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Abstract: Lightweight deep convolutional neural networks (CNNs) present a
good solution to achieve fast and accurate image-guideddiagnostic procedures
of COVID-19 patients. Recently, advantages of portable Ultrasound (US)
imaging such as simplicity and safe procedures have attracted many radiolo-
gists for scanning suspected COVID-19 cases. In this paper, a new framework
of lightweight deep learning classifiers, namely COVID-LWNet is proposed to
identify COVID-19 and pneumonia abnormalities in US images. Compared
to traditional deep learning models, lightweight CNNs showed significant
performance of real-time vision applications by using mobile devices with lim-
ited hardware resources. Four main lightweight deep learning models, namely
MobileNets, ShuffleNets, MENet and MnasNet have been proposed to iden-
tify the health status of lungs using US images. Public image dataset (POCUS)
was used to validate our proposed COVID-LWNet framework successfully.
Three classes of infectious COVID-19, bacterial pneumonia, and the healthy
lungwere investigated in this study. The results showed that the performance of
our proposedMnasNet classifier achieved the best accuracy score and shortest
training time of 99.0% and 647.0 s, respectively. This paper demonstrates the
feasibility of using our proposed COVID-LWNet framework as a newmobile-
based radiological tool for clinical diagnosis of COVID-19 and other lung
diseases.
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1 Introduction

Coronavirus Disease 2019 (COVID-19) was identified in Wuhan City, China. Since then,
COVID-19 pandemic becomes a global health issue, which leads to severe acute respiratory illness.
It has affected more than hundred and fourteen million people around the world, and the death
cases of more than two and half millions in 187 countries, regions, or territories [1]. Recently, the
World Health Organization (WHO) has reported that the total number of confirmed infectious
cases worldwide is 105,394,301 and the number of deaths is 2,302,302 [2,3]. Fig. 1 showed the
recent global situation of COVID-19 infections in the main WHO regions. The most common
clinical symptoms in patients with COVID-19 are fever and cough, shortness of breath and other
breathing difficulties [4]. Other nonspecific symptoms include headache, dyspnea, lassitude, and
muscle aches. Additionally, some cases have reported digestive symptoms such as diarrhea and
vomiting. Patients have a fever in the first place with or without respiratory symptoms.

Figure 1: Distribution of global COVID-19 cases for the WHO regions

Moreover, medical imaging of the chest has been used to confirm positive COVID-19 patients.
Computed tomography (CT) presents the gold standard medical imaging modality for diagnosing
pneumonia diseases [5] . Several studies demonstrated the feasibility of detecting typical features
of the COVID-19 disease using CT imaging scans [6,7]. In addition, chest X-ray imaging technique
is more accessible due to its cost-effectiveness and mobility in hospitals and medical centers to
identify positive COVID-19 cases [8]. But this imaging method is not suitable for COVID-19
patients at the early stage of the infection [9]. Furthermore, recent studies showed that the lungs
of COVID-19 patients depict specific patterns in ultrasound (US) images for infected patients with
pneumonia [9].

Although US imaging techniques have been widely used by several researchers to diagnose
different diseases in vital organs like Breast cancer [10], Liver tumors [11] and cardiovascular
diseases [12], US images are difficult to interpret by non-experienced medical staff. Also, the
contrast of US images is low and limited to specific parts of the human body. The general visual
quality of these images is also low due to artefacts and speckle noise caused by the physical
principles of this imaging technique [11,13]. Therefore, algorithms of medical image analysis can
be used to assist physicians to automate the interpretation of acquired US images [14], confirming
the health status of suspected COVID-19 patients.
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Many researchers have recently proposed the integration of US imaging modality and machine
learning algorithms to enhance the performance of diagnostic and guidance procedures during the
intervention [10]. Deep learning models have been successfully applied in many fields of medicine,
such as brain tumors diagnosis, because such models are able to give more accurate results
than the manual level. Hence, automated medical image analysis becomes an essential application
of such approaches [15]. Because of the large dataset availability, CT and magnetic resonance
(MR) remain the most common imaging modalities for evaluating deep learning algorithms. The
segmentation of organs or structures, and the classification of healthy and pathological images
such as COVID-19 and lung diseases [16] are the most performed tasks using deep learning. For
the classification of positive COVID-19 cases, different deep learning algorithms have been pro-
posed and tested on CT and X-ray image datasets [17]. Deep learning applications of US images
have been also investigated in previous studies; for example, breast tumor guidance procedure,
identification of benign and malignant liver tumors tissues [18].

Convolutional neural networks (CNNs) are the most attractive deep neural network archi-
tecture for medical image processing applications, especially for analyzing US imaging scans [19].
Several architectures of CNNs have been well-designed to improve the performance in many
applications of pattern recognition tasks via learning better discriminative representations instead
of traditional feature extraction methods. For instance, AlexNet is a well-known deep CNN, and
has been designed for recognizing 1000-class images using the large-scale ImageNet dataset [20].
Generally, the main drawback of deep learning approaches is the need for massive image datasets
including manual annotations by clinicians. It is considered a tedious and time-consuming process
in the medical field. Therefore, applying the transfer learning technique presents a good solution
to solve the above problem. Transfer learning allows to reuse a pre-trained CNN model from
a similar task to another targeted task [21]. Consequently, these transfer learning models can
accomplish medical image processing tasks on moderate- and small-size datasets, e.g., surgical
tool tracking of abdominal [22] and COVID-19 detection and classification [16,23]. Based on
the concept of transfer learning, the most common pretrained CNN models, namely the visual
geometry group (VGG) [24] and residual neural networks (Resnet) [25] have been used in this
study. Nevertheless, most CNN architectures are still heavily over-parameterized and require
high computational resources, such as graphical processing units (GPUs) for high performance
computing (HPC) platforms.

Lightweight deep learning models, e.g., LightweightNet [26], present an effective solution to
remove the redundant parameters and computations of CNNs, and yet still achieve high accuracy
scores. Nowadays, these lightweight models play a significant role in the cloud and mobile vision
systems with a limited allocation of computing resources [26]. For instance, classification of 12
echocardiographic views [27] and abnormal prostate tissues [28] were accomplished by proposed
lightweight CNN models. MobileNets [29] present successful deep learning models for mobile and
embedded vision applications in real-time. This paper presents a new lightweight deep learning
framework, namely COVID-LWNet including eight efficient CNN models. The developed COVID-
LWNet framework aims at supporting the diagnostic decision of physician to confirm COVID-
19 and pneumonia diseases using US imaging scans. The main contributions of this study are
summarized as follows.

• Demonstrating the usefulness of applying real-time US imaging scans for diagnosing
COVID-19 infections.

• Proposing efficient and accurate lightweight deep learning classifiers to accomplish the diag-
nostic procedures of COVID-19 and bacterial pneumonia using lung US images successfully.
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• Verifying the capabilities of our developed COVID-LWNet framework against other deep
learning classifiers in previous studies to identify the expected lung diseases.

2 Related Works

This section reviews previous lightweight deep models that were recently published for detec-
tion and classification of COVID-19 and pneumonia diseases using three different medical imaging
modalities, namely chest X-ray, CT and US scans. Based on chest X-ray images, a new method
of COVID-19 detection is proposed using a lightweight model of conditional Generative Adver-
sarial Network (GAN) with synthetic images generation to solve the problem of small data size
for training phase [30]. This approach suggested a multi-classification for bacterial pneumonia,
positive COVID-19 and healthy cases.

For segmenting infected areas of COVID-19 in CT images, Paluru et al. [31] proposed
anamorphic depth embedding-based lightweight CNN, called Anam-Net. The statistics of chest
test cases across various experiments indicated that effective Dice similarity scores for abnormal
and normal regions in the lung could be offered by the suggested clinical protocol. Mainak
et al. [32] presented Corona-Nidaan lightweight model to analyze COVID-19 pneumonia and
ordinary chest X-ray cases automatically. The experimental study indicates that the performance
results of Nidaan-Corona model are better than other pre-trained CNN models. A new Depth-
wise separable-CNN (DWS-CNN) is proposed by Le et al. [33], based on deep support vector
machine (DSVM) algorithm. The DWS-CNN model is enabled by Internet-of-Things (IoT) to
accomplish diagnosis and classification of COVID-19 patients. The LightCovidNet model, which
is best suited for the mobile platforms, is implemented in [34].With a less memory demand, the
suggested lightweight CNN method succeeded in obtaining the best mean accuracy and considered
appropriate for massive COVID-19 screening data. Abdani et al. [35] proposed a lightweight
model of deep learning to confirm the possibility of COVID-19 infection precisely. This proposed
lightweight model is based on a 14-layer CNN with a customized module for pooling the spatial
pyramid. The technique is useful for fast screening and aims at saving time and cost of the coro-
navirus test. A hybrid multimodal COVID-DeepNet system was presented by Al-Waisy et al. [36].
It is used for COVID-19 identification in X-ray images to support radiologists to automatically
classify the health status of patients in real-time.

Elghamrawy et al. [37] integrated whale optimization algorithm with a deep learning model
to develop an optimized model for COVID-19 diagnosis and prediction (AIMDP). Compared
with other previous studies, the AIMDP results showed significant improvement for identifying
COVID-19 using lung CT images. Shaikh et al. [38] introduced a telemedicine network (Tele-
COVID) to treat COVID-19 patients at home remotely. Patients can be treated via Tele-COVID
by physicians, avoiding the hospital visits. But necessary intensive care of such patients can be also
given in emergency situations. Born et al. [9] created the public lung point-of-care US (POCUS)
dataset and developed POCOVID-Net for automatic detection of COVID-19 in their collected US
image sequences. They achieved multi-class accuracy score of 89.0%. The main drawback of the
above studies is the need for high computing resources to achieve their accurate results of COVID-
19 medical image classification. In this case, integrated traditional deep learning classifiers with
portable US machines cannot be easily validated to scan potentially infected patients anywhere.
Therefore, our proposed lightweight CNN classifiers are capable of solving this clinical challenge
of COVID-19 patients with minimum computing power, as presented in the following sections of
this paper.
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3 Materials and Methods

3.1 Lung US Dataset
The public lung US POCUS database [9] has been used in this study. The available images of

this dataset include 911 images extracted from 47 videos using a convex US probe (Last Access:
20 September 2020). They divided into three different classes of US images as shown in Fig. 2.
Total number of images for infectious COVID-19, bacterial pneumonia and the healthy lung are
339 images, 277 images and 255 images, respectively. Small subpleural consolidation and pleural
irregularities can be shown for the positive case of COVID-19, while dynamic air bronchograms
surrounded by alveolar consolidation are the main symptoms of bacterial pneumonia disease.

Figure 2: Three different cases of US images present the positive COVID-19 (left), bacterial
pneumonia (middle), and healthy lung conditions (right)

3.2 Lightweight Deep Learning Classifiers
This section presents an overview of proposed lightweight network models. The proposed

lightweight deep learning classifiers are categorized into four main models, which are MobileNets,
ShuffleNets, MENet and MnasNet. The description of each deep learning model including its
advanced version is given as follows.

3.2.1 MobileNets
MobileNetV1 and V2 have been developed by Google in 2017 and 2018, respectively [29,39].

These efficient models were developed for mobile vision and embedded applications. MobileNetV1
primarily focus on a streamlined architecture that uses depthwise separable convolutions [29]. This
architecture of MobileNetV1 showed an effective alternative for traditional layers of convolution
to reduce the complexity of computation. The depthwise convolution consists of two separate
layers, which are lightweight heavier 1×1 pointwise convolutions for feature generation and depth-
wise convolution for spatial filtering. By separating spatial filtering from the feature generation
mechanism, depthwise separable convolutions successfully factorize traditional convolution.

The MobileNetV2 architecture is based on MobileNetV1 [39]. The uncomplicated network
architecture of MobileNetV2 supports building many real-time computer vision applications, such
as skin cancer detection [40] and semantic scene segmentation [41]. The MobileNetV2 is based
on an inverted residual architecture in which the input and output of the residual block are thin
bottleneck layers. But the intermediate layer is an extended representation that uses lightweight
depthwise convolutions to filter features.



2300 CMC, 2021, vol.69, no.2

3.2.2 ShuffleNets
ShuffleNetV1 presents an efficient convolutional neural network model, which is developed

by Megvii Inc (Face++) [42]. It is developed mainly for mobile devices because of its minimal
computing power requirements. The performance of ShuffleNetV1 showed a good balance between
accuracy and speed in the presence of restricted computing resources, achieving approximately
13× faster than AlexNet with comparable accuracy. Therefore, ShuffleNetV1 achieves significant
performance improvements over previous deep network architectures. The core functions of Shuf-
fleNetV1 are pointwise group convolution and channel shuffle. Pointwise group convolution has
been used to decrease the amount of computing power, e.g., 10–150 MFLOPs. The channel
shuffle has been used to transfer information in all groups. Each ShuffleNetV1 unit presents the
bottleneck unit, which used bypass connections for better representation capability. Consequently,
multiple information paths in the computing graph have been achieved for frequent memory/cache
switches in the designed model implementation on mobile or embedded devices [42]. ShuffleNetV2
represents the advanced progress of ShuffleNetV1 to achieve improved performance of recent
mobile vision applications [43]. For instance, 3D ShuffleNetV2 is utilized for accurate brain
tumor segmentation [44]. ShuffleNetV2 enhanced group convolution by the channel split for back
propagation. It connected the number of output channels on the two branches to avoid the
element-wise sum operation in ShuffleNetV1.

3.2.3 MENet
MENet is a family of compact neural networks for mobile applications, based on Merging-

and-Evolution (ME) modules [45]. To decrease the complexity of neural network computation, the
ME modules focus not only on group convolutions and depthwise convolutions as described above
in MobileNets and ShuffleNets, but also on leverage the inter-group information [45]. Therefore,
merging and evolution operations have been utilized to control the inter-group information.

3.2.4 MnasNet
A common method to automate the design of neural networks is Neural Architecture Search

(NAS) methods [46]. The NAS automatically designed many powerful convolutional neural net-
works and evolved MnasNet [47]. MnasNet has been developed for mobile devices to measure
the real-time latency directly on mobile phones instead of an inaccurate proxy such as FLOPS.
In addition, the performance of MnasNet showed 1.8× faster than MobileNetV2 and higher
accuracy score of 0.5%. Basically, the architecture of MnasNet is based on the MobileNetV2 [47].
It used lightweight attention modules based on SE in the bottleneck structure, as shown in Fig. 3.

3.3 COVID-LWNet Framework Description
This section describes our developed COVID-LWNet framework for automated classification

of positive COVID-19 infection, bacterial pneumonia disease and healthy lung using portable
US machines. Fig. 4 shows the workflow diagram of COVID-LWNet based on six lightweight
network models, which are MobileNetV1 and V2 [39], ShuffleNetV1 and V2 [43], MENet [45]
and MnasNet [47], as described above in Section 3.2. In this study, hyperparameter values of all
lightweight deep learning classifiers are fixed, as illustrated in Tab. 1. In Fig. 4, the developed
COVID-LWNet can be used on mobile devices to assist the US-based diagnostic procedure of
COVID-19 patients in a safe clinical environment as follows. First, all lung images are acquired
by a US probe. They are scaled at a fixed size of 224×224 pixels for the next processing step of
the developed framework. The US image dataset is 80–20 split such that 20% of image dataset
will be used for testing the lightweight deep learning classifiers. Based on subsample random
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selections, the rest of US images will be used for training and validation phases. Second, the
preprocessing step includes a despeckle filter [48] to enhance both training and testing US image
data (see Fig. 4). The lightweight models are selected manually by the user for fine-tuning process.
The accuracy and loss metrics have been applied for evaluating the training and validation steps
of each lightweight deep learning model during 100 epochs. Finally, multi-class classification
layers identify one of three patient cases, which are COVID-19, bacterial pneumonia and normal
conditions. The activation function of output classification layer is the Softmax function. Fig. 5
shows the architecture of fine-tuned COVID-LWNet classifiers including the base lightweight
models connected to the designed classification layers to achieve US-guided lung diagnosis.

Figure 3: Architecture of MnasNet model [47] including mobile inverted bottleneck convolution
(MBConv) and separable convolution (SepConv)

3.4 Performance Analysis Metrics
The classification performance of proposed lightweight CNN models for detecting COVID-19

and pneumonia in US images can be analyzed using the following metrics: First, a confusion
matrix is calculated using the cross-validation estimation [49]. The expected results of any confu-
sion matrix are true positive (TP), true negative (TN), false positive (FP), and false negative (FN).
These outcomes give the results of hypothesis testing for every predicted class with its true class.
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Second, the accuracy, precision sensitivity or recall and F1-score present the evaluation metrics of
image-based classifiers, as given in Eqs. (1)–(4).

accuracy (%)= TP+TN
TP+FP+FN +TN

100% (1)

precision= TP
TP+FP

(2)

sensitivity= recall = TP
TP+FN

(3)

F1− score= 2
1

precision + 1
recall

(4)

Figure 4: Workflow diagram of our developed COVID-LWNet for diagnosing lung patients

Table 1: Hyperparameter values of COVID-LWNet classifiers

Hyperparameter Value

Number of epochs 100
Learning rate 0.01
Batch size 32
Optimizer Adam
Loss function Categorical cross-entropy
Dropout 0.5
Activation function of the classification output layer Softmax
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Figure 5: Architecture of lightweight CNN classifiers of our developed COVID-LWNet framework

4 Experiments

4.1 Experimental Setup
All tested US images have been converted to the grayscale format and scaled to 224× 224

pixels without affecting the resulting accuracy of proposed lightweight CNN classifiers. The
models of COVID-LWNet framework were implemented using open-source Anaconda Navigator
with Scientific Python Development Environment (Spyder V4.1.5) and TensorFlow [50]. The
PythonV3.8 programs were executed on a Laptop with Intel(R) Core (TM) i7-2.2 GHz processor
and 16 GB RAM. Running COVID-LWNet classifiers was done using a graphical processing unit
(GPU) NVIDIA of 4 GB.

4.2 COVID-LWNet Evaluation Results
Six lightweight CNN models of our COVID-LWNet framework were proposed for accom-

plishing multi-class classification of lung US images, as shown in Figs. 4 and 5. The available
convex scanning images of the POCUS dataset [9] have been split into 80% for two equal training
and validation sets, and 20% for testing set. The hyperparameters of COVID-LWNet models are
carefully tuned and fixed during all experiments of this study, as listed in Tab. 1. The epochs
number and batch size are 100 and 32, respectively. For the training phase, the stochastic optimizer
of Adam [51] with a learning rate of 0.01 has been used to achieve the expected convergence
behavior of the deep learning classifiers. The loss and activation functions of the classification
output layer are categorical cross-entropy and Softmax, respectively. Fig. 6 depicts the accuracy
and loss of both training and validation with respect to epochs of 100 for all proposed lightweight
models. The best trained model was MnasNet, achieving the maximum accuracy scores of 89.37%
and 98.91% for the training and validation, respectively. Also, its loss values are minimum such
that the training loss was 0.24, and the validation loss was 0.06. Although the loss values of
trained ShuffleNetV1 were relatively high (the resulted training loss was 0.36, and the validation
loss was 0.13), it achieved better training and validation accuracy scores (≥ 97.00%) than obtained
results of ShuffleNetV2 model. However, all trained COVID-LWNet classifiers are still capable of
detecting COVID-19, pneumonia and healthy cases successfully.
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MobileNetV1 MobileNetV2

ShuffleNetV1

MENet MnasNet

ShuffleNetV2

Figure 6: Training and validation accuracy and loss of COVID-LWNet classifiers during number
of epochs = 100
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MobileNetV1 MobileNetV2

ShuffleNetV1

MENet MnasNet

ShuffleNetV2

Figure 7: Multi-class confusion matrix of lightweight classifiers for detecting COVID-19, pneumo-
nia and healthy lung

Fig. 7 shows the confusion matrices of six lightweight deep learning classifiers. Based on 80-20
split ratio of the dataset, the distribution of tested US images is 80 images for positive COVID-
19, 56 images for bacterial pneumonia disease, and 47 images for healthy lung. MobileNetV2
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classifier detected all COVID-19 cases successfully, but it showed misclassification of four samples
for healthy subjects. The performance of all tested classifiers is similar for identifying pneumonia
cases with a misclassification of one sample only. MnasNet classifier achieved the most accurate
results of targeted class classification with a minimal error of two samples for COVID-19 and
bacterial pneumonia cases.

Moreover, Tab. 2 illustrates a comparison of COVID-LWNet Classifiers with respect to the
total number of multiply-accumulate operations (MACs), training time of each lightweight CNN
model and the percentage of classification accuracy. MACs measure the complexity of deep
learning models by counting how many calculations are needed [39]. In Tab. 2, MobileNetV2
is approximately 2× faster than MobileNetV1, because it needs the half count of MACs for
MobileNetV1. However, the training time and accuracy are relatively equal because of adding the
classification layers, as shown in Fig. 5. Similarly, ShufflNetV2 has the lowest count of MACs
among other models (146 M), but the value of its resulted accuracy was the lowest 96.17%.
MENet and MnasNet models have approximately the same count of MACs and minimum train-
ing time (647.0 s). However, MnasNet is more accurate than MEnet to classify three classes of
US images, as given in Tab. 2.

Table 2: Comparative characteristics and performance of all tested COVID-LWNet Classifiers

Deep learning classifier MACs Training time (s) Accuracy (%)

MobileNetV1 569M 651.00 96.72
MobileNetV2 300M 650.00 97.00
ShuffleNetV1 292M 656.00 97.00
ShuffleNetV2 146M 649.00 96.17
MEnet 299M 647.00 97.00
MnasNet 312M 647.00 99.00

Notes: ∗Best performance values are indicated in bold.

Furthermore, a comparative performance of the proposed COVID-LWNet models and other
competing deep learning classifiers is illustrated in Tab. 3, including transfer learning-based
classifiers, namely VGG-16 [24] and Resnet-50 [25], and other previous studies such as POCOVID-
Net [9] and COVID-Net [52]. The proposed MnasNet classifier is superior to other classifiers
with the best classification accuracy of 99.0%. Also, Resnet-50 achieved a good accuracy result of
98.36%, but it is larger and slower than all proposed lightweight models. The minimum accuracy is
81.0% for the COVID-Net Classifier. Obviously, all COVID-LWNet Classifiers achieved high val-
ues of evaluation metrics in Eqs. (1)–(4); where the classification accuracy was above 96.0%, and
the minimum values of recall, precision, and F1-score were not less than 0.90. These results ensure
the efficiency of proposed lightweight deep learning models to accomplish accurate detection of
COVID-19 infection and bacterial pneumonia disease in lung US images.
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Table 3: Comparative results of developed COVID-LWNet Classifiers and previous studies

Deep learning
classifier

Case Sensitivity
(recall)

Precision F1-score Accuracy(%)

VGG-16 [24] COVID-19 0.94 0.93 0.93 92.90
Bacterial pneumonia 0.98 1.00 0.98
Healthy lung 0.86 0.85 0.86

Resnet-50 [25] COVID-19 0.96 1.00 0.98 98.36
Bacterial pneumonia 1.00 1.00 1.00
Healthy lung 1.00 0.94 0.97

COVID-Net [52] COVID-19 0.98 0.77 0.86 81.00
Bacterial pneumonia 0.89 0.95 0.92
Healthy lung 0.01 0.20 0.01

POCOVID-Net [9] COVID-19 0.96 0.88 0.92 89.00
Bacterial pneumonia 0.93 0.95 0.94
Healthy lung 0.55 0.78 0.62

MobileNetV1 COVID-19 0.94 0.99 0.96 96.72
Bacterial pneumonia 0.98 1.00 0.99
Healthy lung 1.00 0.90 0.95

MobileNetV2 COVID-19 1.00 0.94 0.97 97.00
Bacterial pneumonia 0.98 1.00 0.99
Healthy lung 0.91 1.00 0.96

ShuffleNetV1 COVID-19 0.95 0.99 0.97 97.00
Bacterial pneumonia 0.98 1.00 0.99
Healthy lung 1.00 0.92 0.96

ShuffleNetV2 COVID-19 0.94 0.99 0.96 96.17
Bacterial pneumonia 0.98 0.98 0.98
Healthy lung 0.98 0.90 0.94

MENet COVID-19 0.94 0.99 0.96 97.00
Bacterial pneumonia 0.98 1.00 0.99
Healthy lung 1.00 0.90 0.95

MnasNet COVID-19 0.99 0.99 0.99 99.00
Bacterial pneumonia 0.98 1.00 0.99
Healthy lung 1.00 0.98 0.99

Notes: ∗Best performance values are indicated in bold.

5 Discussion

Mobile vision systems become a recent trend for real-life applications, especially for medical
field during the pandemic time. Hence, deep learning approaches using lightweight CNN models
have been studied to confirm positive COVID-19, bacterial pneumonia and healthy cases using
chest US images. Although the US imaging modality is not the standard technique to diagnose
COVID-19 patients, it constitutes significant advantages, which are safe and portable cost-effective
scanning machines. Moreover, applying our developed COVID-LWNet framework enhances the
US-guided diagnostic outcomes of Coronavirus and bacterial pneumonia diseases, as shown in
Fig. 7 and Tab. 3.
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Four main categories of lightweight CNN models, namely MobileNets, ShuffleNets, MENet
and MnasNet have been employed in a new mobile COVID-LWNet framework to assist the US
screening procedures of COVID-19 and lung patients. The major advantage of these models is
the need for minimum computing power, while achieving high classification accuracy as illus-
trated in Tab. 2. The superior classification performance of MnasNet is validated by achieving
approximately 99.0% accuracy score, because it includes advanced capabilities of MobileNetV2
with lightweight attention modules in the bottleneck structure, as depicted in Fig. 3. In Tab. 2, the
smallest count of MACs is 146 M for ShuffleNetV2, but it did not achieve the highest accuracy
score of tested US image classification. That means that the selected lightweight CNN model is
mainly based on both acquired US dataset and the designed classification layers, as presented
above in Section 2. Furthermore, Tab. 3 illustrates the overall evaluation metrics of developed
COVID-LWNet classifiers compared with other deep learning classifiers in the literature, based on
the same US dataset. The classification accuracy values of COVID-Net and POCOVID-Net were
relatively low and did not exceed 90%. The transfer learning models of VGG-16 and Resnet-50
showed better accuracy scores of 92.90% and 98.36%, respectively. The outstanding performance
of proposed COVID-LWNet Classifiers achieved high accuracy values above 96.0%, which is
better than traditional transfer learning models of VGG-16 and Resnet-50, as listed in Tab. 3.

Fine-tuning the hyperparameters of a lightweight deep learning model is generally a compli-
cated process and may require many trials to achieve the desirable performance. Therefore, this
problem can be solved by integrated the proposed lightweight CNN models with bio-inspired opti-
mization methods. For instance, a whale optimization algorithm (WOA) [37] has been utilized to
develop a COVID-19 classification model. The suggested optimization methods can automate the
design of our mobile COVID-LWNet framework, but they need additional computing resources
and longer training times [53]. Hence, our proposed lightweight models, specifically MnasNet
still achieved outstanding performance with minimal computing resources for lung US image
classification of COVID-19, bacterial pneumonia and healthy lung, as given in Tabs. 2 and 3.

6 Conclusions

Here, we presented a new COVID-LWNet framework including six lightweight CNN models
as efficient classifiers for lung diseases of COVID-19 and bacterial pneumonia, based on US
imaging modality. Compared to traditional deep learning models in the literature, our proposed
lightweight model, namely MnasNet achieved superior classification performance of all tested US
images with the best accuracy score of 99.0% as reported in Tab. 2. Furthermore, the results
of this research work verified the feasible integration of mobile classification system and lung
US images to assist the diagnostic decision by physicians for COVID-19 and lung patients.
Consequently, the future work of this study is the deployment of our proposed COVID-LWNet
framework in the clinical routine of suspected COVID-19 patients under US-guided screening.
Furthermore, the current version of COVID-LWNet can be extended to a new unified computer-
aided diagnosis system including CT, X-ray and US images for confirming COVID-19 infection
and other lung diseases.
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