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Abstract: The COVID-19 pandemic is a significant milestone in the modern
history of civilization with a catastrophic effect on global wellbeing and mon-
etary. The situation is very complex as the COVID-19 test kits are limited,
therefore, more diagnostic methods must be developed urgently. A signifi-
cant initial step towards the successful diagnosis of the COVID-19 is the
chest X-ray or Computed Tomography (CT), where any chest anomalies (e.g.,
lung inflammation) can be easily identified. Most hospitals possess X-ray or
CT imaging equipments that can be used for early detection of COVID-19.
Motivated by this, various artificial intelligence (AI) techniques have been
developed to identify COVID-19 positive patients using the chest X-ray or
CT images. However, the advance of these Al-based systems and their highly
tailored results are strongly bonded to high-end GPUs, which is not widely
available in several countries. This paper introduces a technique for early
COVID-19 diagnosis based on medical experience and light-weight Convolu-
tional Neural Networks (CNNs), which does not require a custom hardware to
run compared to currently available CNN models. The proposed deep learning
model is built carefully and fine-tuned by removing all unnecessary parameters
and layers to achieve the light-weight attribute that could run smoothly on a
normal CPU (0.54% of AlexNet parameters). This model is highly beneficial
for countries where high-end GPUs are luxuries. Experimental outcomes on
some new benchmark datasets shows the robustness of the proposed technique
robustness in recognizing COVID-19 with 96% accuracy.

Keywords: Artificial intelligence; COVID-19; chest CT; chest X-ray; deep
learning

1 Introduction

In January 2020, the World Health Organization announced a Public Health Emergency
of International Concern (PHEIC) due to the world-wide spread of Coronavirus disease 2019
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(COVID-19). Human coronaviruses (CoV) belong to order Nidovirales, family Coronaviridae,
subfamily Coronavirinae [1]. There are viruses in the subfamily Coronavirinae that can be classified
into four types: @, B, ¥ and §. CoVs («, B, y and §) primarily infect a wide variety of animal
species, including mammals and birds, mostly in respiratory and gastrointestinal tract. Although
individual virus species mostly appear to be limited to a narrow host range comprising a single
animal species, genome sequencing indicates that the CoVs had crossed the host species barrier
frequently [2]. The winter of 2002 witnessed the emergence of severe acute respiratory syndrome
(SARS) disease, which was quickly attributed to a new CoV, the SARS-CoV [3]. Afterwards, near
the end of 2019 a novel class of 8 -coronavirus showed up, which is SARS-CoV-2 (COVID-19).
The Coronavirus is incredibly irresistible and in genuine cases may bring about intense respiratory
distress or organ failure [1].

The number of positive cases is growing exponentially everywhere in the world day after day,
and the virus infected more than 100 million people to date. Health systems of several countries
come to the point of collapse because of this fast growth rate in the infected cases [4]. Now most
countries face shortage of ventilators and testing kits. Thus, they have declared lockdown and
requested people to avoid gatherings and stay indoors. Due to the lack of available diagnostic
instruments, the medical situation is complicated where many countries are only able to apply
restricted COVID-19 tests [3,4]. Despite significant efforts to find an efficient way to detect
COVID-19, the availability of suitable medical resources in many countries is a major challenge.
Therefore, there is an urgent need to find a quick and low-cost tools for early COVID-19 detection
and diagnosis.

Normal cases Cases with COVID-19

Figure 1: Sample normal scans chest X-rays vs. ones diagnosed with COVID-19 images are from
the covid-chestxray dataset [5]

Attempts have been made to find an effective and easy way to identify infected patients
early. Typically, a reverse transcription polymerase chain reaction verifies the disorder (RT-PCR).
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However, for early detection and evaluation of reported patients, the RT-PCR sensitivity may not
be high enough [6]. However, as a non-invasive imaging procedure, the X-rays and Computed
Tomography (CT) can classify certain characteristic manifestations in the lungs. Thus, for early
evaluation of COVID-19 and other types of pneumonia, the X-rays and CT scans can be used.
To highlight the discrepancy, some regular and COVID-19 positive study chest X-ray images are
displayed along with their clinical diagnosis in Fig. 1. Bilateral lung infiltrates (areas marked with
red) are seen by the chest X-ray of COVID-19 cases and display a homogeneous opacity of the
infected lungs (i.e., mostly pneumonic opacity).

Furthermore, using Al based techniques has grown exponentially in recent years in many
areas of medical practice and healthcare [7]. The Al-based techniques do not complain fatigue,
thus, they can process large quantities of data at very high speed out-performing humans’ accu-
racy in the same job. Al is applied in almost each field of medicine such as drug design and
discovery and patient monitoring [8]. For instance, Al is used in medical technologies to improve
the diagnostical capability of clinicians, especially in multi-disease diagnosis [9-11], and medical
image analysis [I1]. With progress in employing more intelligent Al techniques in healthcare,
patients can be diagnosed professionally and faster, thus they may start treatment sooner.

Recently, huge efforts of research have been made to diagnose COVID-19 using AI [10,11].
In more detail using deep convolutional neural networks, which made a revolution in numerous
fields of science [12] by introducing non-traditional and efficient solutions to many image-related
problems that had long remained unsolved or partially addressed. For example, deep learning
has achieved remarkable performance for several visual tasks such as object segmentation in
medical applications [13] and cancer MRI images classification [14]. In the context of COVID-19
detection, deep learning was utilized in [15] to extract regions from chest X-ray images that may
identify features of COVID-19. Transfer learning was also used for pneumonia classification and
visualization [11]. In [16], a model for automatic detection of COVID-19 infection form raw chest
X-ray images based on deep neural networks was proposed. From a computational perspective,
the rise of DL-Based models has been fueled by the improvements in hardware accelerators. The
GPU continues to remain the most widely used accelerator for DL applications [17]. Furthermore,
as DL models are getting progressively unavoidable and exact, their computing and memory
necessities are developing hugely and are probably going to outpace the upgrades in GPU assets
and execution. For instance, training CNNs takes a gigantic measure of time (e.g., 100-epoch
training of ResNet-50 on ImageNet dataset using one M40 GPU requires 14 days) [17]. However,
GPUs are not affordable for every research and even for some institutions with limited funding
due to its high price. Even for cloud-based GPU’s an expensive monthly rental charge need to
be paid. Furthermore, cloud-Based GPU’s requires a high-speed broadband connection for data
uploading, which is still a problem for some countries and hospitals where broadband availability
is problematic.

Conclusively, the aim of this paper is to develop an efficient and effective COVID-19 detection
technique from the chest X-ray and CT images. The effectiveness aspect is achieved using deep
learning-based methods, which is the state-of-art in pattern recognition. The efficiency aspect is
achieved by implementing a light-weight deep learning model that does not require a GPU or
a custom hardware to run. Thus, the contribution of this paper is presenting a hybrid light-
weight CNN model with <400 K parameters to effectively diagnose COVID-19 from either chest
X-ray or CT images. The proposed network model is stripped down from all of the unnecessary
layers and related parameters to enable its operation on normal CPUs. This is in contrast to the
majority of current CNN models that require high end GPUs to run. The model contains a quite
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compact number of trainable parameters 335442, which represents 0.54% of the famous AlexNet
model (61 M) [18], 0.24% of the VGG16 based model (138 M) model [19], 29% of the DarkNet
(1127334) [16], and 2.85% of COVID-Net (11.75 M) [20]. Finally, the presented results in this
paper provide a speedy and solid start-up in the fight against COVID-19. This is the case when
doctors are required to test a huge number of patients in a limited time period.

The reminder of the paper is organized as follows. Section 2 presents available related lit-
erature work. The proposed deep learning CNN model is presented in Section 3. Section 4
is dedicated for the experimental part and associated results’ discussion. Finally, the paper is
concluded and summed-up in Section 5.

2 Literature Review

In the past year, the literature became crowded with COVID-19 related research, as depicted
in Tab. 1. However, the majority of research is not peer-reviewed yet and exists on an open-access
archives. Following a careful analysis of this research, there are some serious associated drawbacks
as follows:

e There are not fixed COVID-19 symptoms as they differ across countries and may overlap
with other pneumonia forms (e.g., SARS). This limits the ability to develop robust standard
diagnostic techniques [3,4].

e The test data either chest X-rays or CT are very limited in quantity and quality, and hidden
from researchers, which causes delays in building a robust Al technique for the greater good
of the humanity.

e A group of approaches were developed using the transfer learning [19,21] scheme from the
1.2 million ImageNet dataset [18]. This might be useful in non-specific image classification
problems, which could generalize any learned features to other classification problems.

e The majority of computer vision labs that released early COVID-19 research made full uti-
lization of their available hardware gears, e.g., top-end GPU’s. This is suitable for countries
that could afford such type of hardware to assist in early diagnosis of COVID-19. However,
there are other countries that cannot afford such special hardware in their fight against the
COVID-19 battle.

e The performance ability of deep learning techniques is mostly affected by the quantity
of positive cases. Although, most of literature works used on the average a hundred of
COVID-19 positive cases. This is a quite small number of the positive cases to consolidate
the performance.

e The majority of available methods either utilize the chest X-ray or CT scans but not
both [22-24]. To the best of our knowledge there are not any method that could handle
both types of images with the same settings and setup due to the differences in the structure
of CT and X-ray and capturing way.

In general, much of the literature work is still immature in providing practical Al solutions
that can assist in early COVID-19 detection from chest screening images for the above reasons.
additionally, CNN-based approaches are efficient and fits the job as they integrate extraction and
classification of features together in a robust end-to-end model that collects the raw input data
and generates the final classification result. Definitively, there is still a lot of space for work to help
with battling this pandemic and introducing cheap and fast solutions that can help the humankind
in its battle against infections, particularly if the solutions can deal with both chest checks X-ray
and CT.
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Table 1: Summary of primary prior literature using deep learning approaches on COVID-19
identification

Methods Modality Cases Accuracy (%)
DRE-NET [22] Chest CT 1485 86
M-Inception [23] Chest CT 453 82.9

UNet 4+ 3D deep network [24] Chest CT 542 90.8
COVIDX-Net [25] Chest X-ray 50 90
COVID-Net [20] Chest X-ray 5579 92.4

Transfer learning (Inception) [21] Chest X-ray 924 92.85
Transfer learning (VGG-16) [19] Chest X-ray 204 92

3 The Proposed Method

The field of computer vision witnessed an unprecedented use of CNNs [26], especially for
video/image analysis [26]. CNNs requires less pre-processing effort, this is in contrast with other
different feature extraction and classification algorithms. In addition, the network is totally respon-
sible for generating the required filters and feature maps with minimal pre-processing and human
intervention. At the hearth of deep learning work is input images convolutional operations. The
convolution operation is described as follows in Eq. (1):

(Z&R)(x, y)=) Y R(m, mZ(x—m, y—n) ()

The input image is indicated by Z in this case and R is the required convolution matrix of 2d
that slides over the entire image Z . The operator ® represents the discrete convolution operation.
The generic structure of the proposed deep learning CNN for COVID-19 detection is depicted in
Fig. 2.

The core aim of this paper is to develop a light-weight deep CNN model. Although this idea
contradicts the common theory of CNN models to stack as many layers as possible [27], this
light-weight idea suits the specific problem of COVID-19 small available data and to afford the
model to run in places with limited available computing power. However, throughout literature the
problem of building the light-weight CNN model achieves a limited performance [28]. The prob-
lem can be stated as building a deep learning model using the fewest number layers/parameters
with the maximum accuracy. Given a deep learning CNN model composed of N layers L, Lo,
..., Ly arranged in a specific order, the deep learning network model NW can be defined by:

N
NW = U{Li} ()

Each layer consists of a sequence of trainable parameters. Hence, the total number of
trainable parameters in the whole network is given by

M=) G(=DY¢(L (3)
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where ¢(L;)is a function that retrieves the number of trainable parameters at a given layer L;.
Furthermore, the performance of a complete epochs run is

P, = W(NW)) “4)

where NW' is the i network model trail, while P; is the performance measure, (i.e., accuracy).
The targeted light-weight network model could be converted to a minimization problem defined
as follows:
N
| 5

(i=0)

argmin ¢ (X)¢ (X) = {x |Vx e NW! A maxp) ¥ (NW;)

Practically, the problem can be approached by controlling the number of network layers, and
testing for corresponding accuracy performance. However, with each added layer there are tens of
parameters have to be optimized such as kernel size, activation function, batch size,... etc. Thus,
ecach of the key parameters is investigated in detail to select its optimal value that achieves the
maximum accuracy with the lowest running cost. For abstractness purpose, the final COVID-19
detection CNN layers’ details are illustrated in Tab. 2. However, the full experimental analysis of
tuning various key network parameters is explained in the next section.

Feature Learning

Figure 2:
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Table 2: The layers and layer parameters of the proposed CNN model. The last dense layer shape
is based on the 10 pneumonia cases depicted in the covid-chestxray dataset [6]

Layer type Output shape Number of trainable parameters
Conv2D [196 x 196 x 64] 4864
Average pooling [65 x 65 x 64] 0
Conv2D [61 x 61 x 32] 51232
Average pooling [20 x 20 x 32] 0
Conv2D [16 x 16 x 8] 6408
Flatten [2048] 0
Dense [128] 262272
Dense [64] 8256
Dropout [64] 0
Dense [32] 2080
Dense [10] 330

4 Experimental Setup

The efficiency of the proposed CNN model for COVID-19 detection is explored in this
section. Also, a full description of the covid-chestxray datasets, parameters setting and tuning
during the training stage and their validation at the testing stage are presented. At the end, a
thorough analysis of the obtained results is presented.

4.1 Parameters Setting and Tuning

The first network parameter to be investigated is the total number of trainable parameters
in the whole network as described in the previous section. This parameter is implicitly controlled
by the number of the network layers. Fig. 3 displays the effect of increasing the number of
parameters on the model accuracy after 21 full models run (full epochs for each run). The figure
depicts a performance peak of 96% accuracy at 335,442 trainable parameters. This represents the
optimal number of the required parameters to run the network effectively.

100
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88 |-
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Number of trainable parameters Logarithelo Seale

Figure 3: Impact of increasing training parameters on the performance of the proposed network.
The peak is detected using 335,442 trainable parameters
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Also, the proposed CNN model was tested against varying the convolutional filter size as
depicted in Fig. 4, which shows the best performance of the model with 5 x 5 filter size, where the
curve flattens with less accuracy for high filter sizes > 6 x 6. This filter size (5 x 5) is marginally
greater than the standard CNN filter size [27] but it easy to spot lung anomalies that arise in
larger areas.
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Figure 4: Impact of increasing convolutional filter size on the accuracy of the network. the peak
is detected using 5 x 5 filter

Also, a number of activation functions are examined as well (i.e., Sigmoid, Softmax, ReLU,
Tanh, Exponential, Hard Sigmoid and Softplus). Fig. 5 depicts the performance of proposed
COVID-19 model under various activation functions. The outcomes suggest that the sigmoid
function, Eq. (6), is the best one, since it limits the f(x) from a wide scale to [0, 1]. This fits
the multi-class classification issue of covid-chestxray as it includes ten different diagnoses for the
represented cases.

S = (6)

l+ex

The batch size is another important factor to be examined as it controls the number of
training examples utilized in a single iteration. Fig. 6 shows the effect of varying the batch size on
the proposed model performance. It is obvious that the batch size of ten examples per iteration
is the best, where high batch sizes did not improve the performance but added an extra memory
load on the system.

4.2 Chest X-ray Dataset

A public dataset of pneumonia chest X-ray cases [6] is used in this paper. The dataset portrays
nine types of pneumonia (e.g., MERS, COVID-19, MERS, SARS, ARDS) and some normal
X-ray cases as demonstrated in Fig. 7. The group of nine distinctive pneumonia cases portrayed
in the dataset helps basically in decreasing the underfitting of the proposed network model as the
model requirements to learn numerous varieties among the nine pneumonia cases. The dataset is
continually refreshed with pictures from different open access sources. Till the time of publishing
the paper, the dataset reached 951 chest X-beam pictures from 481 subjects. There are 558 males
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and 311 females, while the rest are missing the gender information. The minimum and maximum
cases ages are 18 and 94 years with an average age of 40 years. 583 of the cases are COVID-19
positive, while the remaining are either normal or depict other pneumonia types.

Softplus
Hard Sigmoid
Exponential
Tanh

RelU

Activation Function

Softmax

Sigmoid

0 20 40 60 80 100
Accuracy (%)

Figure 5: The effect of activation function on the proposed COVID-19 network accuracy perfor-
mance. The best function is Sigmoid
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Figure 6: Impact of the batch size t on the proposed COVID-19 network accuracy. The optimal
batch size is ten

4.3 Network Training Phase

As the majority of available COVID-19 datasets are limited in size and definitely induce an
overfitting effect, data augmentation techniques are essential to tackle this problem and increase
the dataset size artificially with label-preserving techniques [29]. Practically, the entire dataset
images were first resized to 200 x 200 pixels- and parsed through a randomized reflection and/or
translating in +30 range. This is necessary and common to prevent the positional bias in the
results [29]. Furthermore, the entire augmented images are fabricated during runtime to reduce



2484 CMC, 2021, vol.69, no.2

the computational load. The training and validation performance of the proposed CNN network
model in Fig. &.
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Figure 7: Analysis of the cases X-ray images depicted in the covid-chestxray dataset [0]
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Figure 8: The training and validation performance of the proposed CNN network model in first
1000 epochs. The graph depicts the performance stability after the first 500 epochs with 96%
accuracy

The training process for the proposed deep model is performed using the stochastic gradient
descent SGD [30]. The SGD is important as it updates the parameters with mini-batch B = 10
examples. The momentum was set to 9 x 10~! and the weight decay was set to 1 x 1073, as
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the network is considered a shallow network [31]. The weight decay marginal value is important
as it helps to minimize the model training error [31]. The training and results are performed
using an Intel Core i5 machine, 2.9 GHZ occupied with 8GB of working RAM. This hardware
gear represents and average processing power computer with no installed GPU. The network is
implemented and trained using TensorFlow framework [32].

4.4 Results and Discussion

This section introduces the testing protocol for the proposed CNN model along with anal-
ysis. However, the chest-xray-images datasets do not have a prior configured test-split (and the
majority of COVID-19 dataset as well), thus, the common random 70%-30% training-validation
is adopted during the experiments. Regarding the quantitative evaluation, a group of standard
measures [33] are used, i.e., Accuracy, Sensitivity, Specificity, Mean Absolute Error (MAE) and
Area Under ROC (Receiver Operations Characteristics) Curve (AUC). These metrics are defined
in the following equations:

TP+ TN
Accuracy = (7
TP+ TN +FP+FN
TP
L TN
Speczﬁctty = m (9)
1 N
MAE= % |yi=Jil (10)
i=1

where TP is True Positive, TN is True Negative, FP is False Positive and FN is False Negative. y; is
the correct class label, ; is the predicted class label and N is the total classified cases. Additionally,
the validation-loss metric is also used to provide an additional indicator of the model efficiency
since it demonstrates how well the model performance generalizes to unseen yet data. The y; and
y; are as defined in Eq. (10) and the individual loss function A, (i.e., log-loss in this case), where.

N
J=) A i) (11)

i=1

The proposed CNN model performs 96% accuracy on the chest-xray dataset, while the log-
loss is 0.2. This is a rather positive finding given, the light-weight design of the proposed CNN
model- and the small dataset size. Tab. 3 shows the values of the five-performance metrics on the
chest-xray dataset, which reflects the robust performance of the proposed network.

Table 3: Performance metrics of the proposed network model on the chest X-ray dataset

Accuracy AUC MAE Sensitivity Specificity
96 0.94 0.061 0.958 0.949
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Furthermore, the proposed CNN model accuracy is verified against seven additional baselines
(GPU-based) that reflects the most recent work regarding COVID-19 detection using deep learning
models. The comparison shown in Fig. 9 confirms the effective performance of the proposed
CNN model for COVID-19 detection—as it performes higher rate with 6.4 £+ 3.7% than the other
baselines. Also, the results are further consolidated by an expert radiology team, where the same
accuracy measure is adopted to quantify this experiment. For every X-ray image that is correctly
classified by the proposed CNN model, it is depicted to radiologists to manually reclassify it.
Finally, the obtained radiological-based accuracy is 99%, which further confirms the robustness
aspect.

E Proposed Model

Transfer Learning VGG-16
Transfer Learning Inception
COVID-Net

E COVIDX-Net
UNet+3D Deep Network
M-Inception

DRE-NET

10 20 30 40 S0 60 70 80 90 100
Accuracy

Figure 9: Performance of the proposed CNN COVID-19 detection model vs., DRE-NET [22],
M-Inception [23], UNet + 3D deep network [24], COVIDX-Net [25], COVID-Net [20], transfer
learning (Inception) [21] and transfer learning (VGG-16) [19]

Moreover, in order to emphasize the effectiveness of the proposed model, it is tested on two
other publicly available COVID-19 datasets. The first DS1 [34] is a group of 98 X-ray cases, 70
of them are COVID-19 positive, while the remaining cases are normal. The second DS2 [16] is
1125 X-ray cases, 125 cases are for positive COVID-19 patients, while 500 cases are diagnosed
with pneumonia and the last 500 are for normal cases. In addition, one of the largest chest CT
images [35] dataset, i.e., DS3, is used as well to verify the hybridness aspect of the model. This
dataset consists of 2482 CT images, 1251 cases are COVID-19 positive while the remaining 1231
are normal cases. Fig. 10 depicts some illustrative sample cases from DS1, DS2 and DS3 datasets
consequentially.

The proposed model accuracy (%) performance on the DS1, DS2 and DS3 datasets is shown
in Fig. 11 and Tab. 4. The figure reflects the stable performance of the model across the DS1
and DS2. The accuracy on the DS2 is <90%, because the dataset is unbalanced, where it only
contains 10% of COVID-19 positive cases and causes an underfitting problem. Furthermore, the
obtained result shows a robust performance (92.3%) on the DS3, which is composed of chest CT
images. However, the model is trained from scratch on the DS3 due to the difference in X-ray
and CT characteristics, where the X-ray based network knowledge cannot be transferred directly
to the CT dataset.
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Figure 10: Illustrative samples for positive and negative COVID-19 cases from DSI1 [34], DS2 [16]
and DS3 [35]. DS1 and DS2 are chest X-ray images while DS3 is chest CT images
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Figure 11: Performance of the proposed model on two additional COVID-19 public available;
DS1 [34], DS2 [16]. DSO is the covid-chestxray dataset added for illustration
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Table 4: Performance metrics of the proposed network model on different datasets

DATASET Accuracy AUC MAE Sensitivity Specificity
DSO 96 0.94 0.061 0.95 0.94
DS1 95 0.93 0.060 0.98 0.95
DS2 81.33 0.95 0.08 0.97 0.98
DS3 92.08 0.50 0.095 0.97 0.99

Regarding the hybrid nature of the proposed CNN model; its performance based on CT
images (DS3), was benchmarked against three recent baselines that utilize CT images as well.
The results depicted in Fig. 12 confirms the proposed model effectiveness on CT images, where
it outperforms the rest of the baselines with 5.5+4% accuracy. This comparison confirms the
hybrid nature of the model that can be used for X-ray and CT images with the same structure
and parametrization but with full retraining on the CT data.

Proposed Model
CT Data

M-Inception
CT Data

UNet+3D Deep Network

DRE-NET
CT Data

0O 10 20 30 40 50 60 70 80 90 100
Accuracy (%)

Figure 12: Performance of the proposed COVID-19 CNN model using CT data against DRE-
NET [22], M-Inception [23] and UNet + 3D deep network [24]

Proposed

DarkNet

COVID-Net

AlexNet

VGG16

om 50000 M 100000 M 150000 M
Number of Parameters

Figure 13: Number of parameters of the proposed COVID-19 CNN model compared to COVID-
Net [20], DarkNet [16], VGG16 [19] and AlexNet [18] CNN models
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Finally, to emphasize the light-weight aspect of the proposed COVID-19 CNN model, Fig. 13
depicts a comparison based on the number of parameters for a group of recent and bench-
mark baselines. The proposed model parameters represent 8.1% on average of the other models’
parameters.

5 Conclusion

A fully automated hybrid CNN model for COVID-19 detection from either the chest X-ray
or CT images has proposed in this research paper. The introduced model achieved 96% and
92.08% accuracy on X-ray and CT images respectively. In contrast with the current research,
the proposed CNN model is light-weight and only contains 335,442 trainable parameters. This
is a quite compact number of parameters that does not require any custom hardware to run
making the model suitable in places with limited medical fund. In addition, the model output
was clinically validated, with specialized radiologists. Thus, the findings presented in this paper
are encouraging, where the proposed CNN model can be packaged and used in areas that are
with short of radiologists’ assistance for fast diagnosis. Regarding future work, the model will be
retrained and reused for detecting and diagnosing other types of pneumonia.
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