attenuation coefficients, split into ten classes. Their model aims at producing a
many-to-one mapping function.

2.2 SISR for Underwater Imaging
In SISR, an input of low resolution could give rise to multiple high-resolution images, and

the HR space that we wish to map the low-resolution image to is typically unmalleable [28].
Consequently, this poses a huge problem since a single LR input could correspond to many
HR outputs. Super-Resolution (SR) essentially is the act of reinstating versions of a picture in
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high-resolution from several low-resolution images of the same view. Fig. 1 depicts the typical
framework of SISR. y (low-resolution image) is defined as shown in Eq. (1)

y= (X ⊗K)↓S+ n, (1)

Figure 1: Framework of SISR to recover HR image from a LR Image

Here, the Convolution of the unknown high-resolution picture, X, and K (blurry Kernel) is
given by X ⊗K. ↓S is the downsampling operator with a scale factors s, the independent noise
term is represented by N. Simplifying and solving Eq. (1) is quite tedious and problematic since
one low-resolution image could give rise to several different high-resolution image outputs.

One of the widely studied fields in the recent years is the process of increasing the
spatial-resolution of LR images, otherwise known as Single Image Super Resolution. Bicubic
up-sampling, nearest neighbor and other similar interpolation methods are few solutions to this
problem. Single Image Super Resolution (SISR) for terrestrial applications has been widely stud-
ied. However, this is not the case with images captured underwater. SISR techniques for improving
these images have not been focused on due to the shortage of detailed and extensive data sets that
effectively grasp the distortions present in underwater images. Data sets that are currently available
contain synthetic images [29] and are only applicable for purposes like image enhancement [30],
and object detection [31] as the resolution of these images is not more than 256 × 256. As a
result, SISR models for underwater images have not been largely studied.

Nevertheless, the existing techniques are not capable of retrieving finer details in images, thus
making the output blurry and of low quality. A few studies have been made in this domain,
focusing mostly on rebuilding underwater images of better quality by removing noise and blurry
areas [32]. Other attempts to improve fish recognition performance [33] and improve underwater
image sequence have also employed SISR techniques. Though these models perform well and
achieve their purpose, improvements can still be made to match the state-of-the-art performance
as these methods do not still do not efficiently address the issue of lack of information in the
images.

3 Methods and Materials

3.1 Proposed Method
One dataset that contains a vast collection of paired HR-LR images is the USR-248

dataset [34]. It contains over 1050 image samples that promote SISR training on a large scale.
248 test images have also been provided in the USR-248 dataset solely for benchmark evalua-
tion. Our Proposed Method is a two-step process—pre-processing and Alpha Super Resolution
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Generative Adversarial Networks (AlphaSRGAN) structure. Pre-processing involves improving the
image contrast and color-correction of the image to make training convenient. Pretraining of
the images is also done to preserve network stability and to achieve better training speed. The
AlphaSRGAN structure is the utilization of the dual generator method helps in maintaining the
clarity and accuracy of the images produced in this step.

3.1.1 Preprocessing
Preprocessing is done with Contrast Limited Adaptive Histogram Equalization (CLAHE) and

white balance to remove the low contrast and severe deformations present in underwater images.
Next, correction of seafloor color and creation of normal underwater scenes is employed using a
positive white balance. CLAHE has been employed to get an enhanced image and to improve the
visibility of the aquatic animals. The results after the pre-processing stage have been presented in
Fig. 2. The pre-training helps in speeding up the discriminator training process and ensuring that
the generator remains stable. Prior to training, a portion of the image (high resolution) training set
is inputted into the discriminator so as to preserve the efficiency/coherence and training intensity
of the generator [35], simultaneously enabling early identification by the discriminator. Pre-training
also ensures that the training mode does not collapse, thus preventing the continuous failure in the
generation of SR images. It also makes sure that the training speed and stability of the generator
and discriminator are maintained that is essential for adjustment of the training strategy.

Figure 2: Preprocessing results. (a) Original image (b) Pre-processed image

3.1.2 AlphaSRGAN Architecture
Once the input images are preprocessed and trained with the help of the AlphaSRGAN

system, the generator produces the super-resolution image. Linear photometric models, affine
motion and speeded up robust features (SURF) image registration are used to register the image
in the generator. The image resolution is enhanced by fusing the sharpest area in every image
after the registered image is inputted into the network architecture. Consecutively, decomposition
of the image is done by discrete wavelet transform as the first step. The image is split into four
sub-bands—High-High (HH) sub-band, High-Low (HL) sub-band, Low-High (LH) sub-band and
Low-Low (LL) sub-band. Among these, the low-low sub-band retains the original features of
the image and acts as the coefficient of approximation. The detailed parameters of the image
are represented by the remaining sub-bands i.e., LH, HL, and HH sub-bands. Subsequently,
features of the image that stand out from the rest in terms of clarity and detail are extracted
and represented first with the help of Linear Discriminant Analysis (LDA). In this step, a new
axis is generated on which data from both the features is projected. The information is projected
such that the variance is minimized and the distance between the class means is maximized.
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Variance is preferred here since the signal and noise generally have variances at the extremes,
with the signal having greater variance and the noise having less variance, and because the ratio
between the variances can also be depicted easily using the signal-to-noise ratio parameter. Finally,
Inverse Discrete Wavelet Transform (IDWT) is used for reconstructing the image. The refused
image is used to learn and achieve super-resolution by repeated processing in the generator and
discriminator network.

The architecture of the different networks proposed here is based on the AlphaGAN [36]
model. A latent variable z∼N128(0, I) is fed into the generator network. It contains three major
parts-a fully connected layer that helps in upscaling the input tensor to size 512 × 2 × 2, four
transposed convolution layers (kernel size = 4 × 4, stride = 2, padding = 1) and the tanh
activation layer. After each layer in this network, (Rectified Linear Unit (ReLU) acts as the
activation function. Four convolutional networks that draw out aspects and attributes from 32 ×
32 inputs form the majority of the discriminator network. In the discriminator network, Leaky-
ReLU is used as the activation function after each layer. After each layer, batch normalization
is performed in both networks. An abs function is used in place of the last activation layer in
the discriminator network. Adam optimizer [37] is used to train both the networks at learning
rates of 0.0002. In the generator network, the decay rates are set at β1 = 0.5, β2 = 0.999. Fig. 3
represents the Network architecture diagram AlphaSRGAN.

Figure 3: The Network architecture diagram AlphaSRGAN
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3.2 Alpha-SRGAN
The discriminator’s sigmoid output layer is removed and substituted by binary cross entropy

loss along with the formulation for power function while using Alpha-GAN [36].

The AlphaGAN architecture resolves problems in optimization shown in Eq. (2).

Valpha−GAN(D,G)=Ex∼Pdata [|D(x)|a]+ER∼Pr [|D(G(R))| b] (2)

In addition, the proposed method introduces two more hyper-parameters, a and b balance
the emphasis on D(x) and D(G(R)) while training and are two-order indices, respectively. In
this model, a and b are assumed to be greater than 0 so as to prevent cases like D(a) from
becoming evident in the loss function that usually happens when these values are equal to 0. This
assumption also improves the convergence stability of the model proposed. Otherwise, when the
discriminator’s output goes below unity, the value of loss becomes very large, thereby making the
model unstable and difficult to converge during training. Here, the absolute value of the output
from the discriminator is considered. This also prevents the output from taking an arbitrary value
when a and b values are greater than 1. It is shown that the objective functions and formulas
in Alpha-GAN are not associated with the alpha divergence formulation (Eq. (2)) immediately. A
detailed method to find Alpha-GAN from alpha divergence will also be included.

Algorithm 1 Algorithm of AlphaGAN
Input: Batch size n, target distribution Treal, latent noise distribution Lx, input noise x, Adam optimizer
with α, β1 = 0.5, β2 = 0.999, hyper-parameters p, q discriminator network Dφ and generator network
Gφ absolute function af(·).
Output: Optimal generator Gφ

1: while Training Alpha-GAN do
2: Sample aSj ∼ Treal, j= 1, · · · , m.
3: Sample bj ∼Lx, j = 1, · · · , m.
4: atj← Gφ (bj), j = 1, · · · , m
5: θ← Adam(− 1

m

n∑
j=1
∇θ [af (Dθ ((aSj )

p
)])

6: θ ← Adam( 1
n

n∑
i=1
∇θ [af (Dθ ((atj)

q
)])

7: θ ← Adam( 1
m

m∑
i=1
∇θ [af (Dθ ((atj)

q
)])

8: end while
9: return Gφ

3.3 Content Loss
Low Resolution or High Resolution (LR/HR) content loss is the factor that stimulates the

restoration of identical features as the ground truth. The representation is usually done by the
generator in the form of high-level representations. Transfers of style, removal of SISR problems
and enhancement of images have been effectively done. High-end attributes extricated by the final
convolutional layer from a VGG-19 network that was trained previously has been used to define
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the image content function �V GG(·). Thereafter, the formulae for content loss for enhancement
and SISR has been depicted in the Eqs. (3) and (4).

LLRContent= ||φVGG(E)−φVGG(Ê)||2 (3)

LHRContent= ||φVGG(Y )−φVGG(Ŷ)||2 (4)

3.4 Adversarial Loss
The generative element of GAN has also been taken with the perceptual loss along with the

content loss described in Section 3.3. Adversarial loss promotes our model to prefer responses
from the vast plethora of natural images available by attempting to deceive the discriminator
network. The probabilities of the discriminator Dθd(Gθg(ILR) overall training samples has been

used to define the generative loss LSRGen. It can be represented as:

LSRGen =
N∑
n=1
−loglogDθd(Gθg(ILR) (5)

In Eq. (5), the probability that the reconstructed image(Gθg(ILR) is a natural high-resolution

image is depicted by Dθd(Gθg(ILR). −loglogDθd(Gθg(ILR) has been minimized instead of 1 −
loglogDθ(Gθ (ILR) to obtain superior gradient behavior.

4 Experimental Results and Analysis

The Alpha-SRGAN model has been implemented using TensorFlow libraries [38]. The model
has been trained on 7.5 K unpaired, and 11 K paired instances. The remaining data is used
for testing and validation, respectively. Both models are trained for 60,000–70,000 interactions
in batches of 8 using four NVIDIA™ GeForce GTX 1080 graphic cards. The experimental
results and evaluations based on qualitative analysis, a user study, and standard quantitative
metrics have been presented. The image resolutions have been compared by applying the existing
algorithms such as SRGAN [7], ESRGAN [39], EDSRGAN [40], RSRGAN [24], ISGAN [25],
SRDRMGAN [4] and Deep SESR [41].

4.1 Evaluation Metrics
4.1.1 Peak Signal to Noise Ratio

PSNR is often utilized as a standard to assess images. It is a common method to quantify
signal reconstruction quality during image compression. It can be evaluated by finding the Mean
Square Error method (MSE) [42], which is defined as follows:

MSE for two m*n monochromatic images called K and I, where one denoted the noise
approximation of the other parameter, is given by:

MSE = 1
mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j]2 (6)
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Peak signal to noise ratio can be evaluated using the following equation:

PSNR= 10log10

(
MAX2

1

MSE

)
= 20log10

(
MAX1√
MSE

)
(7)

where MAX1 stands the maximum value that represents the color of image points, MAX1 is
usually 255 when a particular sampling point is depicted using eight bits. Tab. 1 shows the
Evaluation Metrics Comparison of PSNR Scores for 2∗4∗8 SISR on USR-248 data set.

Table 1: Evaluation Metrics Comparison of PSNR Scores for 2
∗
4
∗
8 SISR on USR-248 data set

Image
Scale

SRGAN
[7]

ESRGAN
[39]

EDSRGAN
[40]

RSRGAN
[24]

ISGAN
[25]

SRDRMGAN
[4]

Deep
SESR
[41]

AlphaSRGAN
(Ours)

2
∗

28.05 26.66 27.12 25.11 26.34 28.55 27.03 29.86
4
∗

24.76 23.79 21.65 24.96 23.87 24.62 24.59 25.96
8
∗

20.14 19.75 19.87 19.89 20.19 20.25 21.62 21.89

4.1.2 Structural Similarity Index
A measure of the similarity between 2 images is given by the Structural Similarity Index

(SSIM). The Image and Video Engineering Laboratory based in the University of Texas, Austin,
was the first one to coin the term. There are two key terms here—Structural information and
distortion. These terms are usually defined with respect to the image composition. The property
of the object structure that is independent of contrast and brightness is called Structural infor-
mation. A combination of structure, contrast and brightness gives rise to distortion. Estimation
of brightness has been done using mean values, contrast using standard deviation and structural
similarity was measured with the help of covariance.

SSIM of two images, x and y can be calculated by:

SSIM(x,y)= (2μxμy+ c1)(2σxy+ c2)
(μ2

x+μ2
y+ c1)(σ 2

x + σ 2
y + c2)

(8)

In the Eq. (8), the average of x is μx and the average of y is μy. σ2x and σ2y gives variance.
The covariance x and y are given by σxy. c1 = (k1L) 2, c2 = (k2L) 2 are constants. They are
used to preserve stability. The pixel values’ dynamic range is given by L. Generally, k1 is taken as
0.01 and k2 is given by 0.03. Tab. 2 shows the Evaluation Metrics Comparison of SSIM Scores
for 2∗4∗8 SISR on USR-248 data set.

Table 2: Evaluation Metrics Comparison of SSIM Scores for 2
∗
4
∗
8 SISR on USR-248 data set

Image
Scale

SRGAN
[7]

ESRGAN
[39]

EDSRGAN
[40]

RSRGAN
[24]

ISGAN
[25]

SRDRMGAN
[4]

Deep
SESR
[41]

AlphaSRGAN
(Ours)

2
∗

0.78 0.75 0.77 0.75 0.95 0.81 0.88 0.93
4
∗

0.69 0.66 0.65 0.69 0.84 0.69 0.71 0.88
8
∗

0.60 0.58 0.58 0.65 0.72 0.61 0.63 0.75
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4.1.3 Mean Opinion Score
Mean Opinion Score [7], abbreviated as MOS, is a subjective Image Quality Assurance (IQA)

test that is used often and involves humans to score the recognizable quality of the processed
images on a scale from 1 to 5, where 1 stand for poor and 5 is for good. The final MOS score is
obtained by taking the arithmetic mean of all the obtained scores. Nevertheless, MOS has quite a
few drawbacks in the sense that it is based on non-linear perceived scales, variances, and biases in
criteria used for rating, etc. Incidentally, there are several super-resolution models that though they
have poor IQA metrics like PSNR, have preeminent perceptual quality. In these cases, the MOS
test proved to be much reliable and more accurate in terms of measurements in perceptual quality.
Tab. 3 shows the Evaluation Metrics Comparison of MOS Scores for 2∗4∗8 SISR on USR-248
data set.

Table 3: Evaluation Metrics Comparison of MOS Scores for 2
∗
4
∗
8 SISR on USR-248 data set

Image
Scale

SRGAN
[7]

ESRGAN
[39]

EDSRGAN
[40]

RSRGAN
[24]

ISGAN
[25]

SRDRMGAN
[4]

Deep
SESR
[41]

AlphaSR GAN
(Ours)

2
∗

2.56 1.85 2.21 1.21 1.78 2.98 2.14 3.58
4
∗

1.19 1.03 0.89 1.22 1.13 1.16 1.09 1.78
8
∗

0.80 0.65 0.67 0.69 0.73 0.76 0.84 0.95

4.1.4 UIQM
Underwater Image Quality Measure (UIQM) [43] has also been taken into considera-

tion to quantify parameters like underwater image contrast, color quality, and sharpness. This
umbrella term consists of three major parameters to assess the attributes of underwater images,
namely, Underwater Image Sharpness Measure (UISM), Underwater Image Colorfulness Measure
(UICM), along Underwater Image Contrast Measure (UIConM). Each of these parameters are
used to appraise a particular aspect of the degraded underwater image carefully.

Altogether, the comprehensive quality measure for underwater images is then depicted by

UIQM = c1 ∗UICM + c2 ∗UISM + c3 ∗UIConM (9)

Eq. (9) relates all the three attributes mentioned effectively. The selection of the parameters c1,
c2, and c3 are purely based on the parameters’ application. As an illustration, consider UICM;
this parameter is given more weightage for applications that involve image color correction while
sharpness (UISM) and contrast (UIConM) have more significance while enhancing the visibility of
the images. UIQM regresses to an underwater image quality measure when these two parameters
achieve null values. Tab. 4 shows the evaluation metrics comparison of UIQM Scores for 2∗4∗8
SISR on the USR-248 data set.

Table 4: Evaluation Metrics Comparison of UIQM Scores for 2
∗
4
∗
8 SISR on USR-248 data set

Image
Scale

SRGAN
[7]

ESRGAN
[39]

EDSRGAN
[40]

RSRGAN
[24]

ISGAN
[25]

SRDRMGAN
[4]

Deep
SESR [41]

AlphaSR GAN
(Ours)

2
∗

2.72 2.70 2.67 2.42 2.72 2.77 3.15 3.23
4
∗

2.42 2.38 2.40 2.55 2.35 2.48 2.96 2.85
8
∗

2.10 2.05 2.12 2.10 2.01 2.17 2.39 2.41
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4.2 Performance Comparison
According to PSNR and SSIM, the comparative findings are represented in Fig. 4. The

findings indicate the primacy of the research data system presented. It can be seen from the
figure that in both the PSNR and SSIM evaluation indices, our proposed approach performance
is momentous. By correlating the graph, the SRGAN technique obtains the lowest PSNR and
SSIM score, which implies that this technique cannot recover adequate knowledge. In comparison,
the ESRGAN technique has higher values of PSNR and SSIM than the SRGAN; however,
this technique cannot acquire accomplished information. In further comparison with EDSRGAN
technique, the results of PSNR and SSIM were slightly lower than other methods. But the
technique of RSRGAN’s acquired values of PSNR and SSIM was quite higher than EDSRGAN.
In addition, RSRGAN method results in better images. Furthermore, while comparing with the
ISGAN, SRDRMGAN and Deep SESR techniques have significantly higher PSNR and SSIM
values than RSRGAN technique. While a consistent picture can be obtained by the ISGAN and
SRDRMGAN methods, the missing portion of the information cannot be supplemented by these
two methods.

Figure 4: Evaluation index. (a) PSNR and (b) SSIM

DeepSR technique can perform two tasks simultaneously and produce a picture for a better
result. Nevertheless, the compared methods, our proposed model AlphaSR GAN perform the
tasks effectively in a synchronized manner and obtain an image with the best quality for pre-
eminent results. To validate the performance of our proposed model, we compared it with other
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techniques and the comparison results are graphically illustrated in Fig. 5; the comparison was
according to UIQM and MOS values. The technique which obtained the lowest value of UIQM
and MOS value is SRGAN.

Figure 5: Evaluation index UQIM and MOS

This technique failed to obtain the required data. Whereas the ESRGAN and EDSRGAN
methods have resulted in slightly higher UIQM and MOS values, but these techniques also
failed to recover the complete information. In further comparison with other techniques, the
RSRGAN outcome has significantly higher values of UIQM and MOS, but the picture effect
was comparatively low. Then ISGAN and SRDRMGAN technique resulted in higher UIQM and
MOS values similar to Deep SESR technique. However, the required part of the information was
not compensated by these two techniques, even though it can obtain a clear image.

Further, with higher values of UIQM and MOS, Deep SESR produces better images. How-
ever, our proposed AlphaSRGAN model executes results in notably higher UIQM and MOS
values. In addition, the tasks were efficiently performed in a coordinated manner and obtained a
picture of the highest standard. Fig. 6 shows the Performance comparison of AlphaSRGAN with
other related GAN for super-resolution.
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Figure 6: Performance comparison of AlphaSRGAN with SRGAN [7], ESRGAN [39], EDSR-
GAN [40], RSRGAN [24], ISGAN [25], SRDRMGAN [4], Deep SESR [41]

5 Conclusion

In this work, a novel generative model named AlphaSRGAN image super-resolution algo-
rithm has been introduced that amalgamates the traditional image reconstruction approaches with
deep learning methods for underwater image super-resolution. In addition, several qualitative and
quantitative tests have been performed on the dataset used-USR-248. The peak signal to noise
ratio for image scales 2∗, 4∗ and 8∗ in our model is superior to other models. Parameters such as
SSIM and UIQM also prove to be better than existing systems when compared to the proposed
model. Enhanced Mean Opinion Scores have also been obtained by our model. Subsequently,
the model proposed here shows the greater performance when compared to pre-existing models.
AlphaSRGAN also proves to be a better alternative taking the enhanced performance, compe-
tent computational abilities, and model design into consideration. It makes the model extremely
suitable for real-time applications and applications in other fields as well.
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