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Abstract: Paths planning of Unmanned Aerial Vehicles (UAVs) in a dynamic
environment is considered a challenging task in autonomous flight control
design. In this work, an efficient method based on a Multi-Objective Multi-
VerseOptimization (MOMVO) algorithm is proposed and successfully applied
to solve the path planning problem of quadrotors with moving obstacles.
Such a path planning task is formulated as a multicriteria optimization prob-
lem under operational constraints. The proposed MOMVO-based planning
approach aims to lead the drone to traverse the shortest path from the starting
point and the target without collision with moving obstacles. The vehicle
moves to the next position from its current one such that the line joining min-
imizes the total path length and allows aligning its direction towards the goal.
To choose the best compromise solution among all the non-dominated Pareto
ones obtained for compromise objectives, the modified Technique for Order
Preference by Similarity to Ideal Solution (TOPSIS) is investigated. A set of
homologous metaheuristics such as Multiobjective Salp Swarm Algorithm
(MSSA), Multi-Objective Grey Wolf Optimizer (MOGWO), Multi-Objective
Particle Swarm Optimization (MOPSO), and Non-Dominated Genetic Algo-
rithm II (NSGAII) is used as a basis for the performance comparison. Demon-
strative results and statistical analyses show the superiority and effectiveness
of the proposed MOMVO-based planning method. The obtained results are
satisfactory and encouraging for future practical implementation of the path
planning strategy.
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1 Introduction

In the last decades, unmanned aerial vehicles have acquired a great potential to complete
an autonomous or semi-autonomous mission. A growing number of applications have appeared
in real-world environments [1,2]. To achieve this autonomy, several challenges must be met. The
trajectory planner is an essential part of the UAV autonomous control process [3]. Vehicles’
trajectory planning is used to find a sequence of valid moves that allow a robot to move from an
initial state to the desired end state. In general, a valid movement is a displacement that does not
produce a collision and that respects the kinematic constraints of the robot [4]. In some planning
problems, the location of obstacles can change over time. Thus, trajectory planning must respect
the dynamic constraints that arise from the environment, i.e., mobile obstacles, and the considered
specifications of the vehicles. Besides, most real path planning problems need to be solved by
considering different conflicting goals such as price and quality. The trajectory planning problem
is then considered as a Multi-Objective Optimization Problem (MOOP).

Many researchers have carried out various works to solve the Multi-Objective Path Planning
(MOPP) problem for UAVs in a dynamic environment. The authors in [5] proposed a new method-
ology based on an Improved Gravitational Search Algorithm (IGSA) to solve the path planning
for multi-robots in a dynamic environment. In [6], the authors investigated a new algorithm for
UAV path planning problems based on Ant Colony Optimization (ACO) and artificial potential
field. In [7], a Pigeon-Inspired Optimization (PIO) algorithm is used to optimize the initial path
and another Fruit Fly Optimization Algorithm (FFOA) is used to solve the global path planning
problem in a three-dimensional dynamic environment of oilfields. The authors in [8] proposed
a novel Predator-Prey Pigeon-Inspired Optimization (PPPIO) to solve the Uninhabited Combat
Aerial Vehicle (UCAV) 3D path planning problem in a dynamic environment. In [9], a novel
integrated path planning approach based on an A* algorithm and local trace-back model has
been proposed to solve such kind of hard problems. The authors in [10] developed an Improved
Artificial Bee Colony (IABC) algorithm to solve the path planning problem in an environment of
dynamic threats thanks to its fewer control parameters and faster convergence.

Although these works have been developed to solve the MOPP problem for a UAV flying
in a dynamic environment, most of them converted the multi-objective problem into a single
objective problem by using a weighted sum function [11]. This technique is easy to implement,
but it is difficult to determine the best weights for the various contradictory objectives. The bias
will be enjoined throughout the optimization process. Other methods have been developed to deal
with the MOPP problem and obtain a set of optimal Pareto solutions. These methods can be
classified into two types: exact methods and approximate methods [12]. An exact method such as
Multi-Objective Branch & Bound (MOBB) is used to get the best solutions in the Pareto Optimal
Frontier (POF) for the given path planning problem [13]. However, the computational complexity
is highly elevated. The approximate multi-objective optimization methods are thus developed and
used extensively in recent years to solve the MOOP. The path planning problem for UAVs in
a dynamic environment is no exception. In [14], the path planning problem in an uncertain
and dynamic environment is considered as a constrained multi-objective optimization problem
with uncertain coefficients which is solved using a constrained Multi-Objective Particle Swarm
Optimization (MOPSO) technique. In [15], a Modified Central Force Optimization (MCFO) based
technique is introduced to solve the path-planning problem for a 6 DOF rotary-wing quadrotor
helicopter. In such work, the theory of the Particle Swarm Optimization (PSO) and the mutation
operator of the Genetic Algorithm (GA) are combined to improve the original CFO method.
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In the above-mentioned studies, the idea of using multi-objective metaheuristics for path plan-
ning problem’s formulation and the resolution seems a promising solution. To overcome the limits
and inconveniences of the cited methods, particularly in terms of complexity and prohibitive time
consuming, a systematic and efficient path planning method is proposed based on an advanced
Multi-Objective Multi-Verse Optimization (MOMVO) algorithm. The main contributions of this
paper are summarized as follows: 1) a novel strategy of reformulation and solving of a MOPP
problem under operational constraints in a dynamic environment is proposed based on the con-
cepts of the multi-criteria multi-verse optimization. Such a planning strategy allows guiding the
quadrotor UAV to ensure destination position by calculate the next position in each step time
while avoiding all moving obstacles. 2) A modified TOPSIS is employed as a higher-level decision-
making approach to choose the best compromise solution among all the non-dominated solutions
in the sense of Pareto. 3) A nonparametric statistical analysis method is proposed to compare all
reported solvers for the hard path planning problem.

The remainder of this paper is organized as follows. In Section 2, the path planning problem
for a quadrotor UAV is formulated as a multi-objective optimization problem under operational
constraints. Section 3 presents the proposed multi-objective multi-verse optimizer to solve the for-
mulated path planning problem. Section 4 describes the dynamical model of the studied quadrotor
and the PID control design for the position and attitude dynamics stabilization and tracking.
In Section 5, demonstrative results and comparisons are carried out and discussed. Section 6
concludes this paper.

2 Path Planning Problem Formulation

The quadrotor passed from the starting point A (x1, y1, z1) to the target one B (xn, yn, zn).
The x-axis range (x1, xn) is divided into n−1 equal segments and defined as x1, x2, x3, . . . , xn. The
time is incremented, the quadrotor has moved from position wi = (xi, yi, zi) to the next position
wi+1 = (xi+1, yi+1, zi+1) where the positions {xi}1≤i≤n are selected and the decision variables for
optimization are defined as θ = {yi+1, zi+1} ,∀ i= 1, 2, . . . , n− 2.

In the UAVs’ path planning formalism, the length of the flight path is very important. In this
work, the robot determines its next position from its current one and tries to align its direction
towards the goal. Consider initially, the UAV placed in the location at a time t in the space coor-
dinate (xi, yi, zi). At the time (t+�t), it wants to move to the next position (xi+1, yi+1, zi+1) such
that the line joining between {(xi, yi, zi), (xi+1, yi+1, zi+1)} and {(xi+1, yi+1, zi+1), (xn, yn, zn)}
minimizes the total path length and allows the UAV to align its direction towards the goal. So,
the first proposed objective function of the multi-objective optimization problem, denoted as f1 ,
is defined as follows:

f1 (θ)=
√
(xi+1 −xi)2+ (yi+1− yi)2+ (zi+1− zi)2+

√
(xi+1−xn)2+ (yi+1− yn)2+ (zi+1− zn)2 (1)

Besides, the path planning process cannot totally ignore the dynamic characteristics of the
UAV. When the UAV moves in the straighter path, the burden of the control system is reducing
and the fuel cost of the flight process is decreasing [16]. The second objective function f2 is thus
defined as follows:

f2 (θ)= arccos

⎛
⎜⎜⎝

→
ϕ
→
ψ∣∣∣→ϕ ∣∣∣
∣∣∣∣→ψ
∣∣∣∣

⎞
⎟⎟⎠ (2)
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where
→
ϕ is (xi−1−xi, yi−1− yi, zi−1− zi) and

→
ψ denotes (xi+1−xi, yi+1− yi, zi+1− zi).

On the other hand, avoidance of obstacles in a dynamic flight environment is more complex
than in a static one. To simplify the characterization of moving obstacles, they can be modeled
by spheres of radius R and center c. Thus, at the beginning of the program, the center, radius,
and velocity vector of such spheres are initialized. At each time step �t, the positions of a given
moving obstacle are updated as:

vobs (t+�t)= vobs (t)+ a�t (3)

xobs (t+�t)= xobs (t)+ vobs (t+�t)�t+ 1/2a�t2 (4)

yobs (t+�t)= yobs (t)+ vobs (t+�t)�t+ 1/2a�t2 (5)

zobs (t+�t)= zobs (t)+ vobs (t+�t)�t+ 1/2a�t2 (6)

where vobs is the velocity of a dynamic obstacle, and a is its acceleration.

When the UAV moved from the actual position (xi, yi, zi) to the next position
(xi+1, yi+1, zi+1), it does not intersect any obstacle. So, it should be tested if any obsta-
cle intersects the line segment connecting the two positions. The line through (xi, yi, zi) and
(xi+1, yi+1, zi+1) can be written as:

x= xi−1 + t�x; y= yi−1+ t�y; z= zi−1+ t�z (7)

where �x = xi − xi−1, �y = yi − yi−1, and �z = zi − zi−1 denote the increments on the drone’s
positions.

The equation of a given sphere with the center’s coordinates (xc,yc, zc) is written as follows:

(x−xc)2+ (y− yc)2+ (z− zc)2−R2 = 0 (8)

Then, substituting Eq. (7) into Eq. (8) leads to the following equation:

At2 +Bt+C = 0 (9)

where A, B, and C terms are defined as follows:

A=�x2 +�y2 +�z2 (10)

B = 2 (�x (xi−1 −xc)+�y (yi−1− yc)+�z (zi−1− zc)) (11)

C = (xi−1−xc)2+ (yi−1− yc)2+ (zi−1− zc)2−R2 (12)

As explained in [17], the solving of Eq. (9) can give an idea of the intersection or not of the
drone path with the considered moving obstacles. Indeed, when the discriminate Dj of Eq. (13)
is negative there are no intersections with the obstacles:

Dj =B2− 4AC (13)

where j= 1, 2, . . . , m, and m ∈N is the number of moving obstacles.



CMC, 2021, vol.69, no.2 2163

Finally, the formulated multi-objective optimization problem for the path planning of the
quadrotor UAV according to a given ith waypoint is defined as follows:⎧⎨
⎩
Minimize
θ∈F⊆R2

ϕ (θ)= { f1 (θ) , f2 (θ)}

s.t : gj (θ)≤ 0
(14)

where f1(.), f2(.), and gj(.) = Dj(.) are the cost and constraint functions given by Eqs. (1), (2),

and (13), respectively, θ = {yi+1, zi+1} is the decision variables and F =
{
θ ∈R

2 | θmin ≤ θ ≤ θmax
}

is the bounded research space.

To handle the inequality constraints of the problem (14), the following external static type of
penalty function is used as follows [18]:

φk (θ)= fk (θ)+
ncon∑
j=1

μjmax
{
0, gj (θ)

}2 (15)

where μj ∈ R
+ is the jth penalty parameter associated with the jth constraint, ncon is the total

number of the inequality constraints, and k ∈ {1, 2}.

3 Proposed Path Planning Algorithm

3.1 Multi-Objective Multi-Verse Optimizer
Originally proposed by Mirjalili et al. [19], the Multi-Verse Optimizer (MVO) is a population-

based metaheuristic inspired by the physics theory of the existence of multi-verse. In this formal-
ism, the interaction among different universes is ensured based on the concepts of white/black
holes and wormholes. The main motion equations of the MVO metaheuristic are given as
follows [19]:

xji =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{
xj +TDR+ (ubj− lbj × r4+ lbj

)
r3 < 0.5

xj +TDR− (ubj− lbj × r4+ lbj
)

r3 < 0.5
r2 <WEP

xji r2 ≥WEP

(16)

where xji denotes the jth component in the ith solution, xj is the jth variable of the best universe,
lbj and ubj are the lower and upper bounds, respectively, r2, r3, and r4 are random numbers in
the interval [0, 1].

In Eq. (16), the terms TDR and WEP present the traveling distance rate and the wormholes’
existence probability, respectively, and are defined as follows:

WEP= ρmin+ iter (ρmax−ρmin) /Max_iter (17)

TDR= 1− iter1/γ /Max_iter (18)

where ρmin and ρmax are the wormhole existence probabilities, iter is the current iteration, and γ
defines the exploitation accuracy.
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To develop a multi-objective version of the MVO metaheuristic for the problem (14), a
concept of the archive is investigated. The leader selection and roulette wheel approaches are used
to select the fittest solutions according to the following probabilistic mechanism [20]:

σi = ϑi/α (19)

where ϑi denotes the number of the vicinity solutions and α > 1 is a constant.

Based on the above motion equations and the archive updating mechanism (19), a pseudo-
code of MOMVO is given by Algorithm 1.

Algorithm 1: MOMVO
Step 1: Set the control parameters of MOMVO algorithm.
Step 2: Randomly initialize the population, i.e., the positions of universes.
Step 3: While (iter<Max_iter+ 1) do

Update WEP and TDR by applying Eqs. (17) and (18).
For each universe do
Boundary checking for the universes inside search space.
Calculate the inflation rate (fitness) of universes.
End For
Sort the fitness values
Find the non-dominated solutions.
Normalize the inflation rates of each universe.
Update the archive regarding the obtained non-dominated solutions.
If the archive is full do
Delete some solutions from the archive to hold the new.
End if
Update the position of universes according to Eq. (16).
If any new added solutions to the archive are outside boundaries do
Update the boundaries to cover the new solution(s).
End if
Increment iter

Step 4: Stop the algorithm’s execution when it reaches Max_iter.

3.2 Decision-Making Model
The selection of an optimal solution requires in particular a higher-level decision-making

approach. The modified TOPSIS method is used to choose with more safety the best compromise
solution among all the non-dominated ones in the sense of Pareto. Such a multiple-criteria
decision-making approach is implemented as follows [21]:

Step 1: Obtain the decision matrix

D=

⎡
⎢⎢⎢⎢⎢⎢⎣

x11 x12 . . . x1w

x21 x22 . . . x2w

...
...

. . .
...

xv1 xv2 . . . xvw

⎤
⎥⎥⎥⎥⎥⎥⎦
; xij (i= 1, 2, . . . , v, j= 1, 2, . . . , w) (20)
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Step 2: Normalize the decision matrix

sij =
xij∑v
i=1 xij

(21)

Step 3: Find the positive-and negative-ideal solutions

A+ = (a+1 , a+2 , . . . , a+w ) ; A− = (a−1 , a−2 , . . . , a−w ) (22)

Step 4: Calculate the w-dimensional weighted Euclidean distances

δ+i =
⎡
⎣ w∑
j=1

χj

(
a+j − aij

)2⎤⎦
1/2

; δ−i =
⎡
⎣ w∑
j=1

χj

(
a−j − aij

)2⎤⎦
1/2

i= 1, 2, . . . , v;
w∑
j=1

χj = 1 (23)

Step 5: Calculate the relative closeness to the ideal solution

Ci = δ−i /
(
δ+i + δ−i

)
i= 1, 2, . . . , v (24)

Step 6: Choose an alternative with maximum Ci

4 Tracking of the Planned Paths

4.1 Dynamic Model
The basic movements of the quadrotor are realized by varying the speed of each rotor

as shown in Fig. 1. To evaluate the mathematical model of the quadrotor, two coordinate
systems have been used, i.e., earth reference frame Fe (Oe, xe, ye, ze) and body-fixed frame
Fb (Ob, xb, yb, zb).

Figure 1: Quadrotor prototype and its related frames

The studied quadrotor is presented with its translational ξ = (x, y, z)T and rotational η =
(φ, θ , ψ)T coordinates. Let a vector ϑ = (p, q, r)T denotes the angular velocity of the drone
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in the body-frame. Using the Newton-Euler formalism, a dynamic nonlinear model is given as
follows [22–24]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẍ= 1/mQ (cosφ cosψ sin θ + sinφ sinψ)u1− κ1/mQẋ

ÿ= 1/mQ (cosφ sinψ sin θ − sinφ cosψ) u1− κ2/mQẏ

z̈= 1/mQ cosφ cos θu1− g− κ3/mQż

ṗ= (Iy− Iz
)
/Ixqr− Jr/Ixωrq− κ4/Ixp+ 1/Ixu2

q̇= (Iz− Ix) /Iypr+ Jr/Iyωrp− κ5/Iyq+ 1/Iyu3

ṙ= (Ix− Iy
)
/Izpq− κ6/Izr+ 1/Izu4

(25)

where −π/2 ≤ φ ≤ π/2, −π/2 ≤ θ ≤ π/2, and −π ≤ ψ ≤ π are the roll, pitch, and yaw Euler
angles, respectively, mQ denotes the mass of the quadrotor, g is the gravitational acceleration, Jr is
the z-axis inertia of the propellers, Ix, Iy and Iz denote the inertias of the quadrotor, κ1, 2, ..., 6 are
the aerodynamic friction and drag coefficients, and ωr = ω1 −ω2 +ω3 −ω4 is the overall residual
rotor angular velocity.

The control inputs u1, u2, u3 and u4 are defined as follows:

⎛
⎜⎜⎜⎜⎝
u1

u2

u3

u4

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝
b b b b

0 −lb 0 lb

−lb 0 lb 0

d −d d −d

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

ω2
1

ω2
2

ω2
3

ω2
4

⎞
⎟⎟⎟⎟⎟⎟⎠

(26)

where b and d denote the lift body and drag propellers coefficients, respectively, l denote the
distance from the center of mass to each motor.

4.2 Tracking PID Controllers’ Design
The proposed control system of the quadrotor UAV is shown in Fig. 2. Such a control scheme

is composed of an inner-loop attitude controller and an outer-loop position controller. The two
controllers are designed with the classical PID structure as follows:

ufollow (t)=KPe (t)+KI

∫ t

0
e (τ )dτ +KD

de (t)
dt

(27)

where e is the tracking error between the desired reference and the accessible system output, KP,
KI , and KD are the proportional, integral, and derivative gains of the PID controller, respectively.

Two cascade loops for decoupling control of all flight dynamics are investigated. An inner
loop is set to ensure the attitude and heading’s tracking. And the outer loop is designed for the
positions (x,y) and altitude z dynamics [25]. The desired trajectories for the attitude variables φd
and θd are generated from Eqs. (28) and (29) shown as virtual control laws for the translational
dynamics [26–28]:

ux = (cosφ cosψ sin θ + sinφ sinψ) (28)

uy= (cosφ sinψ sin θ − sinφ cosψ) (29)
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Figure 2: Full control scheme of the quadrotor

Solving Eqs. (28) and (29) for a given yaw angle ψ leads to the desired roll and pitch angles’
formula respectively given as follows:

φd = arctan

⎛
⎜⎜⎝ ux sinψ − uy cosψ√(

1− u2x sin
2ψ + 2uxuy cosψ sinψ + u2y sin

2ψ − u2y
)
⎞
⎟⎟⎠ (30)

θd = arcsin

⎛
⎜⎜⎝ ux cosψ + uy sinψ√(

1− u2x sin
2ψ + 2uxuy cosψ sinψ + u2y sin

2ψ − u2y
)
⎞
⎟⎟⎠ (31)

5 Simulation Results and Discussion

To illustrate the performance of the proposed MOMVO-based method, a 3D dynamic
environment with moving obstacles is developed under the MATLAB/Simulink software. An
interactive Graphical User Interface (GUI) has been implemented for the different simulations.
The quadrotor’s 3D trajectory can be viewed by designing an animated quadrotor that receives
the simulation data and performs the dynamical responses. Some performance index values, such
as path length, flight time, and response plots of the quadrotor along the X, Y, and Z-axis,
are presented and discussed. In this study, the quadrotor’s physical parameters are given in
Appendix A. Tab. 1 gives the different flight scenarios considered in the dynamic environment.

To compare the performance of the proposed MOMVO-based planning method, others algo-
rithms such as MSSA, MOGWO, MOPSO, and NSGAII are retained. The control parameters of
such optimizers are summarized in Tab. 2.

To have a fair and reliable comparison, the common parameters such as the maximum number
of iterations and the population size are set as 100 and 50, respectively. For statistical comparison
purposes, all algorithms are independently executed 10 times and compared in the sense of the
solutions’ quality. In each step time, the quadrotor calculates the next position by solving the
formulated multi-objective optimization problem (14) based on a multi-objective optimization
algorithm. The execution of the reported algorithms leads to obtain a set of non-dominated
solutions as shown in Fig. 3. These Pareto fronts are considered at the first time-step to have a
fair comparison.
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Table 1: Values of the simulation parameters

Scenarios Starting point
[km]

Destination
point [km]

Center of dynamic
obstacles [km]

Dynamic obstacles’
speed [km/s]

1 [0.0, 0.0, 0.0] [9.0, 8.0, 0.0] [5, 5, 2]; [3, 3, 2]; [5, 3, 1];
[2, 1, 1]; [6, 2, 2]

[4, −2, 1]; [2, −2, −2]; [4, 2, 2];
[2 2 2]; [−2, 2, −2]

2 [1.0, 2.0, 0.0] [10.0, 10.0, 0.0] [1, 3, 1]; [3, 5, 1]; [4, 4, 3];
[5, 5, 4]; [7, 3, 4]; [8, 2, 1];
[9, 5, 2]

[2, 1, 1]; [3, −3, 1]; [4, 1, −2];
[2, 1, 1]; [−1, −2, 2]; [0.5, 1, −1];
[1, -1, 2]

3 [1.0, 2.0, 0.0] [15.0, 10.0, 0.0] [2, 3, 1]; [2, 4, 1]; [4, 3, 2];
[5, 3, 3]; [5, 5, 2]; [6, 4, 1];
[7, 7, 2]; [7, 3, 4]; [8, 6, 3];
[10, 8, 2]

[−1, 3, −1]; [−1, 1, 1]; [2, 2, 1];
[1, 2, 4]; [0.2, 1, 3]; [1, −1, 1];
[2, 1, 2]; [−1, 2, 2]; [1, 2, 1];
[3 0.5 0. 2]

4 [2.0, 4.0, 0.0] [16.0, 13.0, 0.0] [1, 3, 1]; [2, 5, 2]; [2, 4, 3];
[2, 7, 1]; [3, 2, 1]; [3, 3, 3];
[4, 1, 2]; [4, 5, 4]; [6, 7, 1];
[7, 2, 2]; [8, 5, 2]; [10, 8, 3]

[1, 2, 1]; [−2, 1, 1]; [3, −1, 3];
[2, 1, 2]; [−1, 3, 1]; [1, 2, −2];
[2, −1, 2]; [4, 1, 2]; [3, 2, 1];
[0.5, 2, −2]; [1, −2, 1]; [1, 2, 3]

5 [0.0, 4.0, 0.0] [16.0, 15.0, 0.0] [1, 4, 1]; [2, 5, 1]; [2, 2, 1];
[3, 2, 4]; [3, 7, 2]; [4, 2, 1];
[4, 5, 3]; [4, 8, 1]; [5, 3, 4];
[6, 5, 2]; [7, 2, 1]; [7, 4, 5];
[8, 1, 2]; [8, 8, 1]; [9, 5, 2]

[1, 3, 1]; [3, −1, 1]; [4, 1, 3];
[2. 2. 4]; [−1, 3, 1]; [2, −2, 1];
[3, 1, 2]; [1, 3, −2]; [1, 1, 1];
[2, −0.5, 2]; [1, 3, 2]; [1, 2, 1];
[2, 2, −2]; [1, −2, 1]; [1, 1, 2]

Table 2: Control parameters of the reported optimizers

Optimizers Parameters

MSSA [29] Without control parameters (free-parameters algorithm)
MOGWO [30] Grid inflation 0.1, grids per each dimension 10, leader selection pressure 4,

and repository member selection pressure 2
MOPSO [31] Cognitive and social accelerations 2, grid inflation 0.1, leader selection

pressure 2, and grids per each dimension 7
NSGAII [32] Crossover percentage 0.7, mutation percentage 0.4, and mutation rate 0.02
MOMVO Lower and upper wormhole existence probabilities ρmin = 0.2 and ρmax = 1

These results show the repartition topology of the set of optimal non-dominated Pareto
solutions on the compromised surface. A higher-level decision-making approach, i.e., the modified
TOPSIS, selects the best compromise solution. These illustrative results show the high optimiza-
tion performance of the proposed MOMVO algorithm in terms of convergence dynamics and
solution distribution. The optimal Pareto solutions are strongly distributed for the two considered
objectives of Eqs. (1) and (2) and under operational constraints of Eq. (13), which means a good
coverage of the non-dominated set of solutions of the optimization problem (14) for proposed
algorithms, except the NSGAII one which it could only find some feasible solutions.



CMC, 2021, vol.69, no.2 2169

Figure 3: Pareto Fronts for the generation of the first position
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To highlight the diversity and coverage of the obtained non-dominated solutions, various
metrics such as Maximum Spread (MS) [33,34], Hyper Volume (HV) [35], and C metric [36] have
been employed in this study. The statistical results for the MS metric are presented in Tab. 3.
The proposed MOMVO algorithm is superior to the other reported optimizers in terms of the
largest value of MS metric. It becomes the best in terms of having high coverage properties.
Tab. 4 shows the optimization results of the HV index for the reported algorithms. The statistical
results show that the MOGWO algorithm followed by the MOMVO presents the two best solvers
compared with other proposed algorithms in terms of diversity and convergence performance.
Tab. 5 shows the comparative results for the reported algorithms in terms of the C metric. The
proposed MOMVO solver surpassed all the other competitive ones and it dominates more than
2% of the MSSA solutions, 99% of the MOGWO solutions, 15% of the NSGA-II solutions, and
4 % of the MOPSO solutions on average.

Table 3: Comparison of the MS metric for the reported algorithms

MSSA MOMVO MOGWO NSGAII MOPSO

Best 18.4022 20.8615 11.8244 17.9264 20.1983
Mean 18.3603 20.4966 11.0232 06.5371 20.0943
Worst 18.3295 19.9721 10.0944 02.4744 19.9385
STD 00.0227 00.2899 00.5777 06.0948 00.0910

Table 4: Comparison of the HV metric for the reported algorithms

MSSA MOMVO MOGWO NSGAII MOPSO

Best 0.000247 0.1074 0.8655 2.52e-09 0.0917
Mean 0.00020 0.1017 0.7521 5.18e-10 0.0883
Worst 0.00011 0.0820 0.5420 0.0000 0.0811
STD 4.003e-05 0.0079 0.1177 2.52e-09 0.0031

Table 5: Comparison of the C metric for the reported algorithms

Best Mean Worst STD

C (MOMVO, MSSA) 0.1000 0.0200 0.0100 0.0521
C (MSSA, MOMVO) 0.4221 0.3233 0.2400 0.0752
C (MOMVO,MOGWO) 1.0000 0.9900 0.9800 0.0012
C (MOGWO, MOMVO) 0.0600 0.0400 0.0000 0.0314
C (MOMVO, NSGAII) 0.2100 0.1500 0.0100 0.0546
C (NSGAII, MOMVO) 1.0000 0.9700 0.8400 0.0642
C (MOMVO, MOPSO) 0.0800 0.0400 0.0000 0.0253
C (MOPSO, MOMVO) 0.0200 0.0067 0.0000 0.0103

To analyze the statistical performance of the MOMVO-based planning method, a comparative
study with MSSA, MOGWO, NSGAII, and MOPSO algorithms is performed on three perfor-
mance criteria, such as path length, elapsed time, and capacity to avoid the moving obstacles as
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shown in Tab. 6. While considering two performance criteria, i.e., path length and path travel
times, a statistical comparison according to its mean value based on the nonparametric Friedman
test is implemented and discussed to indicate the significant differences among the performances
of the reported algorithms. The Iman-Davenport extension of the classical Friedman test [37]
provides the computed value FF1 = 27.25 for the elapsed time criterion and FF2 = 79.33 for the
flight time criterion. For the five reported algorithms (ζ = 5) and five scenarios (λ= 5) at a 95%
level of significance, the critical value of the F distribution with ζ − 1 and (ζ − 1) (λ− 1) degrees
of freedom is equal to F4, 16, 0.05 = 3.01< FF1 < FF2 . So the null hypothesis is declined and there
are significant differences among the performance.

Table 6: Optimization result of the path length and the flight time

Scenarios MSSA MOMVO MOGWO NSGAII MOPSO

PL1 ET2 PL ET PL ET PL ET PL ET

1 Best 13.054 482.27 12.301 480.22 14.243 789.4 12.192 1110.2 17.191 757.1
Mean 13.066 496.08 12.427 493.66 14.861 854.5 12.326 1265.4 19.857 821.5
Worst 13.306 516.63 13.251 506.63 15.251 958.8 13.241 1421.5 22.502 886.7
STD 0.1083 5.5645 0.2544 4.0314 0.3514 5.142 0.641 5.874 0.554 4.544

2 Best 12.621 520.12 12.451 501.24 14.892 834.5 12.351 1187.2 18.524 798.4
Mean 12.462 556.23 12.384 524.24 15.214 863.2 12.841 1354.2 20.241 854.2
Worst 13.762 620.63 13.484 589.92 15.458 987.1 13.541 1465.5 22.741 932.1
STD 0.2145 5.741 0.2014 4.1345 0.3741 5.142 0.667 5.984 0.574 4.651

3 Best 16.201 825.12 16.121 817.21 17.451 1115.7 15.942 7545.3 25.874 2624.8
Mean 17.149 855.41 16.443 848.05 18.899 1570.6 16.512 7646.5 27.317 2909.3
Worst 17.354 945.12 17.207 895.45 19.542 1618.2 16.774 8068.5 28.651 3187.4
STD 0.2451 5.781 0.2214 4.245 0.392 5.413 0.6754 6.2654 0.6224 4.988

4 Best 16.673 923.5 16.654 891.2 19.214 1704.7 16.741 7998.5 27.874 3478.1
Mean 16.715 1064.5 16.682 917.64 20.415 1845.8 16.784 8142.2 28.145 3584.2
Worst 20.854 1123.5 19.177 1013.2 21.214 1991.4 17.514 8534.6 29.941 3782.1
STD 0.3641 5.804 0.3146 5.5243 0.4201 5.6103 0.6774 6.4541 0.6412 5.2341

5 Best 20.121 1105.4 19.471 1089.6 21.754 2154.2 19.104 9120.1 30.987 4212.2
Mean 21.286 1188.19 20.275 1129.07 22.730 2263.7 19.115 9293.3 33.281 4422.4
Worst 21.764 1272.3 20.941 1262.4 23.147 2549.7 20.321 9752.2 35.102 4949.7
STD 0.4587 5.8715 0.4031 5.6441 0.5342 5.4924 0.6871 6.6934 0.6733 5.441

Notes: 1Path Length (Km), 2Elapsed Time (s).

To find out which algorithms differ from the others, Fisher’s LSD post-hoc test is applied [37].
The ranks’ sums for all the proposed methods in the different scenarios for the two performance
indices are summarized in Tabs. 7 and 8. The paired comparisons are given in Tabs. 9 and 10.
The bold and underlined values indicate that the absolute difference of the rank’s sum

∣∣Ri−Rj
∣∣

is greater than the critical values 4.2398 and 2.5963 for the path length and flight time criteria,
respectively [37]. From the statistical results based on the two performance criteria, i.e., path
length and path travel time, it is obvious that the MOMVO algorithm outperforms the other
reported algorithms for the path planning problem of the quadrotor in the considered dynamic
environment.
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Table 7: Ranks’ sum of mean performances: path length criterion

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Ranks’ sum

Score Rank Score Rank Score Rank Score Rank Score Rank

MSSA 13.066 3 12.462 2 17.149 3 16.715 2 21.286 3 13
MOMVO 12.427 2 12.384 1 16.443 1 16.682 1 20.275 2 7
MOGWO 14.861 4 15.214 4 18.899 4 20.415 4 22.730 4 20
NSGA-II 12.326 1 12.841 3 16.512 2 16.784 3 19.115 1 10
MOPSO 19.857 5 20.241 5 27.317 5 28.145 5 33.281 5 25

Table 8: Ranks’ sum of mean performances: path travel time criterion

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Ranks’ sum

Score Rank Score Rank Score Rank Score Rank Score Rank

MSSA 496.08 2 556.23 2 855.41 2 1064.5 2 1188.1 2 10
MOMVO 493.66 1 524.24 1 848.05 1 917.64 1 1129.0 1 5
MOGWO 854.5 4 863.2 4 1570.6 3 1845.8 3 2263.7 3 17
NSGA-II 1265.4 5 1354.2 5 7646.5 5 8142.2 5 9293.3 5 25
MOPSO 821.5 3 854.2 3 2909.3 4 3584.2 4 4422.4 4 18

Table 9: Paired comparison of the proposed metaheuristics: path length criterion∣∣Ri−Rj
∣∣ MOMVO MOGWO NSGA-II MOPSO

MSSA 6 7 3 12
MOMVO – 13 3 18
MOGWO – 0 10 5
NSGA-II – – – 15

Table 10: Paired comparison of the proposed metaheuristics: path travel time criterion∣∣Ri−Rj
∣∣ MOMVO MOGWO NSGA-II MOPSO

MSSA 5 7 15 8
MOMVO – 12 20 13
MOGWO – – 8 1
NSGA-II – – – 7

By visualizing the simulations of the 3D trajectory of the quadrotor, all proposed algorithms
succeed in completing the flight mission still avoiding all the moving obstacles. The simulation
results of the proposed MOMVO-based method are shown in Fig. 4. Several periods of time are
given where T is the total time of the UAV path planning. These results show that the quadrotor
avoids all dynamic obstacles in all four periods of time and guarantee the planning performance
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of the proposed MOMVO-based method. The time-domain responses of the controlled position
dynamics are shown in Figs. 5–9 corresponding to the mean case of the multicriteria optimization.
The proposed flight PID controllers allow the quadrotor to reach the desired trajectories. The PID
controller gains’ selection is achieved by an iterative trials-errors-based method. Even though there
were minor tracking errors in the time-domain responses of the closed-loop, these results remain
encouraging. The tracking errors can be due to using PID gains that were not defined from the
control design approach but by trials-errors based tuning.

By visualizing these figures, we can notice that the proposed algorithm MOMVO gives the
most direct path, which guarantees high efficiency in flight missions. The MOPSO algorithm
generates a trajectory with many fluctuations along the Z-axis. From these results, the quadrotor
has started the mission after a time delay which is due to the calculation time of the next point.
A minimum execution time for an algorithm ensures the high efficiency of collision avoidance
with the dynamic obstacles and causes a minimum flight time.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4: Planned path tracking in scenario 5 for the proposed MOMVO-based approach: (a) T/8;
(b) 2T/8; (c) 3T/8; (d) 4T/8; (e) 5T/8; (f) 6T/8; (g) 7T/8; (h) total mission time (T)
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(a) (b)

(c)

Figure 5: Position tracking based on MOMVO algorithm: (a) Tracking dynamics on X-axis;
(b) Tracking dynamics on Y-axis; (c) Tracking dynamics on Z-axis

(a) (b)
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(c)

Figure 6: Position tracking based on MSSA algorithm: (a) Tracking dynamics on X-axis;
(b) Tracking dynamics on Y-axis; (c) Tracking dynamics on Z-axis

(a) (b)

(c)

Figure 7: Position tracking based on MOGWO algorithm: (a) Tracking dynamics on X-axis;
(b) Tracking dynamics on Y-axis; (c) Tracking dynamics on Z-axis
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(a) (b)

(c)

Figure 8: Position tracking based on NSGA-II algorithm: (a) Tracking dynamics on X-axis;
(b) Tracking dynamics on Y-axis; (c) Tracking dynamics on Z-axis

(a) (b)
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(c)

Figure 9: Position tracking based on MOPSO algorithm: (a) Tracking dynamics on X-axis;
(b) Tracking dynamics on Y-axis; (c) Tracking dynamics on Z-axis

6 Conclusions

In this paper, a multi-objective multi-verse optimizer-based method has been proposed and
successfully applied to solve the path planning problem of quadrotors UAV in a 3D dynamic envi-
ronment. The path planning problem was formulated as a multi-objective optimization problem
under operational constraints. The proposed planning approach aims to lead the drone to traverse
a short and fast path in a dynamic environment without collision with the moving obstacles.
An interactive graphical interface was developed under MATLAB/Simulink software environment
to implement the proposed MOMVO-based path planning strategy. The demonstrative results
and nonparametric statistical analyses in the sense of Friedman and the post-hoc tests show
that the proposed MOMVO-based method is efficient and powerful compared to other reported
algorithms. In comparison with MSSA, MOGWO, MOPSO, and NSGA-II optimizers, the main
advantages of the proposed multi-verse algorithm are the remarkable simplicity of software imple-
mentation as well as the reduced number of its control parameters. The exploration/exploitation
capabilities are superior to those of the other reported algorithms. Besides, the paired comparisons
for two different optimization criteria showed that the MOMVO algorithm outperforms all the
reported optimizers.

Future works deal with the real-world prototyping and experimentation of the proposed
MOMVO-based planning approach using a real model of quadrotor available in our laboratory.
The Parrot AR. Drone 2.0 kit associated with MATLAB/Simulink software will be used for the
experimentations.
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Appendix A: Quadrotor’s model parameters

Symbol Description Value/unit

b Lift coefficient 2.984× 10−5 N.s2/rad2

d Drag coefficient 3.30× 10−7 N.s2/rad2

mQ Mass 0.5 Kg
l Arm length 0.50 m
Jr Motor inertia 2.8385× 10−5 Kgm2

Ix, Iy, Iz Quadrotor inertia 0.005, 0.005, 0.010
κ1, 2, 3 Aerodynamic friction coefficients 0.3729
κ4, 5, 6 Translational drag coefficients 5.56× 10−4

g Acceleration of the gravity 9.81 m.s−2


