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Abstract: In this research article, we construct a family of derivative free
simultaneous numerical schemes to approximate all real zero of non-linear
polynomial equation. We make a comparative analysis of the newly con-
structed numerical schemes with a well-known existing simultaneous method
for determining all the distinct real zeros of polynomial equations using com-
puter algebra system Mat Lab. Lower bound of convergence of simultaneous
schemes is calculated using Mathematica. Global convergence property of
the numerical schemes is presented by taking random starting initial approx-
imation and their convergence history are graphically presented. Some real
life engineering applications along with some higher degree polynomials are
considered as numerical test problems to show performance and efficiency of
the derivative free family of numericalmethodswith comparison of an existing
method of sameorder in literature. Local computational order of convergence,
CPU time, graph of computational order of convergence and residual error
graphs elaborate efficiency, robustness and authentication of the suggested
family of numerical methods in its domain.

Keywords: Polynomials; simultaneous iterative methods; random initial
guesses; lower bound; local computational order; CAS-mathematica and
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1 Introduction

One of the most primal problem of science and engineering is locating the zeros of
polynomial of degree k with arbitrary real coefficient.

f (x)=
k∑
i=1

aixi, ak �= 0. (1)

Let ξ1, . . . , ξk denote all the simple zeros of Eq. (1). According to Abel’s impossibility theo-
rem [1] “There is no solution in radical to general polynomial with arbitrary co-efficient of degree
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five or higher” we therefore look toward numerical schemes to approximate zeros of polynomial
Eq. (1).

There exist a lot of numerical schemes in literature which approximate single zeros at a time
(see, e.g., [2–4]). Here, we consider the following family of numerical schemes [5]:

x(n+1) = y(n) − f (x(n))

f ′(x(n))

(
(f (x(n)))2f (y(n))+ 2f (x(n))f (y(n))+β(f (y(n)))3

(f (x(n)))3

)
, (2)

where y(n) = x(n) − f (x(n))

f ′(x(n))
and β ∈R.

The numerical scheme Eq. (2) approximate single zero of Eq. (1) at a time.

Beside these single roots finding methods, mathematicians and engineers are interested in
simultaneous numerical schemes which approximate all roots simultaneously. More detail on
simultaneous methods, their global convergence and parallel implementation on computer algebra
system (CAS) and stability are found in [6,7] and reference cite there in [8–14].

Therefore, the main aim of this research article is to construct a derivative free numerical
scheme which approximates all real zero of Eq. (1). Using CAS-Mathematica, we find the lower
bound of convergence to verify convergence order theoretically. Computational order of con-
vergence [15] and convergence history for random initial approximations are graphed to show
the efficiency and performance of numerical schemes as compared to other existing methods of
same order. Log of residual graph, graphs of computational order of convergence and local
computational order of convergence [16] support the global convergence behavior of our newly
constructed numerical scheme for estimating all real zeros of Eq. (1).

2 Construction of Numerical Scheme

Corresponding to numerical schemes

y(n) = x(n) − f (x(n))

f ′(x(n))
, (3)

for approximating all zeros of Eq. (1), the numerical method is

x(n+1)
i = x(n)

i − f (x(n)
i )∏k

j �= i
j= 1

(x(n)
i −x(n)

j )
. (i= 1, . . . , k) (4)

This numerical method is well known Weierstrass method [17] for approximating all zeros
of polynomial Eq. (1) having local quadratic convergence. Using in analogical way as above, we
convert Eq. (2) into simultaneous method as:

x(n+1)
i = y(n)

i − f (x(n)
i )∏k

j �= i
j= 1

(x(n)
i −x(n)

j )

(
(f (x(n)

i ))2f (y(n)
i )+ 2f (x(n)

i )f (y(n)
i )+β(f (y(n)

i ))3

(f (x(n)
i ))3

)
, (5)
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where y(n)
i = x(n)

i − f (x(n)
i )∏k

j �= i
j= 1

(x(n)
i −x(n)

j )
and β ∈R. Thus, we have constructed here, a new derivative

free family of numerical schemes (abbreviated as MD).

Nedzhibov et al. [18] in 2005, present the following cubic convergence derivative free family
of simultaneous numerical schemes (abbreviated as ND) as:

x(n+1)
i = x(n)

i − f (x(n)
i )∏k

j �= i
j= 1

(x(n)
i −x(n)

j )

(
1+ f (y(n)

i )

f (x(n)
i )− 2βf (y(n)

i )

)
. (6)

2.1 Convergence Analysis
Here, we prove the convergence order of the suggested derivative free family of numerical

schemes.

Theorem: Let algebraic polynomial Eq. (1) has k number of simple zeros ξ1, . . . , ξk and for suffi-

ciently close initial guesses x(0)
1 , . . . , x(0)

k of the zeros, then for arbitrary real parameter β ,the numerical
scheme MD has third order convergence.

Proof: let ∈i= x(n)
i − ξi, ∈′

i= y(n)
i − ξi, ∈′′

i = x(n+1)
i − ξi be the errors in x(n)

i , y(n)
i ,x(n+1)

i
respectively and

−Di =
k∏

j �= i
j= 1

(
x(n)
i − ζj

x(n)
i −x(n)

j

)
. (7)

Iterative schemes Eq. (5) can be written as:

x(n+1)
i = y(n)

i −wi(x
(n)
i )(Ģi+ 2Ģ2

i +βĢ3
i ), (8)

where Ģi =
f (y(n)

i )

f (x(n)
i )

and wi(x
(n)
i )= f (x(n)

i )∏k
j �= i
j= 1

(x(n)
i −x(n)

j )
.

If we express Eq. (1) as f (x(n)
i )= (x(n)

1 − ξ1) . . . (x(n)
k − ξk)=∈i

∏k
j �= i
j= 1

(x(n)
i − ξj), then we have:

f (y(n)
i )= (y(n)

1 − ξ1) . . . (y(n)
i − ξi). (9)
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Substitution in Eq. (5), we have:

f (y(n)
i )=

k∏
j=1

(x(n)
i −wi(x

(n)
i − ξj)= (ξi−wi(x

(n)
i ))

k∏
j �= i
j= 1

(x(n)
i −wi(x

(n)
i )− ξj)

=∈i(1−−Di)

k∏
j �= i
j= 1

(x(n)
i −wi(x

(n)
i )− ξj).

Then, for Ģi, we have:

Ģ i =

∈i(1−−Di)
∏k
j �= i
j= 1

(x(n)
i −wi(x

(n)
i )− ξj)

∈i
∏k
j �= i
j= 1

(x(n)
i −wi(x

(n)
i )− ξj)

= (1−−Di)Ri, (10)

where Ri =
x(n)
i −wi(x

(n)
i )− ξj

x(n)
i −wi(x

(n)
i )− ξj

. Thus, Eq. (5) become:

∈′′
i =∈′

i −∈i−Di(Ģ i+ 2Ģ 2
i +βĢ 3

i ) (11)

∈′′
i =∈i−∈i−Di−∈i−Di(Ģ i+ 2Ģ 2

i +βĢ 3
i ),

=∈i(1−−Di) ((1−−DiRi)− 2−Di(1−−Di)R2
i −β(1−−Di)

2R3
i ).

The following relation holds true:

k∏
j �= i
j= 1

(x(n)
i − ζj)

(x(n)
i −xj)

− 1=
k∑
t�=i

εt

x(n)
i −x(n)

t

t−1∏
j �=i

(x(n)
i − ζt)

(x(n)
i −x(n)

j )
. (12)

If we assume that, absolute values of all errors are of the same order, say |εi| = |εj| =O(|ε|),
then

−Di− 1=
k∑
t�=i

εt

x(n)
i −x(n)

t

t−1∏
j �=i

(x(n)
i − ζt)

(x(n)
i −x(n)

j )
=O(|ε|) (13)
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holds. Using −DiRi =
∏k
j �= i
j= 1

(
x(n)
i −wi(x

(n)
i )ξj

x(n)
i −x(n)

j

)
, we have:

−DiRi− 1=
k∑
t�=i

x(n)
t −wi(x

(n)
i )− ξt

x(n)
i −x(n)

t

t−1∏
j �=i

x(n)
i −wi(x

(n)
i )− ξt

(x(n)
i −x(n)

j )
,

=
k∑
t�=i

∈t−∈i−Di

x(n)
i −x(n)

t

t−1∏
j �=i

x(n)
i −wi(x

(n)
i )− ξt

(x(n)
i −x(n)

j )
=O(| ∈ |).

Thus,

∈′′
i =∈i

k∑
t�=i

∈t
x(n)
i −xt

t−1∏
j �=i

(x(n)
i − ζt)

(x(n)
i −x(n)

j )
(O(| ∈ |)+ 2O(| ∈ |2)Ri+O(| ∈ |2)R3

i β)=O(∈3). (14)

Hence, the theorem is proved.

2.2 Using CAS-Mathematica for Finding Lower Bound of Convergence
Consider

f (x)= (x−ϕ1)(x−ϕ2)(x−ϕ3) (15)

and the first component H(x(n)) of iterative scheme Eq. (5) to find zeros of Eq. (15), simulta-
neously. In order to find lower bound of convergence, we have to express the differential of an
operator H(x(n)) in terms of their partial derivate of its component as Hi(x):

∂H1(x)

∂x1

∂H1(x)

∂x2

∂H1(x)

∂x3

∂2H1(x)

∂x21

∂2H1(x)

∂x1∂x2

∂2H1(x)

∂x22

∂2H1(x)

∂x2∂x3

∂3H1(x)

∂x31

∂3H1(x)

∂x21∂x2

∂3H1(x)

∂x1∂x22

∂3H1(x)

∂x32

∂3H1(x)

∂x22∂x3

...
...

...
...

... · · ·
and to so on.

The lower bound of the convergence is obtained until the first non-zero element of row is
found zero (see [19]). The Mathematica program is given for each of the considered method as:
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• MD method

H1(x1, x2, x3) :=

(x)2
∏n
j �= i
j= 1

(xi−xj)

x
∏n
j �= i
j= 1

(xi−xj)+ f (x)
,

In[1] :=D[H1[x1, x2, x3], x1]/.{x1 → ϕ1, x2 → ϕ2, x3 → ϕ3}
Out[1] := 0

In[2] :=D[H1[x1, x2, x3], x2]/.{x1 → ϕ1, x2 → ϕ2, x3 → ϕ3}]
Out[2] := 0

In[2] :=D[H1[x1, x2, x3], x2]/.{x1 → ϕ1, x2 → ϕ2, x3 → ϕ3}]
Out[2] := 0

In[34] := Simplify[D[H1[x1, x2, x3], x1, x1, x1, x2]/.{x1 → ϕ1, x2 → ϕ2, x3 → ϕ3}]

Out[34] := 6(−1+ϕ3)

ϕ2
1ϕ

3
3

.

• ND method

H1(x1, x2, x3) := x− f (x)∏n
j= 1
j �= i

(xi−xj)

(
1+ f (y)

f (x)− 2βf (y)

)
,

where y= x− f (x)∏n

j= 1
j �= i

(xi−xj) and β ∈R.

In[1] :=D[H1[x1, x2, x3], x1]/.{x1 → ϕ1, x2 → ϕ2, x3 → ϕ3}]
Out[1] := 0

...

In[39] := Simplify[D[H1[r1, r2, r3], r1, r3, r1, r2]/.{x1 → ϕ1, x2 → ϕ2, x3 → ϕ3}]

Out[39]:=−6(2− 2ϕ3)

ϕ1ϕ3
2

3 Numerical Results

Here, some numerical examples from [20,21] are considered with and without random initial
approximation to estimate all real zeros of polynomial equation of higher degree. All the compu-
tations are performed using Mat Lab R@2011 with 64 digits floating point arithmetic. We take
∈= 10−30 as tolerance and use the following stopping criteria

ei = |x(n+1)
i −x(n)

i |<∈,
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where ei represents the absolute error. We compare our iterative schemes MD with ND of the
same convergence order. In all numerical calculations, we take β = 2.

Example 1: Consider a stirred tank reactor (SCRT) in which two items A and R are feed in
reactor at Q and q-Q rate respectively. A complex reaction

a+ r→ b; b+ r→ c; c+ r→ r; c+ r→ e, develops the following function

hc
2.98(x+ 2.25)

(x+ 1.45)(x+ 2.85)2(x+ 4.35)
= 1. (16)

We obtained an algebraic polynomial equation of degree 4 by taking �c = 0 in Eq. (16)

f1(x)= x4+ 11.5x3+ 47.49x2+ 83.06325x+ 51.32366875= 0

with exact roots:

ζ1 =−1.45, ζ2 =−2.85, ζ3 =−2.85, ζ4 =−4.45

Convergence history and computational order of convergence graph (Figs. 1, 4, 7 and 10) of
numerical schemes ND, MD are obtained by taking the following random initial guessed valued
in our computer program i.e.,

X1 = [0.032601; 0.5612; 0.88187; 0.66918],

where X1 = [x(0)
i , i = 1, . . . , 4]. Using random initial guessed value X1, the iterative scheme MD

converges to exact zeros after 100 iteration by consuming 16.848368 s CPU time while ND
converges after 155 iterations and consumes 37.249147 s.

Figure 1: Shows convergence history of numerical scheme MD for polynomial equation f1(x)

Convergence rates increase by taking the following initial guessed value:

x1(0) =−1.0, x2(0) =−1.1, x(0)
3 =−2.2, x(0)

4 =−3.9.
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Figure 2: Shows convergence history of numerical scheme MD for polynomial equation f2(x)

Figure 3: Shows convergence history of numerical scheme MD for polynomial equation f3(x)

The numerical results are presented in Tabs. 1–6. In all Tabs. 1–6, CO presents convergence
order, CPU, presents CPU time and local computational order of convergence (LCOC) by σ .

Example 2: Consider

f2(x)= x5 − 3x4− 23x3 + 51x2+ 94x− 120 (17)

with exact roots:

ζ1 = 1, ζ2 =−2, ζ3 = 3, ζ4 =−4, ζ5 = 5.
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Figure 4: Shows convergence history of numerical scheme ND for polynomial equation f1(x)

Figure 5: Shows convergence history of numerical scheme ND for polynomial equation f2(x)

For convergence history and computational order of convergence graph (Figs. 2, 5, 8 and 11)
of numerical schemes ND, MD, we used the following initial guessed valued in our computer
program i.e.,

X2 = [0.81472; 0.90579; 0.12699; 0.91338; 0.63236]

where X2 = [x(0)
i , i = 1, . . . , 5]. Using random initial guessed values X2, the iterative scheme

MD converges to exact zeros after 92 iteration by consuming 27.056098 s CPU time while ND
converges after 98 iterations and consumes 31.444833 s.
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Figure 6: Shows convergence history of numerical scheme ND for polynomial equation f3(x)

Figure 7: Shows computational order of convergence of numerical scheme MD for polynomial
equation f1(x)

Convergence rates increase by taking the following initial guessed value:

x1(0) = 0.9, x2(0) =−1.9, x(0)
3 = 2.9, x(0)

4 =−3.9, x(0)
5 = 4.9

Example 3: Consider

f3(x)= x7 − 27x6+ 282x5− 1410x4+ 3249x3− 1923x2− 3532x+ 3360 (18)

with exact roots:

ζ1 =−1, ζ2 = 1, ζ3 = 3, ζ4 = 4, ζ5 = 7, ζ6 = 5, ζ7 = 8.
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Figure 8: Shows computational order of convergence of numerical scheme MD for polynomial
equation f2(x)

Figure 9: Shows computational order of convergence of numerical scheme MD for polynomial
equation f3(x)

For convergence history and computational order of convergence graph (Figs. 3, 6, 9 and 12)
of numerical schemes ND, MD are obtained by taking the following initial guessed valued in our
computer program i.e.,

X3 = [0.77029; 0.35022; 0.66201; 0.41616; 0.84193; 0.83193; 0.83292; 0.25644],

where X3 = [x(0)
i , i = 1, . . . , 7]. Using random initial guessed value X3, the iterative scheme MD

converges to exact zero after 19 iterations by consuming 13.7714 s CPU time while ND converges
after 23 iterations and consumes 18.120062 s.
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Figure 10: Shows computational order of convergence of numerical scheme ND for polynomial
equation f1(x)

Table 1: Simultaneous determination of all zeros of polynomial f1(x)

x1(0) =−1.0, x2(0) =−1.1, x(0)
3 =−2.2, x(0)

4 =−3.9

Method CO PU e(7)1 e(7)2 e(7)3 e(7)4

ND 3 0.047 8.3e-18 1.8e-17 1.3e-5 1.9e-5
MD 3 0.032 2.5 e-6 2.6e-6 3.0e-32 1.5e-28

Table 2: Local computational order of convergence for polynomial f1(x)

x1(0) =−1.0, x2(0) =−1.1, x(0)
3 =−2.2, x(0)

4 =−3.9

Method PU σ
(6)
1 σ

(6)
2 σ

(6)
3 σ

(6)
4

ND 0.047 3.12 2.93 2.53 2.14
MD 0.032 2.94 2.98 3.01 3.15

Table 3: Simultaneous determination of all zeros of polynomial f2(x)

x1(0) = 0.9, x2(0) =−1.9, x(0)
3 = 2.9, x(0)

4 =−3.9, x(0)
5 = 4.9

Method CO PU e(3)1 e(3)2 e(3)3 e(3)4 e(3)5

ND 3 0.057 9.0e-22 1.4e-21 5.4e-24 1.0e-24 1.8e-22
MD 3 0.035 3.1 e-26 3.1e-26 2.0e-29 1.2e-31 2.3e-26
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Table 4: Local computational order of convergence for polynomial f2(x)

x1(0) = 0.9, x2(0) =−1.9, x(0)
3 = 2.9, x(0)

4 =−3.9, x(0)
5 = 4.9

Method PU σ
(2)
1 σ

(2)
2 σ

(2)
3 σ

(2)
4 σ

(2)
5

ND 0.057 2.81 2.41 2.71 2.64 1.95
MD 0.035 2.95 3.15 2.69 3.24 3.06

Table 5: Simultaneous determination of all zeros of polynomial f3(x)

x1(0) =−0.9, x2(0) = 0.9, x(0)
3 = 2.5, x(0)

4 = 3.9, x(0)
5 = 6.9, x(0)

6 = 4.5, x(0)
7 = 7.9

Method CO PU e(5)1 e(5)2 e(5)3 e(5)4 e(5)5 e(5)5 e(5)5

ND 3 0.761 1.9e-34 6.3e-34 1.2e-33 5.4e-32 4.7e-29 2.2e-31 1.5e-28
MD 3 0.407 0.0 0.0 3.2e-61 0.0 0.0 2.8e-61 0.0

Table 6: Local computational order of convergence for polynomial f3(x)

x1(0) =−0.9, x2(0) = 0.9, x(0)
3 = 2.5, x(0)

4 = 3.9, x(0)
5 = 6.9, x(0)

6 = 4.5, x(0)
7 = 7.9

Method PU σ
(4)
1 σ

(4)
2 σ

(4)
3 σ

(4)
4 σ

(4)
5 σ

(4)
5 σ

(4)
5

ND 0.761 2.91 3.02 3.11 2.67 2.74 2.91 2.85
MD 0.407 3.01 3.21 3.45 2.97 3.00 3.18 3.42

Figure 11: Shows computational order of convergence of numerical scheme ND for polynomial
equation f2(x)
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Figure 12: Shows computational order of convergence of numerical scheme ND for polynomial
equation f3(x)

Figure 13: Shows residual fall for iterative method MD and ND for polynomial f1(x) respectively

Convergence rates increase by taking the following initial guessed value:

x1(0) =−0.9, x2(0) = 0.9, x(0)
3 = 2.5, x(0)

4 = 3.9, x(0)
5 = 6.9, x(0)

6 = 4.5, x(0)
7 = 7.9.
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Figure 14: Shows residual fall for iterative method MD and ND for polynomial f2(x) respectively

Figure 15: Shows residual fall for iterative method MD and ND for polynomial f3(x) respectively

4 Conclusions

Here, we have developed a family of derivative free method for approximating all real zeros
of polynomial. Lower bound of convergence of iterative methods MD and ND are calculated
using CAS-Mathematica. Using Mat Lab, we graph convergence history and computational order
of convergence. From Tabs. 1–6 and Figs. 1–15, we observe that our method MD is much better
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in terms of convergence history, computational order of convergence, numerical results, log of
residual and local computational order of convergence as compared to ND method.
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