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Abstract: Owing to technological developments, Medical image analysis has
received considerable attention in the rapid detection and classification of
diseases. The brain is an essential organ in humans. Brain tumors cause loss of
memory, vision, and name. In 2020, approximately 18,020 deaths occurred due
to brain tumors. These cases can be minimized if a brain tumor is diagnosed
at a very early stage. Computer vision researchers have introduced several
techniques for brain tumor detection and classification. However, owing to
many factors, this is still a challenging task. These challenges relate to the
tumor size, the shape of a tumor, location of the tumor, selection of important
features, among others. In this study,we proposed a framework formultimodal
brain tumor classification using an ensemble of optimal deep learning features.
In the proposed framework, initially, a database is normalized in the form of
high-grade glioma (HGG) and low-grade glioma (LGG) patients and then two
pre-trained deep learning models (ResNet50 and Densenet201) are chosen.
The deep learning models were modified and trained using transfer learning.
Subsequently, the enhanced ant colony optimization algorithm is proposed
for best feature selection from both deep models. The selected features are
fused using a serial-based approach and classified using a cubic support vector
machine. The experimental process was conducted on the BraTs2019 dataset
and achieved accuracies of 87.8% and 84.6% for HGG and LGG, respectively.
The comparison is performed using several classification methods, and it
shows the significance of our proposed technique.
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1 Introduction

Owing to technological developments, considerable interest has been shown to brain tumors
in medical image analysis in the last few years [1]. The brain is a significant organ controlling
human thoughts, memory, vision, and thinking. Tumors occur in the brain when the cells behave
abnormally. This means that the cells grow and multiply uncontrollably. When most cells get older
or are damaged, they should be replaced by new cells [2]. If the old cells are not removed or
vanished from the brain, they combine with the new cells and cause problems. This production of
cells mainly results in the formation of tissue mass that can subsequently lead to tumor growth [3].

Today, an expected 700,000 individuals in the US live with an essential brain tumor, and
roughly 85,000 more determinations are examined in 2021. In 2020, there are an estimated
78,980 cases diagnosed (https://braintumor.org/brain-tumor-information/brain-tumor-facts/). Early
diagnosis of a brain tumor is essential for controlling the patient’s mortality rate. However,
it is a complicated task owing to tumor size, shape, location, and type [4]. Radiologists used
computerized tomography (CT), which is better than X-ray technology [5]. However, magnetic
resonance imaging (MRI) is a new technology that is more useful than CT for the diagnosis of
brain tumors [6]. Through this imaging technology, images of the patient’s body structures were
produced. For each patient, four types of MRI scans were generated: T1 weighted, T1 contrast
enhanced, T2 weighted, and Flair [7]. A few sample images are presented in Fig. 1.

Figure 1: A few sample images collected from BRATS2019 dataset

In addition to being time-consuming, manual brain tumor delineation is difficult and depends
on the individual operator [8]. Therefore, proposing automated computerized techniques with min-
imal human involvement is crucial. Computer vision researchers have introduced many techniques
using image processing and machine learning [9,10]. In image processing, they focused on image
contrast enhancement and tumor segmentation [11,12], whereas in the machine learning step, they
focused on the classification of brain tumors into relevant categories [13]. Contrast enhancement
is the most important step in any computerized method developed for medical imaging [14,15].
Based on this step, obtaining the maximum accuracy of the next step is easy [16]. Researchers of
computer vision divide computerized techniques into classical approaches [17] and deep learning-
based approaches [18]. In the classical approach, four steps are followed for the final classification:
enhancement of tumor, tumor segmentation, feature extraction using handcrafted techniques such

https://braintumor.org/brain-tumor-information/brain-tumor-facts/
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as texture features, shape features, point features, and Gabor features [19]. Subsequently, these
features are fused and classified using supervised learning algorithms [20]. In deep learning
techniques, features are extracted from raw images without employing a segmentation step. A
simple deep learning model comprises many layers such as convolutional layer, ReLu layer, batch
normalization layer, fully connected layer, and softmax. Many deep learning-based techniques have
been introduced in the literature, and few of them are discussed here.

Huang et al. [21] presented an automated technique for the detection of brain tumor regions.
The proposed method comprises three stages. In the first stage, segmentation is applied. Then,
the energy functions were modeled and the energy function was optimized. T1 and FLAIR
MRI images were used for the experimental process. They also performed a conditional random
field-based framework to merge the information of T1 and FLAIR in the probabilistic region.
Islam et al. [22] introduced a new framework based on multi-fractal highlighted and upgraded
Adaboost grouping for cerebrum tumor identification. They extracted texture features that were
classified using the AdaBoost classifier. The experimental process was conducted using data from
14 patients and achieved better accuracy. Rehman et al. [2] presented a 3D brain tumor detection
and classification framework by using deep learning. In this framework, the tumor regions are
extracted using a convolutional neural network (CNN) and later utilized for the training of a
model. The features of the trained model are extracted from the feature layers and further refined
using a correlation-based approach. BraTs datasets were used for the experimental process, and
improved accuracy was achieved. Rashid et al. [23] introduced a deep learning-based method for
brain tumor classification. They performed a hybrid contrast stretching approach at the initial
step and subsequently modified two pre-trained models—VGG16 and VGG19—and subsequently
extracted features. They also implemented a correntropy and joint-learning approach for best
feature selection. Finally, they implemented a fusion approach. The experimental process was
conducted on a BraTs series and achieved improved accuracy.

These techniques still face several challenges, such as i) the contrast of the original MRI
images is not suitable for extracting the tumor region. The main problem is the extraction of
four diverse MRI slices-which are “T1,” “T1CE,” “T2,” and “Flair.” However, these slices include
a shallow contrast that affects the detection problem; ii) the size of the tumor region is not
consistent, and it changes for each patient. Therefore, there is a massive chance of error rate for
tumor detection; iii) in the feature extraction phase, the key problem is the extraction of irrelevant
features, and iv) high similarity among tumor types. In this study, we proposed a new fully
automated framework for brain tumor classification using an ensemble of optimal deep learning
feature selection. Our significant contributions are as follows.

• Modified ResNet50 and DenseNet201 were based on the output of the dense layer. The
dense layers of both models are updated according to the number of brain tumor classes
(i.e., four classes). Subsequently, both models were trained using transfer learning and saved
modified models, which were later utilized for feature extraction.

• An enhanced ant colony optimization algorithm was proposed for the best feature selection.
Features were selected from the originally extracted features.

• A new activation function based on entropy and a normal distribution is proposed. The
features passed from this function were selected as the best features and evaluated using the
fitness function Fine KNN.

The proposed methodology of multimodal brain tumor classification is presented in Sec-
tion 2 and includes information on deep learning models, feature selection using meta-heuristic
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techniques, and final classification. The results are discussed in Section 3. Finally, the conclusions
of this study are presented in Section 4.

2 Proposed Methodology

For multimodal brain tumor classification, we herein propose a new enhanced deep learning
framework. The first preprocessing step is performed in the proposed framework and then two
pre-trained deep learning models, ResNet50 and DenseNet201. Both models were fine-tuned and
trained using transfer learning. Subsequently, the features were extracted from the feature layers.
The extracted features were optimized using the enhanced ant colony optimization (EACO) algo-
rithm. The selected features of each network are aggregated using a serial-based approach and
finally classified using multi-class SVM, where the cubic method is used. A flow diagram of the
proposed method is illustrated in Fig. 2.

Figure 2: Proposed flow diagram of multimodal brain tumor classification

2.1 Dataset Normalization
In this study, we utilized the BraTs 2019 brain dataset that includes both high-grade glioma

(HGG) and low-grade glioma (LGG). The images in this dataset are in MRI format, and each for
each patient, four types of scans were generated: T1, T1CE, T2, and Flair. A few sample images
are shown in Fig. 1. This dataset consisted of 259 cases of HGG and 76 cases of LGG. All
images were manually annotated by clinicians and certified radiologists [24]. In the normalization
step, we normalize this dataset into four folders, which are further divided into training and
testing. The details of this normalized dataset are listed in Tab. 1.
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Table 1: Detail of normalized BraTs 2019 dataset

BraTs2019 FLAIR T1 T1CE T2 Total images Total size (MB)

HGG 30,225 30,225 30,225 30,225 120,900 882
LGG 11,780 11,780 11,780 11,780 47,120 329

2.2 Conventional Neural Network
One of the most important deep neural network types is CNNs. It performs image recog-

nition [25,26], image classification [27], and object detection [23]. CNN requires minimal prepro-
cessing compared to the other classification algorithms. This network takes an image as input
and is then classified into certain categories. For training and testing, the images are passed
through several layers of kernel size and filters. These layers are convolutional layer, pooling,
ReLu, fully connected, and softmax. In the convolutional layer, image pixels are transformed into
features through a convolutional filter, whereas these features are classified in the softmax layer
with probalistic values between 0 and 1.

2.3 Modified ResNet50 Features
ResNet has a better performance; throughout the network, it creates a more direct path for

propagating information. In ResNet, backpropagation does not experience a disappearing gradient
issue. By avoiding the layers, shortcut networks allowed links that were not beneficial through
training. Mathematically, the output T(i) was formulated as follows:

T(i)=R(i)− i (1)

R(i)=T(i)− i (2)

In this study, we utilized the ResNet-50 pre-trained model. This network comprises 64 kernels
with a 7× 7 convolution layer, a stride 2 by 3× 3 max pooling layer, 7× 7 avg pooling layer by
stride 7, and 16 residual building blocks, and at the end, a fully connected layer. This network
has over 23 million trainable parameters. The architecture of ResNet101 is illustrated in Fig. 3.

Figure 3: Architecture of ResNet-50 pre-trained deep learning model

Subsequently, we modified this model and removed the last fully connected layer. Originally,
this layer comprised 1000 object classes; however, we needed to modify it according to the selected
BraTs dataset that only includes four classes. Therefore, we added a new fully connected layer that
included only four layers and trained using deep transfer learning. The transfer learning details
are provided in the next section. After training through transfer learning (TL), a modified model
was obtained. We utilized the modified model and extracted features from the global average pool
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layer. In this layer, the dimension of the extracted features is N × 2048. The modified model is
shown in Fig. 4.

Figure 4: Modified ResNet50 model for brain tumor classification

2.4 Modified DenseNet201 Features
This network comprised 201 deep layers. This network was originally trained on 1000 object

classes. In the other deep networks, layers are gradually connected to each other, thereby making
the system complex and harder. Recently, the ResNet model provided the concept of skipping
layers. Subsequently, the DenseNet network further revised this approach, and sequential concate-
nation was performed instead of summation of the output features of the previous layers [28].
Mathematically, this is defined as follows:

Z1 =Hl ([z0, z1, . . . , zl−1]) (3)

Here, Hl is a nonlinear transformation, l represents the layer index, and zl represents the
features of the lth layer. For down testing purposes, thick squares are created in the organization
design that are then isolated by the layers called change layers, which comprise batch normaliza-
tion, are to be trailed by a 1 × 1 convolution layer, followed by a 2 × 2 avg pooling layer. The
original architecture of DenseNet201 is shown in Fig. 5.

Figure 5: Layered architecture of DenseNet201

In this figure, the pooling blocks utilized in the Densent-201 architecture are shown to reduce
the feature map sizes. Each layer in DenseNet consumes direct access to the original contribu-
tion image and gradients from the loss function. Thus, the computational rate was significantly
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reduced. In this study, we modified DenseNet201 for multimodal brain tumor classification. The
modified architecture is illustrated in Fig. 6. The fully connected (FC) layer, which originally
comprises 1000 object classes, is removed, and a new FC layer that includes only four classes
is added. Subsequently, the modified model was trained using TL. In the training process, the
number of epochs was 100, the learning rate was 0.00001, and the method was stochastic gradient
descent. The mini-batch size was observed to be 64. The newly trained model was saved and later
utilized for feature extraction. The features are extracted from the global average pooling layer,
which was later utilized for classification purposes.

Figure 6: Modified Densnet-201 architecture

2.5 Transfer Learning and Features Extraction
In deep learning, TL is a process of reusing a model for a target task [29]. The main purpose

of TL is to train a pre-trained model instead of training a model from scratch. In this process,
source models are considered along with the source data and source labels. Then, we transfer
the knowledge to the modified model and train for the new task. In the training process, a few
parameters are required, such as stochastic gradient descent, a mini-batch size of 64, a learning
rate of 0.00001, and epochs of 100. After training the modified models, the new models were
saved for the target task. Mathematically, the TL process is defined as follows:
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The learning task with target domain is defined as follows:

lt=
(
nsy, m

s
y

)
∈R, (w, y) (7)

where y << w and mQ
1 , m

s
1 are the training data labels. This process is illustrated in Fig. 7. In

this figure, the source models ResNet50 and DenseNet201 have 1000 object classes. In the TL,
the knowledge is transferred, and the modified models are trained. After training both models,
features are extracted from the last layers (global average pool) and utilized for the next process.
From both layers, the sizes of the extracted feature vectors are N × 2048 and N× 2048.

Figure 7: Transfer learning process for brain tumor classification

2.6 Features Optimization Using EACO
The ability to correct classification within a minimum time is based on the selection of

features [30]. Most extracted features are not relevant to the classification phase and have an
impact on accuracy. Feature selection is the process of selecting the best subset from the original
features. Many techniques have been implemented in the literature, such as genetic algorithm-based
selection, PSO-based selection, Grasshopper-based selection, and entropy-based selection [31]. The
most relevant features are selected through feature selection techniques, and irrelevant features
are removed based on the defined criteria. We proposed an EACO algorithm for the best feature
selection herein. In this algorithm, ants are initially defined, and the probability for decision is
then computed. Subsequently, the rule of transition is applied, and the pheromones are updated.
Subsequently, features are passed in the new activation function, which is based on entropy and
normal distribution. The features passed from this function are selected as the best features and
evaluated using the fitness function fine KNN. The details of each step are defined as follows.

Originally, ACO was inspired by the behavior of ants. The behaviors of ants include checking
the temperature of the nest, forming the bridges, going to raid the specific area for food, building
and protecting the nest, sorting the brood and the items of food, carrying the large items
cooperate with each other, colony to emigrate, and obtaining the shortest route from nest to food
source.

Starting Ant Optimization-The no of ant computed as:

AN =
√
l× x (8)
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where l represents the feature vector, x represents the width of the feature vector, and AN denotes
the total number of ants used for the random placement in the feature vector based on each
feature value, where one feature contains one ant.

Decision Based on Probability-The probability of traveling of ant n is pij through feature (e, f )
to feature (g,h). The probability can be formulated as follows:

pef =
(
pef

) (
pef

)a∑
f∈Q

(
pef

)a (
xef

)a uef (�)
(9)

when e, f ∈ �. Here, every value of the feature location is given as e, f ∈ �. pef denotes the
quantity of pheromones, xef represents visibility, and its value is explained with the help of the
following formulation:

xef =Hef (10)

Based on pef , the � plus finds the quality of fluctuation in direction on every step. It can be
defined as follows:

�= 0, π/4, π/2, 3π/4, π (11)

Rules of Transition-Mathematically, this rule is defined as follows:

S= {
arg

{
maxj ∈Q[(ρij)a(xij)buij(Δ)]

}}
, (12)

where q< qo, i and j represents the feature locations and these features are traveling to a location
(k, l). If q> q0, then the next feature that should be visited is chosen by the ants.

Pheromone Update-In this step, the ants are to be shifted from pixel ij to update the feature
location (k, l). Based on it, the path of the pheromone is to obtain after every of the iteration
and mathematically it is define as follows:

ρij = (1− η).ρij+ η.Δρij (13)

Δρij = xij (14)

Here, η(0 < η < 1) shows the ratio of an evaporation of a pheromones. A new values of
pheromones is obtain after every iterations and mathematically, it is defined in Eq. (15) as follow:

ρij = (1− θ).ρij+ θ .ρ0 (15)

Here, θ(0< θ < 1) shows promotions of evaporated pheromones. New values of pheromones
and ρo represent the start values of the pheromones. These steps are applied for all features, and
in the outputs, we obtain a new robust feature vector.

Feature activation function: A new activation function is proposed to modify the output of the
ACO algorithm. This function is based on normal distribution and entropy values. Both values
were multiplied and compared with the original ACO-based selected features. Features with values
greater than the multiplication value (normal distribution and entropy) were selected for the final
classification. Mathematically, this process is defined as follows:

g (f )= 1

σ
√
2π

e
− 1

2

(
fi−μ

σ

)2
(16)
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H (f )=
∑
f

P (f ) . log
(

1
p(f )

)
(17)

Activation=
{
Sel (fi) for fi ≥ g (f ) ∗H(f )
discard, Elsewhere

(18)

The final selected features were represented by Sel (fi) and classified using machine learning
algorithms. This process was applied to both modified deep learning models for the best feature
selection. Finally, both selected vectors are fused using a serial-based approach that followed the
final classification.

3 Experimental Results and Discussion

The BraTs2019 dataset was used for the experiments herein. The setup was carried out at
a 70:30 ratio and was used to evaluate the system. Ten-fold cross-validation was applied to
the experimental results. Cross-validation is a re-sampling process used to evaluate the machine
learning models on a limited data sample. Various classifiers such as linear discriminant, linear
SVM, quadratic SVM, cubic SVM, medium Gaussian SVM, fine KNN, subspace KNN, weighted
KNN, subspace discriminant, and medium KNN are used. Each classifier is evaluated based on
importance measures, including the recall rate, precision rate, accuracy, and computational time.
MATLAB2020b was used for the simulation, where the system used had a Core i7 CPU, 16-GB
RAM, and 8-GB graphics card. Furthermore, the deep learning toolbox Matconvnet was applied
for deep feature extraction.

The results of the proposed method are presented herein. The results were computed for
both the HGG and LGG patient data. Initially, the results are presented for modified ResNet50-
EACO for both LGG and HGG. The results are presented in Tabs. 2 and 3. Tab. 2 presents
the results of ResNet50-EACO for the LGG data. In this table, the accuracy of the cubic SVM
is 84.4% with a recall rate of 84.5%, a precision rate of 88.75%, and the time taken is 50.427
s. The second-best accuracy is 84.1%, achieved by subspace discriminant, along with 84.325%
recall rate, 86% precision rate, and 0.98 area under curve. The remaining classifiers also exhibited
better performance. The computational time of this approach was significantly minimized (50%)
compared to all features of the modified ResNet50. In addition, the accuracy of the proposed
approach increased by 7%–8%. The accuracy of the cubic SVM can be further confirmed by
Fig. 8 in the form of a confusion matrix.

Tab. 3 presents the results of the HGG data for the ResNet50-EACO approach. The cubic
SVM achieved the best accuracy of 86.5%, whereas the rest of the calculated measures had
recall rates of 86.5% and 87.75% of the precision rate, and the area under the curve was 0.95.
This performance can be confirmed by the confusion matrix shown in Fig. 9. The minimum
computational time for this experiment was 33.196 s. Similar to the LGG data, the performance
in terms of accuracy was improved, and the computational time was minimized by almost 45%.
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Table 2: ResNet50-EACO based classification results for LGG patients dataset

Methods Recall
rate (%)

Precision
rate (%)

FNR (%) AUC (%) Accuracy (%) Time rate (s)

Linear
discriminant

76.0 77.5 24.0 0.920 76.0 54.9

Linear SVM 82.5 85.75 17.5 0.925 82.6 84.5
Quadratic
SVM

84.0 86.5 16.0 0.915 84.0 95.4

Cubic SVM 84.5 88.75 15.5 0.93 84.4 50.427
Medium
GSVM

83.25 86.0 16.75 0.9225 83.5 201.52

Fine KNN 82.27 84.0 17.75 0.88 82.1 190.74
Medium
KNN

79.25 81.25 20.75 0.8925 79.3 212.19

Weighted
KNN

81.0 82.5 19.0 0.8925 80.8 210.6

Subspace
discriminant

84.32 86.0 15.75 0.970 84.1 302.9

Subspace
KNN

82.75 84.05 17.25 0.9025 82.6 120.9

Table 3: ResNet50-EACO based classification results for HGG patients dataset

Methods Recall
rate (%)

Precision
rate (%)

FNR (%) AUC (%) Accuracy (%) Time rate (s)

Linear
discriminant

77.25 78.0 22.75 0.9325 77.4 41.506

Linear SVM 86.5 87.75 13.5 0.950 86.5 33.196
Cubic SVM 87.0 88.0 13 0.945 86.9 61.342
Quadratic
SVM

86.75 87.75 13.25 0.9425 86.7 36.97

Medium
GSVM

86.25 87.25 13.75 0.945 86.3 82.176

Fine KNN 84.25 86.0 15.75 0.895 84.3 61.984
Medium
KNN

84.25 86.75 15.75 0.915 84.2 57.125

Weighted
KNN

84.75 87.0 15.25 0.9175 84.8 55.971

Subspace
discriminant

86.75 89.0 13.25 0.980 86.6 219.21

Subspace
KNN

84.75 86.25 15.25 0.9125 84.6 513.03
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Figure 8: Confusion matrix of Cubic SVM using ResNet50-EACO on LGG dataset

Figure 9: Confusion matrix of Cubic SVM using ResNet50-EACO on HGG dataset

Tab. 4 presents the results of Densenet-EACO for the LGG data. In this table, the accuracy
of the cubic SVM is 83.8% with a recall rate of 83.75%, a precision rate of 83.25%, and the time
taken by it is 73.199 (s). The accuracy of the cubic SVM can be further confirmed by Fig. 10
in the form of a confusion matrix. The second-best accuracy was 83.5%, achieved by quadratic
SVM along with 83.5% recall rate, 84.25% precision rate, and 0.9425 area under curve. The
remaining classifiers also exhibited better performance. The computational time of this approach
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is significantly minimized (40%) compared to all the features of the modified Densenet201. In
addition, the accuracy of the proposed approach is increased to 8%.

Table 4: Densenet201-EACO based classification results for LGG patients dataset

Methods Recall
rate (%)

Precision
rate (%)

FNR (%) AUC (%) Accuracy (%) Time rate (s)

Linear
discriminant

82.5 83.25 17.5 0.9725 82.5 23.447

Linear SVM 82.25 83.25 17.75 0.9375 82.3 40.831
Quadratic
SVM

83.5 84.25 16.5 0.9425 83.5 30.253

Cubic SVM 83.75 83.25 16.25 0.9275 83.8 73.199
Medium
GSVM

83 83.75 17 0.93 83.0 91.288

Fine KNN 80.75 81.75 19.25 0.8725 80.7 78.297
Medium
KNN

79.25 79.5 20.75 0.955 79.1 67.088

Weighted
KNN

80.75 80.5 19.75 0.9525 80.4 74.47

Subspace di
scriminant

83.75 84 16.25 0.9775 83.7 145.95

Subspace
KNN

80.5 81.75 19.5 0.89 80.3 404.32

Figure 10: Confusion matrix of Cubic SVM using Densenet201-EACO on LGG dataset
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Tab. 5 presents the results of the HGG data for the Densenet-EACO approach. The cubic
SVM achieved the best accuracy of 87.4%, where the rest of the calculated measures had recall
rates of 87.5% and 88.5% of the precision rate, and the area under the curve was 0.9525.
This performance can be confirmed by the confusion matrix shown in Fig. 11. The minimum
computational time of this experiment was 73.447 s for the linear discriminant classifier. Using this
new approach, the accuracy is improved, and the computational time is significantly minimized.

Table 5: Densenet201-EACO based classification results for HGG patients dataset

Methods Recall
rate
(%)

Precision
rate (%)

FNR (%) AUC (%) Accuracy (%) Time rate (s)

Linear
discriminant

78.5 80.25 21.5 0.945 78.8 73.447

Linear SVM 87 88.75 13 0.9525 87.2 73.779
Cubic SVM 87.5 88.5 12.5 0.9525 87.4 75.502
Quadratic
SVM

87 89 13 0.9475 87.3 96.748

Medium
GSVM

87 89 13 0.9425 87.3 111.93

Fine KNN 85 86 15 0.9 84.9 90.765
Medium
KNN

83.25 83.75 16.75 0.975 83.4 94.277

Weighted
KNN

84 84.5 16 0.97 84.3 96.991

Subspace
discriminant

87.25 88 12.75 0.985 87.3 254.75

Subspace
KNN

85.25 85.25 14.75 0.9175 84.9 530.22

Finally, we fused the feature information of Densenet201-EACO and ResNet50-EACO for
both types of data (LGG and HGG). After the fusion process, the accuracy of HGG data reaches
87.8% (cubic SVM), where the other measures are as follows: recall rate is 87%, precision rate is
88.5%, and FNR is 13%. For LGG, the accuracy increased to 84.6% (cubic SVM). The fusion-
based accuracy was improved and reliable for better classification. This is illustrated in Fig. 12.
The main strength of the proposed framework is the selection of the best features using EACO.
Using this approach, obtaining the best features and achieving improved accuracy is easy.
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Figure 11: Confusion matrix of Cubic SVM using Densenet201-EACO on HGG dataset
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Figure 12: Proposed classification results of cubic SVM after the fusion of optimal features

4 Conclusion

An ensemble framework was proposed in this study for multimodal brain tumor classification.
The proposed framework is based on the fusion of optimal deep learning features. A series
of steps are employed in this framework: i) collection of database and normalization of the
dataset; ii) selection of two pre-trained models and modification of both models; iii) training of
both modified models for brain tumor classification using TL; iv) proposing an EACO algorithm
for optimal feature selection; and v) fusion of both optimal features for the final classification.
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The experimental process was conducted on the BraTs2019 dataset, and we achieved exceptional
accuracy. Based on the results of the proposed framework, we can conclude that the EACO-
based feature selection algorithm showed improved accuracy (approximately 8%) and minimized
computational time. Furthermore, this process removes the redundant features. The improvement
in the ACO in the form of an activation function also increased the reduction of redundant
features. The key limitation of this framework is the fusion of the optimal features. After the
fusion process, the accuracy of the proposed method increases, but the testing time also increases.
We will consider this issue in future studies and develop a single-step feature selection approach
without feature fusion.
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