
echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2021.018303

Article

ECC: Edge Collaborative Caching Strategy for Differentiated Services
Load-Balancing

Fang Liu1,*, Zhenyuan Zhang2, Zunfu Wang1 and Yuting Xing3

1School of Design, Hunan University, Changsha, China
2School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, China

3Department of Computing, Imperial College London, UK
*Corresponding Author: Fang Liu. Email: fangl@hnu.edu.cn

Received: 04 March 2021; Accepted: 19 April 2021

Abstract: Due to the explosion of network data traffic and IoT devices, edge
servers are overloaded and slow to respond to the massive volume of online
requests. A large number of studies have shown that edge caching can solve
this problem effectively. This paper proposes a distributed edge collaborative
caching mechanism for Internet online request services scenario. It solves the
problem of large average access delay caused by unbalanced load of edge
servers, meets users’ differentiated service demands and improves user expe-
rience. In particular, the edge cache node selection algorithm is optimized,
and a novel edge cache replacement strategy considering the differentiated
user requests is proposed. This mechanism can shorten the response time to
a large number of user requests. Experimental results show that, compared
with the current advanced online edge caching algorithm, the proposed edge
collaborative caching strategy in this paper can reduce the average response
delay by 9%. It also increases the user utility by 4.5 times in differentiated
service scenarios, and significantly reduces the time complexity of the edge
caching algorithm.

Keywords: Edge collaborative caching; differentiated service; cache replacement
strategy; load balancing

1 Introduction

With the advent of 5G era, the number of edge network devices has greatly increased, and
the amount of data that needs to be processed or cached on the edge is explosively increasing.
For example, Intel reported that the data generated by an autonomous vehicle in one day was
4TB in 2016. Cisco predicted that by 2021, the growth rate of mobile data to be processed will far
exceed the capacity of data centers. There are currently billions of IoT devices connected to the
Space, Air, Ground, and Sea (SAGS) network, and a large amount of data is generated [1]. If all
these data were up-loaded to the cloud for processing, it would certainly not be able to meet the
low latency requirements of complex applications, such as on-board applications. Also, it is well
known that there is a serious mismatch in I/O speed between the CPU and the disk. Adding a

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2021.018303

2046 CMC, 2021, vol.69, no.2

memory cache between the two can solve this problem. Therefore, the edge cache in the network
path between cloud and Internet of Things (IoT) devices is a good choice to reduce network
latency. Yu et al. [2] proposed an algorithm based on the “IoT-Edge-Cloud” three-layer multi-hop
model to evenly distribute computing tasks to network devices to process large amounts of data
with huge potential value generated by IoT devices. Moreover, Liu et al. [3] proposed a matrix-
based data sampling to alleviate the problems of data redundancy and high energy consumption
that artificial intelligence is facing in collecting and processing big data.

Besides the latency issues, with the growth of network users, the traditional cloud-IoT or
Cloud-Edge-IoT transmission architecture will cause some problems such as overloading of edge
servers, single point failure of transmission links, and redundant transmission (such as hot videos)
on resource-limited links.

In view of the above defects, there has been much research on the strategy of caching the
most popular content locally according to the popularity of content, and a lot of work follows
the Zipf distribution [4]. These methods can solve some of the above problems, but Zwolenski
points out that the popularity of content on the Internet is easy to change greatly in a certain
period of time, and it is easy to cause great deviation by using popularity [5]. In addition, Zhou
et al. [6] proposed a new type of mobile photo selection scheme for congestion detection to reduce
data redundancy on the server.

With the proliferation of Internet online requests, service providers will face the challenge
of huge bandwidth overhead and the quality of service for users will be difficult to guarantee.
Deploying the service close to the user and running the service cache on the edge server can
effectively reduce access latency and improve the user’s utility.

There is no doubt that collaborative caching strategy can reduce the probability of obtaining
services from the original server. However, there are few effective caching schemes for caching
the hottest services locally according to the popularity of services. It is worth noting that this is
based on services. Taking services as the research object, the heat of services in different nodes
is different for a period of time, which will lead to different loads on nodes (i.e., the requested
number of the services). It is necessary to keep services load balance to prevent the server
from going down. Not only does it reduce the service access delay but also improves the user’s
experience.

At present, most of the work doesn’t consider the difference of user requests, that is, the
demand of the Internet for differentiated services. For example, some users are VIPs who can
prior to occupying server resources but some are not. Nielsen, a global monitoring and data
analysis company, pointed out that 39% of consumers are willing to buy products with better
quality but relatively expensive prices, while 15% of consumers are willing to buy products with
basic functions but relatively cheap prices, and 1% of consumers are willing to buy low-priced
products at the expense of quality [4]. Therefore, providing differentiated services can bring higher
commercial benefits to service providers. In addition, most of the existing work does not consider
the extra cost of a large number of sudden service requests on edge nodes, such as queuing delay,
which will greatly increase the average access delay and lead to a bad experience for users. Caching
services or applications which users frequently request to collaborative edge nodes can effectively
reduce average access latency and network traffic [7–9].

In the Internet online request service scenario, we will supplement the differentiated Internet
services and the average queuing delay of mass emergent requests at edge collaborative nodes, in

CMC, 2021, vol.69, no.2 2047

order to meet the differentiated service demands of users, reduce the average request access delay
and improve user experience.

The characteristics of the edge collaborative caching strategy proposed in this paper are as
follows:

• Our research object is different from the traditional file or content caching problem.
We study the service caching problem in the Internet scenario where common content
popularity model such as Zipf is not applicable to this scenario.

• The congestion of services in the node will damage user experience. When a user requests
a service and the service runs on the edge node to answer the request, it needs to occupy
node resources, such as CPU and memory resources. So the high concurrency of the service
may easily cause other services to wait or even the node to go down, extremely increasing
average access time of services.

• The node selection is divided into two stages where service should be placed. Referring to
the characteristics of multi-node cooperative architecture (local cache hit delay < neighbor
node hit delay << cloud delay), when the service request frequency is low, it is randomly
placed including the neighbor nodes and the local node. When the service request frequency
reaches a large threshold, the service prefetching is placed in the local node.

• The same service delay, different user benefits. Differentiated services are common in Inter-
net service scenarios. While considering the average access latency, we also need to consider
the user benefits. Based on a real dataset, we classify different user requests into eight levels.
Take it into cache replacement stage, optimizing the utility of users.

• The assumption of node blocking in point b and the assumption of differentiated service in
point d above have been verified in real Google Trace (it is observed that there is blocking
phenomenon and request level classification), and experiments are carried out based on this
Trace, which reduces the delay and improves the user benefit.

Our key contributions of this paper are listed as follows:

• We specifically describe the online request application scenario of distributed edge cache,
analyzes the Google data set, and finds that introducing relaying mechanism in nodes
with relatively balanced must break the load balance. In particular, some cache algorithms
without considering load balancing have too much queueing delay in some hot nodes, which
leads to too much average access delay and too little benefit for users.

• By optimizing the average access time of online service requests and differentiated services
for user requests, we propose a collaborative edge caching algorithm with differentiated
services and load balancing. Compared with the classical cache replacement algorithm and
the advanced online edge cache algorithm, analyzes the effectiveness of our proposal.

The rest of the paper is organized as follows. Section 2 introduces the related work. Section 3
introduce our system modeling and problem formulation. We present effective algorithms in
Section 4. Experiments and performance evaluations are in Section 5. Finally, Section 6 concludes
this paper and discusses the future work.

2 Related Works

Among the traditional online caching algorithms, the most widely used is LRU [10]. With
low spatial complexity, it performs well in cache hit ratio evaluation because online requests
often have the characteristics of “locality principle.” On the edge cooperative cache scenario,
LRU which is naturally modified also performs well in hit ratio evaluation [9]. Edge caching

2048 CMC, 2021, vol.69, no.2

technology has developed rapidly and it can be traced back to content distribution network
technology [11]. In recent years, many excellent works were proposed on edge caching research.
According to the use of tools or the field of studies, it can be divided into three kinds: D2D
(Device-to-Device) communication aided edge caching [12,13], Game theory aided edge caching
which reduces operator cost or increases profits [14], and edge collaborative caching which reduces
the service response/access time [8,9].

D2D communication aided edge caching. Golrezaei et al. [11] proposed an architecture for
caching popular video content based on the edge caching net-work assisted by D2D, and proved
that D2D communication can effectively improve system throughput. On the D2D aided edge
network, Wang et al. proposed an effective hierarchical collaborative caching algorithm for un-
loading network traffic, which takes the social behavior and preferences of mobile users and cache
content size into account [12]. Besides, it is also a popular method to establish game models for
edge cache network and it takes system cost and benefit as the optimization goal. Li et al. [13] on
the edge of the small commercial network, proposed that the competition relation between NEP
(network equipment providers) and VSP (video service provider) can be built as a Stackelberg
Game model. By describing the cache equipment rental and deployment strategy, it optimizes the
benefit of the NEP and VSP.

Game theory aided edge caching. Cao et al. [14] conducted auction modeling for the content
delivery relationships among SP (service providers), users and content providers on edge cache
network, and reduced the cost of SP and maximized the revenue of SP by using Myerson optimal
auction model. Wu et al. [15] devised a distributed game-theoretical mechanism with resources
sharing among network service providers with the objective to minimize the social cost of all
network service providers, by introducing a novel cost sharing model and a coalition formation
game.

Edge collaborative caching. Tan et al. [8] studied online service caching in the multiple edge
node collaboration scenario, and proposed an asymptotic optimal cache replacement algorithm
with the goal of optimizing network traffic and other costs. Ma et al. pointed out that due
to the heterogeneity of edge resource capacity and the inconsistency of edge storage computing
capacity, it is difficult to make full use of edge resource storage and computing capacity in
the absence of collaboration between edge nodes. To solve this problem, they considered edge
collaborative caching based on Gibbs sampling and Water falling algorithm, reducing the service
outsourcing traffic and response time [4]. Hao et al. [7] proposed an edge intelligent algorithm in
the heterogeneous Internet of Things architecture to jointly optimize the wireless communication
cost, the collaborative cache and the computing unloading cost in the edge cloud, so as to
minimize the total delay of the system. Wu et al. [16] proposed Edge-oriented Collaborative
Caching (ECC) in information centric networking (ICN). In ECC, edge devices (such as edge
server, micro data center, etc.) cache file contents while routers only maintain file cache indexes
which are used to redirect subsequent requests towards the cached file content. Ren et al. [17]
proposed a hybrid collaborative caching (Hy-CoCa) design that places cache in nodes, node groups
and nodes in the network according to content popularity to further reduce delay and energy
consumption.

There have been some researches on edge service caching algorithms, but the difference of
service requirements has not been considered. In addition, most studies have ignored the unbal-
anced load of a large number of user requests on the edge server, which may cause congestion
on edge servers, or even server downtime.

CMC, 2021, vol.69, no.2 2049

3 System Modeling and Problem Formulation

From the collaborative model of edge caching, it can be divided into cloud-edge, edge-edge
and edge-IoT collaboration. The system proposed in this paper is based on the mode of cloud-
edge and edge-edge collaboration to study the cooperative caching strategy. In this model, we
study the cooperative caching strategy applied by Internet service in edge nodes. It is reasonable
to assume that the cloud center has configured with all Internet service applications. Due to the
limited storage capacity of edge nodes, the installation configuration can only be performed in the
node after downloading/acquiring source files (or application installation packages) from the cloud
center. Usually, due to the limited capacity of edge nodes, after installing new service applications,
edge nodes will discard their source files (or application installation packages).

In the system architecture in Fig. 1, when an Internet user issues a request for application
services which were deployed in the cloud or edge nodes, edge nodes will respond to the request
with four different actions according to their cache hits. Denote the user request as r := (f , s, p),
the requested service as f , the edge node/server as s, and the priority of the request as p.

Internet
Link

Edge
Server

Cellular
Link

Internet
User

Cloud

....

...

Figure 1: An example for edge collaborative caching system

First, if the local edge node s, such as the base station, router and other devices with storage
and networking capacity, has deployed the service, the user request r := (f , s, p) locally hit. The
access delay of the local hit request is recorded as tl, generally speaking, tl is small.

Second, if the local edge node s is not hit, and the neighbor node s′ has deployed services f ,
s will relay the request r := (f , s, p) to s′. The access delay of the relaying hit request r is denoted
as tr, which is usually small.

Third, if none of the edge nodes are hit, the local node s will send request r := (f , s, p) to
the cloud data center (i.e., bypassing). The user request r is not hit and the request access delay
is denoted as tb which is large usually.

2050 CMC, 2021, vol.69, no.2

Fourth, if the local node or neighbor node does not hit multiple times, the edge node s and
s′ will download the service application source file or application installation package from the
cloud and configure it to s or s′. This action is denoted as fetch, and the time cost/delay is tf
which is usually large.

It is reasonable to assume that all service applications (i.e., files, for simple) are accessible in
the cloud center, and that the edge nodes have limited cache space, so only some files can be
cached. Suppose there are m edge nodes in the cache system, denoted as the node set S, and the
cache space of the node si is ki file slots (i = 1, . . . , m), that is, the total capacity of the cache
system is

∑m
i=1 ki. Assume that all the file sets are F each file takes up a slot in the file. The user

request is denoted as r := (f , s) ∈ F× S, where (f , s) represents the request r access f from the
edge node s. If cached, the response will be quick, otherwise it will be relayed to a neighbor node
s′ or bypassed to the cloud for a response.

As mentioned above, the high concurrency of the service may easily cause request congestion.
When a request is blocked in a node, there is a queueing delay. Define the queueing ratio for the
user’s request, called the mean blocking rate pqueueing, as shown in Eq. (1).

pqueueing=
nqueueing
nrequest

(1)

where nqueueing represents the number of requests blocking the queue, and nrequest represents the
number of requests.

Define the total queueing delay of the request in the node as shown in Eq. (2).

Tqueueing=
K∑
i=1

i ∗ tavgQ (2)

where K is the number of queueing tasks and tavgQ is the average queuing delay, which is usually
set to 100 milliseconds (ms).

Cache hit ratio hr is an essential performance indicator for cache system evaluation, and its
definition is shown in Eq. (3).

hr= hlocal + hrelay
nrequest

(3)

where hlocal represents the number of local hits, hrelay represents the number of relay hits, and
nrequest represents the number of requests.

Furthermore, average access delay tavg is also an essential performance indicator for cache
system evaluation, and its definition is shown in Eq. (4).

tavg = tl ∗ hrlocal+ (tl + tr) ∗ hrrelay+ (tl + tr+ tb) ∗ pbypass+ (tl + tr+ tb+ tf) ∗ pfetch+ tq ∗ pqueueing (4)

Among them, hrlocal =
hlocal
nrequest

, hrrelay =
hrelay
nrequest

. pbypass refers to the proportion of the local

nodes to select the user request bypass to the cloud to serve, among which the number of bypass

is nbypass, pfetch =
nfetch
nrequest

refers to the proportion of the number of installing and configurating

services to total requests, tl represents the access delay from user to the local node, tr represents

CMC, 2021, vol.69, no.2 2051

the access delay from user to the neighbor node, tb represents the access delay from user to the
cloud, and tf represents the time it takes to configure the service/application installation.

In addition, we observe the load balancing of nodes with the edge node load variance
va, which is defined as Eq. (5) and represents the stability of node response delay. From the
perspective of users, the greater the variance of node load, the greater the delay difference of
service response request perceived by users (i.e., the delay of user request response is sometimes
large and sometimes small).

va=
m∑
i=1

(AVG(hc)− hc(si))2 (5)

where AVG(hc) is the function that finds the average number of loads on all nodes.

As mentioned above, differentiated services are common in Internet service application scenar-
ios. In order to meet the needs of differentiated services and optimize user benefits, we analyzed
the relationship between the priority and frequency of user requests in the Google dataset and
found that they are not inversely proportional, as shown in Fig. 2. Considering the priority and
frequency of user requests, the definition of service level of user requests is shown in Eq. (6).

ulevel = frequence ∗ priority (6)

Figure 2: Priority and frequency of user request in google dataset

When the user request r := (f , s, p) get the response in the cache system, as shown in Fig. 1,
according to the service level and the response action obtained, the user utility urequest is intuitively
defined as shown in Eq. (7).

urequest=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ulevel ∗ 100, if local response;

ulevel ∗ 10, if relay to neighbor;

ulevel ∗ 1, if bypass to cloud;

−ulevel ∗ 1000, if fetch requested file to local.

(7)

2052 CMC, 2021, vol.69, no.2

Since different service requests have different user utility, in order to improve sum of user
utility, we can replace the services with lower cumulative utility first. If the cumulative utility is
the same, then consider the least recently used (LRU) strategy to replace the least recently used
service.

4 Distributed Edge Collaborative Caching Mechanism

Similar to the memory cache in a computer, edge caching process can be roughly divided
into three stages, data prefetch, node selection and cache replacement stage. In particular, we
optimize an algorithm for node selection stage based on the hot load node of probability choice
node (i.e., Select-the-node-with-probability), and boost a differentiated service cache replacement
algorithm for cache replacement stage based on the recent minimum user benefit respectively (i.e.,
LUULRU-Fetch).

Algorithm 1: Select-node-with-probability (r)
Input: load count hc(si) of edge node si, user request r := (f , s)
Output: selected node s′′ = nodeIndexselected
1: nodeIndexselected = s
2: if edge node s have a slot q, and f in q then
3: terminated.
4: else
5: denote max load count in all edge nodes as hcmax=MAX(hc)
6: initialize random interval size randomsize = 0
7: for i= 0, . . . ,m then
8: tmp= hcmax− hc(si)
9: randomsize+= tmp
10: pi+= tmp
11: randomnum =RANDOM(0, randomsize)

12: for i= 0, . . . , m then
13: if randomnum ≤ pi then
14: nodeIndexselected = i
15: return nodeIndexselected

Above, lines 5 to 11 in algorithm 1 show how to obtain random numbers for the node
selection stage. Where, line 5 of the algorithm represents the maximum number of loads MAX(hc)
within the node load count table hc, and RANDOM(0, randomsize) of line 11 represents a random
value within the interval RANDOM(0, randomsize).

Differentiated services are common in Internet scenarios. For example, compared with normal
users, VIPs can get superior service quality and better user experience. In order to meet the needs
of differentiated services, we put forward differentiated service strategies.

CMC, 2021, vol.69, no.2 2053

Algorithm 2: Least user utility-least recently used cache replacement algorithm (LUULRU-Fetch)
Input: user request r := (f , s), user utility uj of requested file j, selected node s′′ in selecting node
stage.
Output: the file fselected selected and replaced.
1: if node s′′ have a slot q, and file f in q, then
2: terminated.
3: else
4: if the cache capacity of node s′′ is full, then
5: if the least-user-utility file in s′′ is greater than 1 then
6: Find the least recently used file from the above list, and denote it as fselected
7: else if the least-user-utility file in s′′ is only 1 then
8: denote it as fselected
9: replace fselected from s′′
10: cache f to s′′.

Edge collaborative caching strategy is proposed as follows (overall strategy, integrating differ-
entiated service strategy and load balancing strategy). Combined with the node load balancing
strategy and differentiated service strategy proposed above in the three stages of the cache replace-
ment process (data prefetching, node selection and cache replacement). The specific algorithm is
shown in Algorithm 3.

Algorithm 3: Edge collaborative caching strategy

Input: λ= tf
tr
, μ= ηλ≥ tf

tr
, hc(si)= 0, U = 0, r := (f , s, p), S1(f), S2(r)

Output: cache hit ratio hr, average access delay t, user utility U , node load variance va
1: for each request r := (f , s, p) do
2: add f to file request queue S1(f), add r to request queue S2(r)
3: if s have a slot q, and f in q then
4: hc(s)+= 1, U+= getUtility(f , p, ‘local’), s responses r and its delay is tl
5: else if neighbor s′ have a slot q and f in q then
6: hc(s′)+= 1, U+= getUtility(f , p, ‘relay’), s responses r and its delay is tl + tr
7: else U+= getUtility(f , p, ‘bypass’), cloud responses r and its delay is tl + tr+ tb
8: /* The following is the cache replacement process, including data prefetching, node selec-
tion, and cache replacement */
9: if |S1(f)| = λ then
10: Call Select-node-with-probability(r) algorithm
11: Call LUULRU-Fetch(r) algorithm
12: Empty S1(f)
13: if |S2(r)| =μ then
14: Call LUULRU-Fetch(r) algorithm
15: Empty S2(r)

In the input section of Algorithm 3, λ = tf
tr
, μ = ηλ ≥ tf

tr
, where η is the smallest available

integer. S1(f) and S2(r) mean request queues for logging f and r respectively, initializing empty.

2054 CMC, 2021, vol.69, no.2

Denote service load count in node si as hc(si) and initialize 0, user utility U = 0, p in r := (f , s, p)
mean its priority.

Lines 1 to 7 of algorithm 3 describe the response action of edge node or neighbor node, or
cloud service/response when the user request r access f . In line 4, hc(s) represents the number of
requests/loads processed in the node s, getUtility(f , p, ‘local’) represents Eq. (6) to calculate the
user utility of f when the user request priority is p and the local server is served at the local node
s. getUtility(f , p, ‘relay’) of line 6 and getUtility(f , p, ‘bypass’) of line 7 and so on. Relay means
that the user’s request is forwarded by the local node and responded by the neighboring node.
Bypass means that user requests are bypassed by local nodes and responded by the cloud.

Lines 9 to 15 of Algorithm 3 describe the cache replacement (also known as cache update)
process. Lines 9 to 12 describe that after prefetching f , Algorithm 1 (Select-node-with-probability
(r)) is used for node selection, and finally Algorithm 2 (LUULRU-Fetch) is used for cache
replacement.

Lines 13 to 15 of Algorithm 3, similar to lines 9 to 12, describe the process after prefetch-
ing f , selecting the current node, and finally using algorithm 2 (LUULRU-Fetch) for cache
replacement.

5 Performance Evaluation

Based on the Task Event Table [18] in the real Data set Google Cluster Data 2011-2, we
conducted a large number of experimental tests and performance analysis compared with the
baselines. Due to probabilistic selection existing in some baselines and the proposed algorithm, we
conducted 10 times and analyzed the results of the proposed algorithm improvements. Specifically,
the baselines are the advanced Camul [8] and the classic LRUwithRelay and LRUwithoutRelay
algorithms. The baselines are used to test and analyze important performance indicators such as
hit ratio, average access delay and so on.

5.1 Experimental Setup
Considering the system shown in Fig. 1, we set some important parameters and explain them

as follows. According to the experimental test results of Maheshwari et al. on edge cloud system
in 2018, we set tl = 1, tr = 10, tb = 100, and the unit of time was simply set as milliseconds
(ms) [19]. Refer to Camul [8], the ratio of operation cost of FETCH and bypass is 10, so set
tf = 1000 ms. Due to the huge difference between the two poles of queueing delay in Google

Cluster Data 2011-2, which is 1us ∼ 1013us, analysis of its “queue delay-ranking” shows that it has
a strong long tail effect, so we adopted the approximate average value of the long tail and set it
as tp = 100 ms. In the actual scenario, queueing delay is closely related to machine I/O capability,
data/request arrival rate, etc., and there is no universal value. Therefore, it is feasible to use the
approximate value in the long tail for algorithm verification [18–23]. The selected experimental
platform is shown in Tab. 1.

5.2 Additional Overhead Analysis of Algorithms
Suppose there are n user requests, m nodes in the system, and each node has e slots.

Compared with the traditional LRU algorithm, the extra space overhead of each algorithm is
shown in Tab. 2.

In short, the space overhead of each algorithm is: LRUwithoutRelay < LRUwithRelay <

Proposal < Camul.

CMC, 2021, vol.69, no.2 2055

Table 1: Experimental platform

Item Experimental platform configuration

CPU Intel(R) Core(TM) i7-6700 CPU@3.40 GHz 3.41 GHz
Memory Kingston DDR4 2666 16 GB
Operation system Windows 10 professional
Simulation environment Spyder 3.3.6 (Anaconda3)
Language Python 3.7

Table 2: The extra space overhead of each algorithm compared to LRU

Extra overhead LRUwithRelay Camul Proposal

Neighbor node file record cost O(m ∗ e) O(m ∗ e) O(m ∗ e)
Request queue O(n) O(n)
Slot state table cost O(3m ∗ e)
Node load information table cost O(m)

File-user utility table O(m ∗ e)

5.3 Experimental Results
5.3.1 Impact of Cache Number

Observe the experimental results, as shown in Fig. 3, and explore the impact of the number of
cache nodes on the algorithm performance: (a) with the increase in the number of nodes, similar
to other algorithms with relaying mechanism, the hit ratio of proposal is almost unchanged; (b)
As the number of nodes increases, the number of queueing tasks in each node decreases, the
queueing delay decreases, and the hit ratio slightly increases, so the average access delay decreases;
(c) As the number of nodes increases, the number of local hits decreases and the number of relay-
ing hits increases for the algorithm with relaying mechanism. According to user utility Eq. (7),
it can be seen that the user utility decreases. In addition, for LRUwithoutRelay algorithm, since
nodes do not have relaying mechanism and fetch delay are relatively more, its user utility is usually
low. (d) Except for LRUwithoutRelay which does not have the relaying mechanism and remains
the load balance of original traces, which leads to the lowest load variance, the proposals are
all better than the other two algorithms. (e) In terms of the algorithm’s time overhead, Proposal
is obviously superior to Camul, and even slightly superior to LRUwithRelay algorithm when the
number of nodes is large.

5.3.2 Impact of Cache Size
Based on the experimental results, as shown in Fig. 4, we can analyze the impact of cache

node capacity on algorithm performance: (a) the hit ratio of each algorithm increases with the
increase of cache size, and the proposal is very close to Camul. (b) With the increase of cache
capacity, the average access delay of LRUwithoutRelay decreases. The benefits brought by relaying
mechanism make the other three algorithms not significantly changed. (c) Since user utility of
LRUwithoutRelay is far less than 0 in small capacity, it is not shown here. It can be seen from
Fig. 4c that proposal is superior to other algorithms. (d) With the exception of LRUwithoutRelay,
the proposal is superior to other algorithms in terms of the load variance of performance

2056 CMC, 2021, vol.69, no.2

indicators. (e) Since the classical LRUwithoutRelay algorithm is the simplest, it has the lowest
time cost. LRUwithRelay is similar to the proposal, while Camul needs to record the status of
the slot in the node, so its time cost increases with the increase of cache capacity.

(a) (b)

(c) (d)

(e)

Figure 3: Impact of cache number

CMC, 2021, vol.69, no.2 2057

(a) (b)

(c) (d)

(e)

Figure 4: Impact of cache size

5.3.3 Impact of Average Queueing Delay
As shown in Fig. 5, the experiment shows the effect of average queuing delay on the per-

formance of the algorithm: (a) it can be found that with the increase of average queueing delay,

2058 CMC, 2021, vol.69, no.2

the average access delay of all algorithms increases gradually. The more balanced the algorithm
is, the slower the increase rate is. (b) With the increase of average queueing delay, the user utility
of each algorithm decreases gradually. In addition, when the average queueing delay is within a
reasonable range of 60 ms∼100 ms, the user utility of the proposal is optimal.

(a) (b)

Figure 5: Impact of average queueing delay

In addition, as can be seen from Figs. 3a and 4a, the proposal is not superior to LRUwith-
outRelay on an important indicator of cache hit ratio. This is because LRUwithRelay with
relaying mechanism treats all nodes as a whole, and its content repetition proportion between
nodes is 0, while the content repetition between proposal and Camul is greater than 0. Besides,
LRUwithoutRelay regards each node as independent and its content repetition between nodes is
the highest.

6 Conclusions and Future Work

This paper describes the online request scenario of edge collaborative caching, analyzes the
Google data set and finds that the introduction of relaying mechanism in nodes with relatively
balanced load must increase the variance of node service load. However, some cache algorithms
without considering load balancing have large queueing delay in some nodes, which leads to large
average access delay and low utility for users.

By optimizing the average access delay of online service requests and differentiated services
scenes, we proposed an edge collaborative caching algorithm based on differentiated services and
load balancing. Based on differentiation of Internet service scenarios and the introduction of
relaying mechanisms, we considered serious request queuing delays from the node load imbalance,
compared to the classic cache replacement algorithm and the current advanced online edge
caching algorithm. The experimental results show that our proposal not only guarantees the load
balancing server process the request, but also reduces the average user requests access latency,
improving the utility of users.

By caching the requested content, multiple nodes can provide services for users to speed
up transfer. In the future, we will study the influence of single point transmission and coor-
dinated multiple points (CoMP) transmission on edge cache, such as energy consumption and

CMC, 2021, vol.69, no.2 2059

computational complexity, so as to find a compromise between cooperative multi-point transmis-
sion and single point transmission.

Funding Statement: This work is supported by the National Natural Science Foundation of China
(62072465) and the Key-Area Research and Development Program of Guang Dong Province
(2019B010107001).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
[1] S. Huang, Z. Zeng, K. Ota, M. Dong and N. Xiong, “An intelligent collaboration trust interconnec-

tions system for mobile information control in ubiquitous 5G networks,” IEEE Transactions on Network
Science and Engineering, vol. 8, no. 1, pp. 1–1, 2020.

[2] M. Yu, A. Liu and N. Xiong, “An intelligent game based offloading scheme for maximizing benefits
of IoT-edge-cloud ecosystems,” IEEE Internet of Things Journal, vol. 99, no. 1, pp. 1–1, 2020.

[3] X. Liu, H. Song and A. Liu, “Intelligent UAVs trajectory optimization from space-time for data
collection in social networks,” IEEE Transactions on Network Science and Engineering, vol. 99, no. 1,
pp. 1–1, 2020.

[4] X. Ma, A. Zhou, S. Zhang and S. Wang, “Cooperative service caching and workload scheduling in
mobile edge computing,” arXiv preprint arXiv, 2020.

[5] M. Zwolenski and L. Weatherill, “The digital universe: Rich data and the increasing value of the
internet of things,” Journal of Telecommunications and theDigital Economy, vol. 2, no. 3, pp. 47–57, 2014.

[6] T. Zhou, B. Xiao, Z. Cai and M. Xu, “A utility model for photo selection in mobile crowdsensing,”
IEEE Transactions on Mobile Computing, vol. 20, no. 1, pp. 48–62, 2021.

[7] Y. Hao, Y. Miao, L. Hu, M. S. Hossain, G. Muhammad et al., “Smart-edge-cocaco: Ai-enabled smart
edge with joint computation, caching, and communication in heterogeneous IoT,” IEEE Network, vol.
33, no. 2, pp. 58–64, 2019.

[8] H. Tan, S. Jiang, H. C. Z. Han, L. Liu and Q. Zhao, “Camul: Online caching on multiple caches with
relaying and bypassing,” in IEEE INFOCOM 2019 - IEEE Conf. on Computer Communications, Paris,
France, pp. 244–252, 2019.

[9] D. D. Sleator and R. E. Tarjan, “Amortized efficiency of list update and paging rules,” Communications
of the ACM, vol. 28, no. 2, pp. 202–208, 1985.

[10] G. Pallis and A. Vakali, “Insight and perspectives for content delivery networks,” Communications of
the ACM, vol. 49, no. 1, pp. 101–106, 2006.

[11] N. Golrezaei, A. G. Dimakis and A. F. Molisch, “Scaling behavior for device-to-device communications
with distributed caching,” IEEE Transactions on Information Theory, vol. 60, no. 7, pp. 4286–4298, 2014.

[12] X. Li, X. Wang, P. Wan, Z. Han and V. C. Leung, “Hierarchical edge caching in device-to-
device aided mobile networks: Modeling, optimization, and design,” IEEE Journal on Selected Areas in
Communications, vol. 36, no. 8, pp. 1768–1785, 2018.

[13] J. Li, H. Chen, Y. Chen, Z. Lin, B. Vucetic et al., “Pricing and resource allocation via game theory
for a small-cell video caching system,” IEEE Journal on Selected Areas in Communications, vol. 34, no.
8, pp. 2115–2129, 2016.

[14] X. Cao, J. Zhang and H. V. Poor, “An optimal auction mechanism for mobile edge caching,” in IEEE
38th Int. Conf. on Distributed Computing Systems, Vienna, Austria, pp. 388–399, 2018.

[15] G. Wu, J. Ren and F. Xia, “A game theoretic approach for interuser interference reduction in body
sensor networks,” International Journal of Distributed Sensor Networks, vol. 7, no. 1, pp. 1–1, 2011.

[16] H. Wu and M. Xu, “Intra-router routing mechanism for ForCES architecture,” Journal-Tsinghua
University, vol. 48, no. 1, pp. 124–124, 2008.

2060 CMC, 2021, vol.69, no.2

[17] D. Ren, X. Gui and K. Zhang, “Hybrid collaborative caching in mobile edge networks: An analytical
approach,” Computer Networks, vol. 158, no. 1, pp. 1–16, 2019.

[18] C. Reiss and J. Wilkes, “Google cluster-usage traces: Format schema,” 2020. [Online]. Available:
https://drive.google.com/file/d/0B5g07TgRDg9Z0lsSTEtTWtpOW8/view.

[19] S. Maheshwari, “Joint optimization of application specific routing in an anycast network,” arXiv
preprint arXiv, 2018.

[20] E. Modiano, J. E. Wieselthier and A. Ephremides, “A simple analysis of average queueing delay in tree
networks,” IEEE Transactions on Information Theory, vol. 42, no. 2, pp. 660–664, 1996.

[21] D. C. Lee, “Effects of leaky bucket parameters on the average queueing delay: Worst case analysis,”
Proc. of INFOCOM’94 Conf. on Computer Communications, Toronto, Ontario, Canada, pp. 482–489,
1994.

[22] A. Amin, X. Liu, I. Khan, P. Uthansaku and M. Forsat, “A robust resource allocation scheme for
device-to-device communications based on q-learning,” Computers, Materials & Continua, vol. 65, no. 2,
pp. 1487–1505, 2020.

[23] A. Wulamu, Z. Sun, Y. Xie, C. Xu and J. Sang, “An improved end-to-end memory network for QA
tasks,” Computers, Materials & Continua, vol. 60, no. 3, pp. 1283–1297, 2019.

https://drive.google.com/file/d/0B5g07TgRDg9Z0lsSTEtTWtpOW8/view

