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Abstract: In modeling reliability data, the exponential distribution is
commonly used due to its simplicity. For estimating the parameter of the
exponential distribution, classical estimators including maximum likelihood
estimator represent the most commonly used method and are well known to
be efficient. However, the maximum likelihood estimator is highly sensitive in
the presence of contamination or outliers. In this study, a robust and efficient
estimator of the exponential distribution parameter was proposed based on
the probability integral transform statistic. To examine the robustness of this
new estimator, asymptotic variance, breakdown point, and gross error sensi-
tivity were derived. This new estimator offers reasonable protection against
outliers besides being simple to compute. Furthermore, a simulation study
was conducted to compare the performance of this new estimator with the
maximum likelihood estimator, weighted likelihood estimator, and M-scale
estimator in the presence of outliers. Finally, a statistical analysis of three
reliability data sets was conducted to demonstrate the performance of the
proposed estimator.

Keywords: Exponential distribution; M-estimator; probability integral
transform statistic; robust estimation; reliability

1 Introduction

Exponential distribution is the most widely used parametric distribution for modeling reliabil-
ity and failure time data due to its mathematical simplicity and ability to create a realistic failure
time model [1–5]. The advantages of applying a parametric model like exponential distribution in
modeling failure time data are the following: this distribution can be concisely described with only
one parameter instead of having to report an entire curve apart from providing smooth estimates
of failure time distributions [1]. Besides the reliability analysis, the exponential distribution is also
applied for modeling income distribution [6,7]. In the previous studies, research to propose a new
model related to the family of exponential distributions has attracted considerable interest from
many researchers [8–20]. The main objective of introducing an extension and modification to the
exponential distribution is to offer more flexible distribution structures for fitting data.
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Assume X as a random variable that follows the exponential distribution. Thus, the respective
probability density function (PDF), cumulative distribution function (CDF), and survival function
of the exponential distribution can be defined as follows:

f (x)= γ e−γx, x> 0, γ > 0, (1)

F(x)= 1− e−γx, x> 0, γ > 0, (2)

and

S(x)= 1−F(x)= e−γx, x> 0, γ > 0, (3)

where γ is the rate or inverse scale parameter. A high value of γ indicates high risk and short
survival while a low value of γ indicates low risk and long survival [3]. The parameter γ also
measures the heaviness of exponential tail whereby the tail becomes heavier as γ decreases. In the
analysis of reliability data, reliability properties are often defined using the mean time to failure
(MTTF), survival (or reliability) function and failure rate function. Based on the exponential
distribution, the survival function is given in Eq. (3), whereas the MTTF and failure rate function
are expressed as the following:

MTTF=E[X ]= 1
γ
, x> 0, γ > 0, (4)

and

h(x)= f (x)
S(x)

= γ , γ > 0. (5)

The reliability data can be sometimes contaminated with outliers. Outliers are observations
much deviated from the bulk of the data [21] and are also referred to as abnormalities, dis-
cordants, deviants, or anomalies in statistics literature [22]. Outliers may arise due to errors or
simply by natural deviations in a data set. In statistical modeling using parametric distribution, the
classical estimator known as maximum likelihood estimator (MLE) is the most commonly used
method for estimating the parameters of any parametric model. In fact, for any typical parametric
distribution, MLE is well known to be efficient especially for a large sample size. However, in
the presence of data contamination in which the outliers are present in the data set, the MLE
is not robust and severely biased [23]. Consequently, this condition may affect the application
of exponential model in reliability analysis or any assessment. Therefore, when the outliers are
present, a robust estimator should be utilized for estimating the parameter of any parametric
distribution as an alternative to the MLE.

Several robust methods have been proposed in the literature for estimating the parameter of
exponential distribution. Thall [24] proposed a robust estimator for the parameter of exponential
distribution called Huber-sense robust M-estimator. However, this estimator is only suitable for
the case when the proportion of outliers is small. Trimmed-mean and Winsorized-mean type
estimators have also been proposed and studied by several researchers [25–27]. The advantage of
these types of estimator is that they are simple to compute. Further, Gather et al. [28] proposed
another simple robust estimator called standardized median estimator (SME). However, the SME
has low asymptotic relative efficiency (ARE) of only 48%. Gather et al. [28] also compared the
performance of SME with two other estimators called RCS-estimator and RCQ-estimator in which
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the respective AREs for both estimators were 55% and 74%. Meanwhile, Ahmed et al. [29] intro-
duced another robust estimator called the weighted likelihood estimator (WLE). When estimating
the parameter of exponential distribution using WLE, observations with small likelihood are
assigned with zero weights. This procedure causes the outliers to be eliminated from the data set
and then, the ordinary MLE is used to estimate the parameter of interest based on the remaining
observations. In recent years, Shahriari et al. [23] proposed a robust M-scale estimator for the
parameter of exponential distribution in which this estimator has a maximum ARE of 71%. This
estimator uses families of bisquare function as the weight for estimating the parameter of interest.

This study aims to develop a new robust estimator for the parameter of exponential distri-
bution based on the probability integral transform statistic, which offers reasonable protection
against outliers. Generally, probability integral transform statistic is used to transform the random
variable of any continuous distribution to a standard uniform distribution [30–32]. It should
be noted that the new robust estimator proposed in this study is a class of M-estimator. This
estimator has a simple form and easy to compute. In this study, the robustness of this new
estimator was examined based on the measures of asymptotic variance, breakdown point, and
gross error sensitivity.

The rest of this paper is structured as follows. Section 2 provides a brief explanation of
M-estimators and then presents the new robust estimation method for the rate parameter of
exponential distribution. Section 3 compares the performance of the proposed estimator with
several estimators in the presence of outliers through a simulation study. Section 4 applies the
proposed method for estimating the rate parameter of exponential distribution to real data sets.
Finally, Section 5 concludes the paper.

2 Proposed Estimator

In this section, a brief explanation of the M-estimators is given followed by the introduction
of the new estimator developed based on the probability integral transform statistical approach.
Furthermore, the robustness of this new estimator was compared with the ordinary MLE and
discussed in this section.

2.1 M-Estimators
M-estimators are generalized ML estimators that provide tools for measuring the robustness

of the maximum likelihood-type estimates. As described in Huber [33], an estimator βn defined by

βn= argmin
β

n∑
i=1

ρ(xi, β) (6)

or
n∑
i=1

ψ(xi, βn)= 0 (7)

is known as an M-estimator. ρ is a measurable function on X ×� and ψ(x, β)= (∂/∂β)ρ(x, vβ)
denotes the derivative of the function ρ with respect to β (when it exists). Note that if
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ρ(x, β)=− log f (x; β), then β̂n is the ordinary MLE. Let x1, x2, . . . , xn be a random sample from
an exponential distribution as described in (2). The MLE for parameter γ is given by

γ̂MLE = n∑n
i=1 xi

. (8)

2.2 Probability Integral Transform Statistic Estimator
Assume that x1, x2, . . . , xn is a random sample from the exponential distribution. Since the

CDF of exponential distribution in Eq. (2) is continuous and strictly increasing, the random vari-
ables F(x1), F(x2), . . . , F(xn) follow a standard uniform distribution, which is F(X)∼Unif(0, 1).
Define

Hn,κ(β)= n−1
n∑
i=1

e−βκxi , (9)

where κ > 0 denotes a tuning parameter to be used in regulating the balance between efficiency
and robustness. When β = γ and κ = 1, e−γxi = S(xi)= 1−F(xi), is a random variable that follows
the standard uniform distribution. Suppose that u1, u2, . . . , un is a random sample from a standard
uniform distribution. According to the strong law of large numbers, n−1 ∑n

i=1 u
κ
i converges to

E[Uκ ]= 1/(κ + 1) as n→∞ with probability 1. Thus, the probability integral transform statistic
estimator (PITSE) of parameter γ̂ is defined as the solution of the following equation:

Hn,κ(β)= n−1
n∑
i=1

e−βκxi = 1
κ + 1

. (10)

Note that Eq. (10) can be solved using any numerical method such as bisection, secant, or
Newton–Raphson method.

Lemma 1. For any fixed κ > 0, the equation Hn,κ(β) = 1/(κ + 1) in (10) has exactly one
solution.

Proof of Lemma 1. Note that Hn,κ(β) is continuous on [0, ∞) and that Hn,κ(0)= 1> 1/(κ + 1)
while limβ→∞Hn,κ(β)= 0< 1/(κ + 1). Based on the intermediate value theorem, Hn,κ(β)= 1/(κ+
1) for some β in [0, ∞). That is, Eq. (10) has at least one solution. Then, it can be shown that
H ′
n,κ(β)=−n−1 ∑n

i=1 κxie
−βκxi < 0 for all β > 0. Thus, Hn,κ(β) is strictly monotonic with respect

to β and it can be concluded the Eq. (10) has a unique solution.

The PITSE for the rate parameter of exponential distribution is a class of M-estimator with

ψ(x; β)= e−βκx− 1
κ + 1

. (11)

To investigate the properties of PITSE, the function introduced by Huber [33] can be utilized
as follows:

λ(β)=
∫ ∞

0
ψ(x; β)f (x) dx. (12)
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Thus, based on Eq. (12), the following is obtained:

λ(β)= κ(γ −β)
(βκ + γ )(κ + 1)

. (13)

Theorem1. For any fixed κ > 0, the PITSE γ̂PITSE converges to γ as n→∞ with probability 1.

Proof of Theorem 1. Based on Proposition 2.1 and Corollary 2.2 in Chapter 3 of Huber [33],
λ(β) > 0 for β < γ and λ(β) < 0 for β > γ . As the PITSE is uniquely defined, γ̂PITSE is a
consistent estimator of γ .

2.3 Efficiency of PITSE
The MLE is well known to be efficient in the sense that it has minimum asymptotic variance.

For this reason, MLE is useful in providing a quantitative benchmark on the measure of efficiency.
Note that the MLE for the rate parameter given in Eq. (8) is asymptotically normal with a mean
γ and variance γ 2/n, i.e., γ̂MLE ∼ N(γ , γ 2/n). The asymptotic distribution γ̂PITSE is given in
Theorem 2.

Theorem 2. For any fixed κ > 0, the estimator
√
n(γ̂PITSE − γ ) is asymptotically normal with

mean 0 and variance γ 2(κ + 1)2/(2κ + 1), i.e., γ̂PITSE ∼N(γ ,γ 2(κ + 1)2/[n(2κ + 1)]).

Proof of Theorem 2. Based on Corollary 2.5 in Chapter 3 of Huber [33], λ′(γ )=−κ/[γ (κ + 1)2]
and σ 2

0 = ∫ ∞
0 ψ(x; γ )2f (x)dx−λ(γ )2 = κ2/[(2κ+1)(κ + 1)2]. Therefore, the asymptotic variance of

γ̂PITSE is σ 2
0 /[λ

′(γ )]2 = γ 2(κ + 1)2/(2κ+1). Note that for the finite sample, the variance of γ̂PITSE
is γ 2(κ + 1)2/[n(2κ + 1)].

The ARE of PITSE is defined as the ratio of the asymptotic variance of the MLE to the
asymptotic variance of the PITSE. In other words, the ARE measures the relative efficiency of
the estimator γ̂PITSE compared with γ̂MLE . The ARE of PITSE for parameter γ is given by

ARE= Var(γ̂MLE )

Var(γ̂PITSE )
= 2κ + 1

(κ + 1)2
. (14)

As the value of κ increases, the value of ARE decreases. In other words, when the value of κ
increases, the PITSE gains robustness but with its relative efficiency reduced. By taking κ close to
0, ARE of PITSE can be made arbitrarily close to 1. The guidelines for choosing suitable ARE
of PITSE in practical application are given in the simulation study section.

2.4 Breakdown Point of PITSE
The breakdown point (BP) is a useful measure of the robustness of a statistical approach

in which the degree of sensitivity of an estimator to data contamination is measured. According
to Huber [34], BP is defined as the largest contamination proportion that can be tolerated by
an estimator before breaking down. A higher value of BP is an indication that an estimator is
more robust against data contamination. In general, two types of BP exist; lower breakdown point
(LBP) and upper breakdown point (UBP). In the present context of γ estimation, LBP is the
largest proportion of lower contamination that can be tolerated by an estimator before forcing
γ̂ →∞. On the other hand, the UBP is the largest proportion of upper contamination that can
be tolerated by an estimator before forcing γ̂ → 0. Since the contamination of the upper-end of
the distribution is crucial in typical applications, only the UBP was emphasized in this study.
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Note that the MLE, namely γ̂MLE, has a UBP equal to 0 because the function ψ(x; γ̂MLE)=
1/γ̂MLE − x is unbounded in x. For the finite sample, if a single observation xi → ∞, then∑n

i=1 xi → ∞ and consequently, γ̂MLE → 0. This result shows that even an extreme value of
single contaminated data in the upper tail of the observations could contribute to the unreliable
performance of γ̂MLE . The UBP and LBP of PITSE are given in Theorem 3.

Theorem 3. The respective UBP and LBP of PITSE are κ/(κ+1) and 1/(κ+1). For the finite
sample, the UBP and LBP of PITSE are �nκ/(κ + 1)�/n and �n/(κ+ 1)�/n, respectively.

Proof of Theorem 3. For any integer 1 ≤ m ≤ n, the estimator γ̂PITSE is defined as
n−1 ∑m

i=1 e
−κxiγ̂PITSE + n−1 ∑n

i=m+1 e
−κxiγ̂PITSE = 1/(κ + 1). Suppose that x1, x2, . . . , xm take on

values that approach ∞. Certainly, n−1 ∑n
i=m+1 e

−κxiγ̂PITSE = 1/(κ + 1) < (n − m)/n because the

term e−κxi γ̂PITSE is less than 1. This solution is valid if and only if 1/(κ + 1) < (n−m)/n, that is,
m< nκ/(κ + 1). Thus, the finite sample UBP is �nκ/(κ+ 1)�/n, where �·� is the ceiling function.
By taking n→∞ in the finite sample UBP, UBP equal to κ/(κ+1) will be obtained. Similarly, let
x1, x2, . . . , xm take on values approaching 0. it can be shown that m/n+n−1 ∑n

i=m+1 e
−κxiγ̂PITSE =

1/(κ + 1). This solution is finite if and only if 1/(κ + 1) >m/n, that is, m< n/(κ + 1). Therefore,
the finite sample LBP is �n/(κ+ 1)�/n, and by letting n→∞, the LBP will be equal to 1/(κ+1).

2.5 Gross Error Sensitivity of PITSE
The breakdown point (BP) is a useful measure of the robustness of a statistical approach in

which the degree of sensitivity of Gross error sensitivity (GES) is also an important measure of
the robustness of an estimator. According to Hampel et al. [35], GES is the supremum of the
absolute value of the influence function (IF). The IF of an estimator βn that satisfies Eq. (7) can
be defined by the following:

IF(x; ψ , F)=− ψ(x, β(F))∫
(∂/∂γ )[ψ(y, γ )]β(F) dF(y)

, (15)

where β(F) denotes the solution βn of Eq. (7) with samples generated from the CDF F . Then,
the GES is given by

GES= sup
x

|IF(x; ψ , F)|, (16)

An estimator with small GES should be more robust than that with larger GES. The MLE,
which is γ̂MLE , has an infinite GES because ψ(x; γ̂MLE) is an unbounded function. This result
proves that MLE is a non-robust estimator. Then, the GES of PITSE is provided in Theorem 4.

Theorem 4. The GES of the PITSE is max{γ (κ + 1)/κ, γ (κ + 1)}.
Proof of Theorem 4. By applying the formula of IF in Eq. (15), the IF of PITSE can be

demonstrated as IF(x; ψ , F)=−ψ(x; γ )γ (κ + 1)2/κ. As ψ(x; γ ) is monotone in x, the maximum
value occurs when either x→∞ or x→ 0. Note that ψ(x; γ ) = −1/(κ + 1) when x→∞ and
ψ(x; γ ) = κ/(κ + 1) when x → 0. Then, using the formula in Eq. (16), the GES of PITSE is
obtained.

Tab. 1 shows the properties of the PITSE based on ARE, BP, and GES for different values
of tuning parameter κ. The properties of the PITSE can be summarized as follow:

• As the value of κ increases, the PITSE loses efficiency (ARE decreases) but also becomes
more resistant to upper contamination.
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• As the value of κ increases, the UBP increases, and the LBP, which suggests that the
robustness of the PITSE, increases against upper contamination. On the other hand, the
LBP decreases as the value of κ increases, which indicates that the robustness of the PITSE
decreases against lower contamination.

• As the value of κ increases up to 1, the GES of the PITSE decreases. But then, the GES
of the PITSE started to increase when the value of κ is greater than 1.

Table 1: The ARE, BP, and GES of PITSE for different values of tuning parameter κ

κ 0.165 0.288 0.463 0.632 0.809 1.000 1.211 1.449 1.721

ARE (%) 98 95 90 85 80 75 70 65 60
UBP 0.14 0.22 0.32 0.39 0.45 0.50 0.55 0.59 0.63
LBP 0.86 0.78 0.68 061 0.55 0.50 0.45 0.41 0.37
GES 7.07γ 4.47γ 3.16γ 2.58γ 2.24γ 2γ 2.21γ 2.45γ 2.72γ

3 Simulation Study

In this section, a simulation study to compare the performance of the MLE, PITSE, WLE,
and M-scale estimator in the presence of outliers is conducted. The design and results of the
simulation study are given in the next two following subsections. Then, the guidelines for selecting
the suitable ARE of the PITSE for practical application purposes are provided.

3.1 Design of Simulation
In the simulation study, the methods considered for comparison were MLE, PITSE (90% and

70% ARE), WLE (90% and 70% ARE), and M-scale estimator (70% ARE). The data sets were
simulated from an exponential distribution, Exp(γ ), with different values of rate parameter, γ =
0.5, 1, 1.5, and 2. The sample size used in this simulation study was divided into two cases: small
sample sizes (n = 30, 50, and 70) and large sample sizes (n = 100, 300, and 500). Then, some
observations in the data sets were randomly selected and replaced with outliers. According to
Lin et al. [36], the observations are from exponential distribution with parameter ωγ , which is
Exp(ωγ ) with 0 < ω < 1 considered as outliers. Thus, in this simulation study, the outliers were
generated from an exponential distribution with parameter 0.05γ , which was Exp(0.05γ ). For the
case of small sample sizes, the outliers were generated from Exp(0.05γ ) for several fixed numbers,
k= 1, 3, and 5. For the case of large sample sizes, the outliers were simulated from Exp(0.05γ )
for several fixed proportions, ε= 1%, 5%, and 10%. This simulation was repeated for 10,000 data
sets found based on 10,000 simulation runs.

The performance of the estimators was assessed in terms of percentage relative root mean
square error (RRMSE). For a given true value of the rate parameter of exponential distribution,
γ , the RRMSE is given by

RRMSE = 100
γ

√√√√ 1
N

N∑
i=1

(γ̂i− γ )2, (17)

where γ̂i is the estimated rate parameter for the i-th (i= 1, 2, . . . , N) simulated data, and N is the
number of simulations. A smaller value of RRMSE indicates that the estimator is more accurate
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and precise. Therefore, the estimation method that minimizes the RRMSE was considered to be
the best for estimating the rate parameter γ in the presence of outliers.

3.2 Results of Simulation
Results based on the simulation study are presented in Tabs. 2–7. For the case of small sample

sizes, when n= 30 and k= 1, for all values of the parameter γ , the value of RRMSE found for
PITSE and WLE with 90% ARE were nearly similar and smaller than those for other estimators
as shown in Tab. 2, indicating that these two estimators performed better than other estimators
for this particular case. Furthermore, from Tab. 2, when the number of outliers increased to
k = 3, the PITSE, WLE, and M-scale estimator with 70% ARE performed almost equally and
outperformed other estimators due to smaller values of RRMSE. When k= 5, it was observed that
the PITSE and M-scale estimator with 70% ARE performed almost equally and outperformed
other estimators as presented in Tab. 2. As the sample size increases, the performance of all
estimators improves for all cases considered because the values of RRMSE became smaller as
shown in Tabs. 2–4. For all cases of small sample sizes, the MLE produced a high value of
RRMSE, indicating a poor performance of this method when the outliers were present in the
data set.

Table 2: Results of RRMSE for estimation of parameter γ with n= 30 and k= 1, 3, 5

γ k RRMSE

MLE PITSE
90% ARE

WLE
90% ARE

PITSE
70% ARE

WLE
70% ARE

M-scale
70% ARE

0.5 1 38.50 19.93 20.97 21.80 21.45 23.50
3 62.05 27.79 26.16 24.20 24.18 24.00
5 73.45 42.70 44.35 29.84 40.18 28.71

1 1 38.17 20.07 21.22 21.97 21.78 23.63
3 61.96 27.67 26.03 24.19 24.18 24.10
5 73.46 42.39 44.21 29.46 39.77 28.35

1.5 1 38.47 19.80 20.93 21.90 21.54 23.41
3 61.92 27.54 25.93 24.10 24.12 24.05
5 73.42 42.38 43.96 29.40 39.61 28.19

2 1 38.37 19.66 20.76 21.76 21.41 23.73
3 62.13 27.53 25.92 24.00 23.98 24.07
5 73.44 42.34 43.97 29.34 39.71 28.17

The simulation results for the case of large sample sizes are shown in Tabs. 5–7. Based on
Tab. 5, for n= 100, the PISTE and WLE with 90% and 70% ARE performed almost equally and
outperformed other estimators in the case of a small degree of contamination, where ε = 1%.
When the degree of contamination increased to moderate, which was ε = 5% the PITSE, WLE,
and M-scale estimator with 70% ARE produced much better performance than other estimators.
At a high degree of contamination where ε = 10%, the PITSE and M-scale estimator with 70%
ARE performed almost equally and outperformed other estimators. Although WLE is a robust
estimator, it performed substantially worse than the PITSE and the M-scale estimator in the case
of a high degree of contamination. The reason is that a large proportion of observations (outliers)
in the data set was not being considered, which reduced the sample size and, consequently causing
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the efficiency of the WLE to be decreased. As shown in Tabs. 5–7, when the sample size increases,
the performance of all estimators improves. However, similar to the case of small sample size, the
performance of MLE was also poor when outliers were present in the data set for the case of
large sample size. Thus, the use of the MLE for estimating the parameter γ should be avoided
since this estimator does not protect outliers even in the small degree of contamination.

Table 3: Results of RRMSE for estimation of parameter γ with n= 50 and k= 1, 3, 5

γ k RRMSE

MLE PITSE
90% ARE

WLE
90% ARE

PITSE
70% ARE

WLE
70% ARE

M-scale
70% ARE

0.5 1 29.73 14.98 15.26 15.93 15.69 17.69
3 51.20 18.50 17.30 16.95 16.34 17.86
5 63.23 27.52 27.05 20.80 23.69 20.09

1 1 29.72 15.21 15.46 16.25 15.97 18.03
3 51.16 18.64 17.29 16.98 16.38 18.23
5 63.32 27.61 27.23 21.02 23.97 20.21

1.5 1 29.51 15.11 15.36 16.21 15.81 17.82
3 51.23 18.71 17.43 17.05 16.46 18.12
5 63.30 27.72 27.26 21.05 23.95 20.28

2 1 29.92 15.11 15.26 15.90 15.67 17.84
3 50.97 18.63 17.20 16.90 16.30 18.05
5 63.28 27.01 26.95 20.90 23.60 20.14

Table 4: Results of RRMSE for estimation of parameter γ with n= 70 and k= 1, 3, 5

γ k RRMSE

MLE PITSE
90% ARE

WLE
90% ARE

PITSE
70% ARE

WLE
70% ARE

M-scale
70% ARE

0.5 1 24.49 12.60 12.62 13.26 12.92 14.92
3 43.73 14.67 13.75 13.93 13.24 15.14
5 55.72 20.86 19.27 16.83 17.07 16.53

1 1 24.20 12.74 12.79 13.42 13.12 15.02
3 43.69 14.49 13.69 13.90 13.23 15.11
5 55.88 20.82 19.31 16.64 16.97 16.30

1.5 1 24.39 12.83 12.84 13.48 13.21 15.21
3 43.72 14.63 13.90 14.02 13.41 15.33
5 55.72 20.85 19.21 16.80 17.07 16.50

2 1 24.47 12.85 12.86 13.51 13.18 15.20
3 43.71 14.67 13.83 14.00 13.35 15.28
5 55.88 20.96 19.45 16.76 17.23 16.49
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Table 5: Results of RRMSE for estimation of parameter γ with n= 100 and ε = 1%, 5%, 10%

γ ε(%) RRMSE

MLE PITSE
90% ARE

WLE
90% ARE

PITSE
70% ARE

WLE
70% ARE

M-scale
70% ARE

0.5 1 24.49 12.60 12.62 13.26 12.92 14.92
5 43.73 14.67 13.75 13.93 13.24 15.14
10 55.72 20.86 19.27 16.83 17.07 16.53

1 1 24.20 12.74 12.79 13.42 13.12 15.02
5 43.69 14.49 13.69 13.90 13.23 15.11
10 55.88 20.82 19.31 16.64 16.97 16.30

1.5 1 24.39 12.83 12.84 13.48 13.21 15.21
5 43.72 14.63 13.90 14.02 13.41 15.33
10 55.72 20.85 19.21 16.80 17.07 16.50

2 1 24.47 12.85 12.86 13.51 13.18 15.20
5 43.71 14.67 13.83 14.00 13.35 15.28
10 55.88 20.96 19.45 16.76 17.23 16.49

Table 6: Results of RRMSE for estimation of parameter γ with n= 300 and ε= 1%, 5%, 10%

γ ε(%) RRMSE

MLE PITSE
90% ARE

WLE
90% ARE

PITSE
70% ARE

WLE
70% ARE

M-scale
70% ARE

0.5 1 17.34 6.51 6.13 6.99 6.40 7.22
5 48.46 14.22 14.33 10.37 12.16 9.64
10 65.16 26.44 36.60 16.48 32.33 15.46

1 1 17.41 6.48 6.05 7.00 6.32 7.25
5 48.25 14.17 14.26 10.34 12.07 9.63
10 65.16 26.45 36.65 16.49 32.30 15.48

1.5 1 17.28 6.49 6.13 6.99 6.39 7.21
5 48.40 14.18 14.33 10.34 12.09 9.60
10 65.14 26.42 36.63 16.47 32.30 15.46

2 1 17.61 6.53 6.16 7.00 6.43 7.22
5 48.38 14.23 14.41 10.36 12.19 9.61
10 65.11 26.50 36.65 16.53 32.39 15.51

3.3 Guidelines for Selecting Suitable ARE of PITSE in Practical Application
In practice, the suitable ARE of PITSE can be selected based on sample size and number

or proportion of outliers. Based on a comprehensive simulation study, the guidelines for selecting
the suitable ARE of PITSE in practical application are provided in Tab. 8.

It should be noted that when there are a large number or proportion of outliers in a data set,
PITSE with ARE not less than 60% should be used to make sure that the PITSE has a reasonable
efficiency in estimating the rate parameter of exponential distribution.
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Table 7: Results of RRMSE for estimation of parameter γ with n= 500 and ε = 1%, 5%, 10%

γ ε(%) RRMSE

MLE PITSE
90% ARE

WLE
90% ARE

PITSE
70% ARE

WLE
70% ARE

M-scale
70% ARE

0.5 1 16.74 5.22 4.80 5.41 5.10 5.57
5 48.39 13.81 15.26 9.52 12.91 8.62
10 65.34 26.29 38.86 16.07 34.77 14.95

1 1 16.76 5.23 4.90 5.43 5.10 5.57
5 48.46 13.83 15.28 9.57 12.91 8.66
10 65.23 26.30 38.78 16.13 34.66 15.00

1.5 1 16.87 5.26 4.93 5.45 5.13 5.61
5 48.38 13.81 15.26 9.54 12.89 8.65
10 65.24 26.30 38.80 16.12 34.71 15.01

2 1 16.87 5.24 4.89 5.43 5.11 5.56
5 48.46 13.87 15.30 9.60 12.91 8.70
10 65.29 26.35 38.80 16.19 34.67 15.09

Table 8: Guidelines for selecting suitable ARE of PITSE in practical application

Sample size Number or proportion of outliers Suitable ARE

For both small and large sample sizes When there are no outliers in the data 98% ARE
Small sample size, n< 30 When the number of outliers k≤ 3 70%–90% AREs

When the number of outliers k≥ 4 ≥70% AREs
Small sample size, 30≤ n< 70 When the number of outliers k≤ 2 80%–90% AREs

When the number of outliers 3≤ k≤ 4 70%–80% AREs
When the number of outliers k≥ 5 ≥70% AREs

Large sample size, 70≤ n< 100 When the number of outliers k≤ 3 80%–90% AREs
When the number of outliers 4≤ k≤ 6 70%–80% AREs
When the number of outliers k≥ 7 ≥70% AREs

Large sample size, n≥ 100 When proportion of outliers ε ≤ 3% 80%–90% AREs
When proportion of outliers 3%<ε ≤ 7% 70%–80% AREs
When proportion of outliers ε > 7% ≥70% AREs

4 Application on Reliability Data Sets

In this section, three applications of exponential distribution are proposed using three real
data sets to compare the performance of MLE, PITSE, WLE, and M-scale estimator. This
comparative study considered several ARE levels for PITSE and WLE, while a fixed ARE level
of 70% was used for the M-scale estimator. The first data set (Set 1) was obtained from Linhart
et al. [37], which represents the failure times of the air-conditioning system of an airplane. The
second data set (Set 2) consisted of the reliability data of a 180-tonne rear dump truck obtained
from Badr et al. [38]. Lastly, the third data set (Set3) was obtained from Proschan [39] consisting
of the number of successive failures for the air conditioning system of each member in a fleet of
13 Boeing 720 jet airplanes. The pooled data, yielding a total of 213 observations, have also been
analyzed by other authors such as Kuş [40] and Tahmasbi et al. [8]. All the data sets used are
given in Appendix A.
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Figure 1: Generalized boxplot for data (a) Set 1, (b) Set 2 and (c) Set 3

Table 9: Descriptive statistics for data sets 1, 2 and 3

Data Sample size Mean Median Standard deviation Skewness Kurtosis No. of outliers
(proportion)

Set 1 30 59.60 22.00 71.88 1.61 1.64 3 (10.00%)
Set 2 126 1.73 0.70 2.65 2.65 7.22 3 (2.38%)
Set 3 213 93.14 57 106.76 2.10 4.85 4 (1.88%)

Table 10: Parameter estimates and goodness of fit of the exponential distributions of data sets 1,
2 and 3

Data Method Estimated parameter (γ̂ ) KS statistic p-value

Set 1 MLE 0.01678 0.2132 0.1309
PITSE (75% ARE) 0.02066 0.1551 0.4665
PITSE (70% ARE) 0.02127 0.1465 0.5405
WLE (75% ARE) 0.01899 0.1794 0.2889
WLE (70% ARE) 0.01899 0.1794 0.2889
M-scale (70% ARE) 0.02362 0.1464 0.5407

Set 2 MLE 0.57944 0.1949 0.0001
PITSE (85% ARE) 0.81268 0.1022 0.1440
PITSE (80% ARE) 0.85963 0.1091 0.0999
WLE (85% ARE) 0.77143 0.1115 0.0874
WLE (80% ARE) 0.77143 0.1115 0.0874
M-scale (70% ARE) 0.97727 0.1322 0.0244

Set 3 MLE 0.01074 0.0726 0.2113
PITSE (90% ARE) 0.01143 0.0522 0.6079
PITSE (85% ARE) 0.01163 0.0566 0.5035
WLE (90% ARE) 0.01074 0.0726 0.2113
WLE (85% ARE) 0.01074 0.0726 0.2113
M-scale (70% ARE) 0.01252 0.0746 0.1865

Note: The best method is written in bold.
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To identify the presence of outliers in all data sets, the generalized boxplot method [41],
which is suitable for skewed and/or heavy-tailed distributions, was utilized. According to Bruffaerts
et al. [41], this boxplot relies on a simple rank-preserving transformation that allows the data to
fit a Tukey g-and-h distribution. It was found that the generalized boxplot was robust against
outliers and has clear advantages over the standard boxplot particularly for the case of skewed
and/or heavy-tailed distributions. Fig. 1 shows the generalized boxplot for all considered data sets,
while Tab. 9 presents the descriptive statistics of these data sets.

Figure 2: Fitted exponential densities on the histograms of data (a) Set 1, (b) Set 2 and (c) Set 3
based on several different estimators

To compare the performance of all considered methods in estimating the parameter of
exponential distribution, the Kolmogorov–Smirnov (KS) tests were employed as a goodness-of-fit
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assessment. The best method was determined by choosing the smallest values of KS statistics as
well as the highest p-values of the KS test. Tab. 10 reports the estimated parameter and goodness-
of-fit of the exponential model for all data sets. For data Set 1, it can be observed that the
PITSE (70% ARE) and M-scale estimator (70% ARE) performed almost equally and provided a
better estimation of exponential parameter compared to other methods based on their smallest
KS statistic and highest p-value of the KS test. For data Set 2, the PITSE has outperformed
other methods in estimating the rate parameter. It can be also seen for data Set 2 that the MLE
and M-scale estimators failed to provide a good estimation of rate parameters based on the small
value of the KS test found for these two estimators. For data Set 3, the PITSE was found to be
the best method to estimate the rate parameter. Nevertheless, other methods were also found quite
reliable for estimating the rate parameter based on the reasonable p-value of KS test (p-value >
0.05). Fig. 2 demonstrates the fitted exponential density on the histogram of each data set based
on several different estimators.

Since the measures of reliability based on the exponential distribution depend on the param-
eter γ , it is crucial to employ the appropriate method for estimating parameter γ . Based on
the simulation study and its application to real data sets, it was demonstrated that the proposed
PITSE can represent a viable alternative for estimating the rate parameter of the exponential
distribution, particularly for the case when outliers are present in the data.

5 Conclusion and Discussion

In this study, a robust and efficient estimator for the parameter of exponential distribution
called PITSE has been introduced based on probability integral transform statistic. The asymptotic
variance, BP, and GES were derived to study the PITSE properties. The advantage of PITSE is
that it is conceptually simple and easy to compute. According to the simulation study, PITSE per-
formed better than MLE and was comparable with WLE and M-scale estimator when outliers are
present in the data set. However, in the case of a high degree of contamination, the performance
of WLE was worse than PITSE and M-scale estimator. On the other hand, the M-scale estimator
only has the maximum ARE of about 71%, which makes it unsuitable for estimating the param-
eter of exponential distribution in the case of a small degree of contamination. Therefore, the
PITSE introduced in this study was considered a viable alternative for estimating the parameter
of exponential distribution in the presence of outliers. Finally, the application on three real data
sets showed that the PITSE provided desirable protection against outliers. The R commands for
PITSE are available in Appendix B.

Although the PITSE proposed in this study was considered viable for estimating the expo-
nential parameter, there existed a limitation regarding the scope of the current work. It was
the reliability modeling under exponential model assumptions that was limited to certain cases
(constant failure rate) since the exponential distribution is a simple model consisting of one
parameter. There are two-parameter distributions such as Weibull that could provide a better fit
to the reliability data, hence providing a better reliability estimation. Therefore, for future work,
the robust and efficient estimator for the Weibull parameters can be developed based on the
probability integral transform statistical approach. From there, it is believed that a better reliability
estimation can be obtained particularly for the case when the outliers are present in the data set.
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Appendix A. Data Sets 1, 2 and 3

Set 1:

23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5, 12, 120, 11, 3, 14, 71, 11, 14, 11,
16, 90, 1, 16, 52, 95

Set 2:

0.01, 0.01, 0.01, 0.01, 0.01, 0.02, 0.02, 0.02, 0.02, 0.03, 0.04, 0.06, 0.08, 0.1, 0.1, 0.12, 0.12,
0.12, 0.13, 0.14, 0.15, 0.15, 0.15, 0.16, 0.16, 0.17, 0.18, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.25, 0.26,
0.28, 0.28, 0.3, 0.32, 0.34, 0.36, 0.38, 0.39, 0.41, 0.41, 0.42, 0.43, 0.44, 0.44, 0.45, 0.45, 0.5, 0.53,
0.56, 0.58, 0.58, 0.61, 0.62, 0.62, 0.62, 0.64, 0.66, 0.7, 0.7, 0.7, 0.72, 0.77, 0.78, 0.78, 0.8, 0.82,
0.83, 0.85, 0.86, 0.96, 0.97, 0.98, 0.99, 1.05, 1.06, 1.07, 1.18, 1.35, 1.36, 1.42, 1.55, 1.59, 1.65, 1.73,
1.77, 1.79, 1.8, 1.91, 2.09, 2.14, 2.15, 2.15, 2.31, 2.33, 2.36, 2.43, 2.45, 2.5, 2.51, 2.58, 2.64, 2.68,
3.08, 3.94, 4.12, 4.33, 4.42, 4.53, 4.88, 4.97, 5.11, 5.32, 5.55, 6.63, 6.89, 7.62, 11.41, 11.76, 11.85,
12.36, 13.22

Set 3:

194, 15, 41, 29, 33, 181, 413, 14, 58, 37, 100, 65, 9, 169, 447, 184, 36, 201, 118, 34, 31, 18,
18, 67, 57, 62, 7, 22, 34, 90, 10, 60, 186, 61, 49, 14, 24, 56, 20, 79, 84, 44, 59, 29, 118, 25, 156,
310, 76, 26, 44, 23, 62, 130, 208, 70, 101, 208, 74, 57, 48, 29, 502, 12, 70, 21, 29, 386, 59, 27,
153, 26, 326, 55, 320, 56, 104, 220, 239, 47, 246, 176, 182, 33, 15, 104, 35, 23, 261, 87, 7, 120,
14, 62, 47, 225, 71, 246, 21, 42, 20, 5, 12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 95, 97,
51, 11, 4, 141, 18, 142, 68, 77, 80, 1, 16, 106, 206, 82, 54, 31, 216, 46, 111, 39, 63, 18, 191, 18,
163, 24, 50, 44, 102, 72, 22, 39, 3, 15, 197, 188, 79, 88, 46, 5, 5, 36, 22, 139, 210, 97, 30, 23, 13,
14, 359, 9, 12, 270, 603, 3, 104, 2, 438, 50, 254, 5, 283, 35, 12, 130, 493, 100, 7, 98, 5, 85, 91, 43,
230, 3, 130, 230, 66, 61, 34, 487, 18, 14, 57, 54, 32, 67, 59, 134, 152, 27, 14, 102, 209

Appendix B. R Commands for PITSE

### PITSE for the rate parameter ###

f<-function(data,l,k){

n<-length(data)

fx<-(sum(exp(− l * k * data))/n) − (1/(k + 1))

return(fx)

}

#solve using secant method

# k – tuning parameter

# l1 – 1st initial value; l2 − 2nd initial value

pitse<-function(data,k, l1, l2, num = 1000, eps = 1e-05, eps1 = 1e-05)

{

i = 0

while ((abs(l1 - l2) > eps) && (i < num)) {

c = l2 − f(data,l2,k) * (l2 − l1)/(f(data,l2,k) − f(data,l1,k))

l1 = l2
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l2 = c

i = i + 1

}

rate<-l2

return(rate)

}


