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Abstract: Since the end of 2019, the world has suffered from a pandemic of the
disease calledCOVID-19.WHOreports showapproximately 113Mconfirmed
cases of infection and 2.5 M deaths. All nations are affected by this nightmare
that continues to spread. Widespread fear of this pandemic arose not only
from the speed of its transmission: a rapidly changing “normal life” became
a fear for everyone. Studies have mainly focused on the spread of the virus,
which showed a relative decrease in high temperature, low humidity, and other
environmental conditions. Therefore, this study targets the effect of weather
in considering the spread of the novel coronavirus SARS-CoV-2 for some
confirmed cases in Iraq. The eigenspace decomposition technique was used to
analyze the effect of weather conditions on the spread of the disease. Our theo-
retical findings showed that the average number of confirmed COVID-19 cases
has cyclic trends related to temperature, humidity, wind speed, and pressure.
We supposed that the dynamic spread of COVID-19 exists at a temperature
of 130 F. The minimum transmission is at 120 F, while steady behavior occurs
at 160 F. On the other hand, during the spread of COVID-19, an increase in
the rate of infection was seen at 125% humidity, where the minimum spread
was achieved at 200%. Furthermore, wind speed showed the most significant
effect on the spread of the virus. The spread decreases with a wind speed of 45
KPH, while an increase in the infectious spread appears at 50 KPH.

Keywords: Novel coronavirus; weather effects; eigenspace decomposition;
COVID-19

1 Introduction

On December 31, 2019, WHO announced a coronavirus seen in Wuhan City, Hubei Province,
China. It was not considered unsafe at that time since all coronaviruses showed a mild effect on
the human body. However, the increase and spread of death rates in Wuhan allowed people to
understand that this virus showed different human body symptoms. The virus was later named
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COVID-19 by WHO, and finally, in March 2020, the same organization changed the status of the
novel coronavirus COVID-19 to a pandemic. Nations have taken strict safety measures to reduce
the effects of the spread. Civilians started to change their daily lives, such as maintaining safe
distances, online work, and wearing masks. This virus has attracted many researchers worldwide
to investigate its nature and treatments for the COVID-19 virus. It was found that the most
dangerous effect of COVID-19 is its presence without symptoms at the initial stages and after
that the long period of isolation [1].

In one study [2], the authors compared two groups of subjects, one group affected by
COVID-19 and the second group by SARS-CoV-2. Fever and cough were more severe in the
COVID-19 group than in the SARS-CoV-2 group. Procalcitonin (PCT) in the SARS-CoV-2 group
was higher than that in the COVID-19 group. Moreover, in the COVID-19 group, a lower
creatinine level was reported than in the SARS- CoV-2 group. The diagnoses of the two diseases
were based on fever, cough, urea and creatinine and blood pathology in young age groups. The
authors of [3] concluded that COVID-19, SARS, and MERS have the same pathological features.

Ai et al. [4] studied chest CT and reverse transcription chain RTC reactions while diagnosing
the COVID-19 virus in 1014 patients in China, and the authors concluded that CT was highly
sensitive for diagnosing the virus. Chen et al. [5] studied nine pregnant women who were positive
for COVID-19 and concluded that fever and cough were the main symptoms of the disease.
Furthermore, WHO reported effects on mental wellbeing, anxiety, depression, and fear [6].

Chloroquine phosphate, a medicine to cure malaria, was effectively used in China to treat
COVID-19 [7]. In [8], the authors proposed a treatment approach adopted to treat COVID-19
depending on continuous surveillance and proper quarantine. In [9], RNA from COVID-19 sur-
vivors and non survivors were collected to identify the factors associated with COVID-19 death
with a multivariable logistic regression model.

Mathematics has successfully addressed the dynamics of epidemics and pandemics worldwide.
These models are based on the techniques of predictive control, estimation, optimal control,
correlation, and regression. Lee et al. [10] asserted that treatment and isolation substantially reduce
the chance of transfusion in infectious diseases, e.g., influenza. Hansen et al. [11] investigated
three models based on optimal control for isolation, vaccination, and mixed models for the SIR
epidemic. In [12], the authors investigated control strategies to control Haiti’s cholera epidemic.
The Dengue vaccine was used as a control variable to reduce the causes of the diseases [13].
Different disease dynamics of the tuberculosis epidemic were studied in [14].

Moreover, Moualeu et al. [15] modeled a mathematical technique for diagnosing tuberculosis.
Pang et al. [16] formulated an optimal control strategy to estimate the transmission of measles
in the United States (1951–19620). Studies [17,18] have investigated the spread of Ebola in West
Africa. Gao et al. [19] chalked out a strategy to minimize the burden of disease from tuberculosis
and the intervention cost.

Recently, several researchers have studied COVID-19 in different ways [20–31]. Considering
some of these studies, it was shown in [20] that eigenspace decomposition forecasts any future
trend of physical phenomena. A system of fractional differential equations of the coronavirus
was solved in [21]. The authors of [22] studied the spread of COVID-19 as a three-compartment
model. These authors studied the impact of immigration on the infectious class. In [23], the impact
of quarantine and isolation was studied concerning the spread of COVID-19. The possibility of
infection spread was studied with the help of the fractional derivative mathematical model and
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was then solved using Newton’s method [24]. In [25], the authors analyzed the spread of infection
from seafood to bats, bats to unknown hosts, and finally to humans.

In [32], the authors solved the Caputo derivative model of COVID-19 transmission by consid-
ering the model’s stability under specific conditions. In another study, the coronavirus infectious
model was solved using the Adomian decomposition method and natural transform method [33],
while in [34], the authors focused on a fractional derivative model of infection spread. This
mathematical model of the COVID-19 unreported cases was previously studied in [35]. Similarly,
Gao et al. [36] worked on the transmission model of novel coronavirus infection from bats to
humans. The authors of [37] studied the SIR epidemic infectious model with Bernstein wavelet
transforms.

Considering the works mentioned above and taking into account the effect of weather in
nature, we proposed a study to analyze the weather effect on the spread of COVID-19. An
eigenspace decomposition technique is developed to determine the exact dynamics of COVID-19
concerning different weather conditions. These conditions are taken as temperature, humidity,
wind, and pressure. Thus, we perform the research problem statement: “How can eigenspace
decomposition be used to address the dynamics of COVID-19 spread concerning weather condi-
tions?” The research has to address the following research objectives:

• to address the dynamics of COVID-19 with the help of eigenspace decomposition;
• to implement the eigenspace decomposition technique on the transition matrix of tempera-
ture and COVID-19 confirmed cases; and

• to implement the eigenspace decomposition technique on the transition matrix of humidity,
moreover, for confirmed COVID-19 cases;

• to implement the eigenspace decomposition technique on the transition matrix of wind
speed and COVID-19 confirmed cases;

• to implement the eigenspace decomposition technique on the transition matrix of pressure,
moreover, COVID-19 confirmed cases;

• to identify the temperature at which COVID-19 confirmed cases are at a minimum level;
• to identify the humidity level at which COVID-19 confirmed cases have a minimum level;
• to identify the wind speed at which COVID-19 confirmed cases are at a minimum level;
and

• to identify the pressure at which COVID-19 confirmed cases are minimal.

The original contributions of this manuscript are listed below.

(1) The study of the long-run disease dynamics of COVID-19 concerning changes in the tem-
perature level. In other words, how do the changes in temperature levels affect coronavirus
infection spread?

(2) The study of the long-run disease dynamics of COVID-19 concerning changes in the level
of humidity. How do changes in humidity levels affect coronavirus infection spread?

(3) The study of the long-run disease dynamics of COVID-19 concerning changes in wind
speed. How do changes in wind speeds affect the spread of COVID-19?

(4) The study of the long-run disease dynamics of COVID-19 concerning changes in the atmo-
spheric pressure level. How do changes in atmospheric pressure levels affect coronavirus
infection spread?

This research is organized as follows.
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After the introduction, the eigenspace decomposition technique is presented in Section 2. This
discussion is followed by Section 3 in which the eigenspace decomposition technique is imple-
mented on the transition matrix of temperature and COVID-19 confirmed cases. In Section 4, the
eigenspace decomposition technique is implemented on the transition matrix of the humidity level
in the air and COVID-19 confirmed cases. In Section 5, the eigenspace decomposition technique
is implemented on the transition matrix of wind speed in the air and COVID-19 confirmed
cases. Moreover, the eigenspace decomposition technique is implemented on the transition matrix
of pressure and COVID-19 confirmed cases in Section 6. The obtained results are discussed in
Section 7, and, finally, the research is concluded in Section 8.

2 Markov Chains and Eigenspace Decomposition

The Markov chain process can be defined as a process where the future state can be predicted
based on its current state. A transition probability matrix is an n× n two-dimensional array of
elements with n rows and n columns denoted as T = [

tij
]
, 1≤ i≤ n, 1≤ j ≤ n. The column matrix

“u” given in Eq. (1) is called the probability vector:

u=

⎡
⎢⎢⎢⎢⎢⎣

u1

u2
...

un

⎤
⎥⎥⎥⎥⎥⎦
, 1≤ i≤ n. (1)

The transition matrix is used to determine the system states at future times. Let x(k) denote
the state vector at any time “k” defined as Eq. (2), where x(0) is the initial state. Then,

x(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

p(k)
1

p(k)
2

...

p(k)
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, 0≤ k (2)

Theorem 1 is used to identify the future state vector of Markov’s process. A transition matrix
is a square matrix giving the information about the change independent variable from the present
state to the next state concerning a change in the system’s independent variable. The transition
matrix helps to know the future trend and to predict the future state of a physical phenomenon.

Theorem 1: Let “T” be the transition matrix of a Markov chain. The future state x(k+1) can
be determined from the state’s knowledge x(k), such as

x(k+1) =Tx(k). (3)

Proof: From Eq. (3), we can write Eq. (4).

x(1) =Tx(0), (4)

x(2) =Tx(1). (5)
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Substitute Eq. (4) into Eq. (5), and we have

x(2) =Tx(1) =TT (x)0 =T2 (x)0 , (6)

x(3) =Tx(2) =TT2 (x)0 =T3 (x)0 . (7)

Continuing in the same manner, we get Eq. (8), which completes the proof;

x(n) =Tnx(0). (8)

Definition 1: For a transition matrix “T”, as n→∞, Tn approaches a matrix Eq. (9), with all

A=

⎡
⎢⎢⎢⎢⎢⎣

u1 u1 . . . u1

u2 u2 . . . u2
...

...

un un un

⎤
⎥⎥⎥⎥⎥⎦
. (9)

Theorem 2: Let “T” be the transition matrix, where “A” and “u” satisfy the definition of
Eq. (1). Then, the following holds.

(a) For a probability matrix, “x”, Tnx→ u as n→ ∞, where “u”, is called the steady-state
vector.

(b) The steady-state vector “u” uniquely satisfies Tu= u.

Proof:

a) Let us consider the probability matrix Eq. (10):

x=

⎡
⎢⎢⎢⎢⎢⎣

x1

x2
...

xn

⎤
⎥⎥⎥⎥⎥⎦
. (10)

From the definition in Eq. (1), it is clear that for n → ∞, we have Tn → A. This implies
Tnx→Ax. Considering both Eqs. (9) and (10), we have Eq. (11);

Ax=

⎡
⎢⎢⎢⎢⎢⎣

u1 u1 . . . u1

u2 u2 . . . u2
...

...

un un un

⎤
⎥⎥⎥⎥⎥⎦
.

⎡
⎢⎢⎢⎢⎢⎣

x1

x2
...

xn

⎤
⎥⎥⎥⎥⎥⎦

(11)

Ax=

⎡
⎢⎢⎢⎢⎢⎣

u1x1+ u1x2 + . . .+ u1xn

u2x1+ u2x2 + . . .+ u2xn
...

...
...

unx1+ unx2 + . . .+ unxn

⎤
⎥⎥⎥⎥⎥⎦
. (12)
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Since we have (x1+x2 + . . .+xn)= 1, it can be seen that Eq. (12) becomes Eq. (13);

Ax=

⎡
⎢⎢⎢⎢⎢⎣

u1 (x1 +x2 + . . .+xn)

u2 (x1 +x2 + . . .+xn)

...
...

...

un (x1 +x2 + . . .+xn)

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

u1

u2
...

un

⎤
⎥⎥⎥⎥⎥⎦
. (13)

This proves the fact that Tnx→ u.

b) From Tn→A as n→∞, we have Tn+1 →A. In addition, one can write Tn+1 =TnT . This
means Tn+1 →A, and hence TA=A. In other words Tu= u.

Moreover, we need to show that “u” is unique. Thus, let “v” be another probability matrix
such that Tv= v. From part (a) of this theorem, Tnv→ u. This means that Tv= v implies Tnv=
u, ∀n. Hence, we obtained u= v.

Given that T = [
tij

]
1 ≤ i ≤ n, 1 ≤ j ≤ n is the transition matrix of a Markov chain, and for

the variables “x” as n→∞, we have Tnx→ u, where u is the steady-state vector.

The steady-state vector is the vector satisfying Eq. (14), while Eq. (17) forms the eigenspace;

Tu= u, (14)

Tu= Inu, (15)

Inu−Tu= 0, (16)

(In−T)u= 0. (17)

3 Implementation of the Eigenspace Decomposition on the Transition Matrix of Temperature and
Confirmed COVID-19 Cases in Iraq

This section is dedicated to determining the weather effects on the COVID-19 dynamics in
Iraq. The transition matrix provides information about the change from the present state to the
next stage in the future. It is used to predict the future trend of a physical phenomenon. The
eigenspace decomposition of the transition matrix of temperature provides information about the
change in the spread of COVID-19 in considering changes in the future temperature level. It is
used to predict the long-run trend of the COVID-19 infection spread when changes are made in
the temperature level in a specific geographical area.

In the present study, the eigenspace decomposition on the temperature transition matrix shows
information about the long-run future trend of COVID-19 infection with a change in Iraq’s
temperature level. The weather and disease confirmed cases are based on [21–23] and shown in
Tab. 1.
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Table 1: Weather data and average confirmed cases of COVID-19 in Iraq

Temperature
(F)

Average
confirmed
cases

Humidity
%

Average
confirmed
cases

Wind
speed
(KPH)

Average
confirmed
cases

Pressure
(mbar)

Average
confirmed
cases

91–100 55 56–75 50 21–25 40 5026–5035 55
101–110 23 76–100 51 26–30 52 5036–5045 79
111–120 31 101–125 60 31–35 54 5046–5055 57
121–130 53 126–150 56 36–40 41 5056–5065 50
131–140 51 151–175 67 41–45 59 5066–5075 38
141–150 58 176–200 48 46–50 61 5076–5085 60
151–160 62 201–225 28 51–55 53
161–170 64 226–250 22 56–60 34
171–180 50 251–275 12

In Tab. 1, the transition probability matrix for the temperature is formulated as shown in
Eq. (18);

Tt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

State 100 110 120 130 140 150 160 170 180

100 0.000 −3.167 −1.200 −0.070 −0.107 0.053 0.652 0.464 −0.036

110 3.167 0.000 0.767 2.958 1.370 1.143 1.143 0.803 0.444

120 1.200 −0.767 0.000 2.191 0.986 0.888 0.787 0.650 0.317

130 0.070 −2.958 −2.191 0.000 −0.218 0.236 0.318 0.265 −0.058

140 0.107 −1.370 −0.986 0.218 0.000 0.690 0.587 0.426 −0.018

150 −0.053 −1.143 −0.888 −0.236 −0.690 0.000 0.484 0.294 −0.254

160 −0.652 −0.978 −0.787 −0.318 −0.587 −0.484 0.000 0.104 −0.623

170 −0.464 −0.803 −0.650 −0.265 −0.426 −0.294 −0.104 0.000 −1.350

180 0.036 −0.444 −0.317 0.058 0.018 0.254 0.623 1.350 0.000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

For eigenspace decomposition of COVID-19 concerning the temperature, the model is con-
structed as Eq. (19);

(In−Tt)u= 0. (19)



3054 CMC, 2021, vol.69, no.3

Thus,
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.000 −3.167 −1.200 −0.070 −0.107 0.053 0.652 0.464 −0.036

3.167 0.000 0.767 2.958 1.370 1.143 1.143 0.803 0.444

1.200 −0.767 0.000 2.191 0.986 0.888 0.787 0.650 0.317

0.070 −2.958 −2.191 0.000 −0.218 0.236 0.318 0.265 −0.058

0.107 −1.370 −0.986 0.218 0.000 0.690 0.587 0.426 −0.018

−0.053 −1.143 −0.888 −0.236 −0.690 0.000 0.484 0.294 −0.254

−0.652 −0.978 −0.787 −0.318 −0.587 −0.484 0.000 0.104 −0.623

−0.464 −0.803 −0.650 −0.265 −0.426 −0.294 −0.104 0.000 −1.350

0.036 −0.444 −0.317 0.058 0.018 0.254 0.623 1.350 0.000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
u2
u3
u4
u5
u6
u7
u8
u9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3.167 1.200 0.070 0.107 −0.053 −0.652 −0.464 0.036

−3.167 1 −0.767 −2.958 −1.370 −1.143 −1.143 −0.803 −0.444

−1.200 0.767 1 −2.191 −0.986 −0.888 −0.787 −0.650 −0.317

−0.070 2.958 2.191 1 0.218 −0.236 −0.318 −0.265 0.058

−0.107 1.370 0.986 −0.218 1 −0.690 −0.587 −0.426 0.018

0.053 1.143 0.888 0.236 0.690 1 −0.484 −0.294 0.254

0.652 0.978 0.787 0.318 0.587 0.484 1 −0.104 0.623

0.464 0.803 0.650 0.265 0.426 0.294 0.104 1 1.350

−0.036 0.444 0.317 −0.058 −0.018 −0.254 −0.623 −1.350 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
u2
u3
u4
u5
u6
u7
u8
u9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

This is a homogenous system with infinitely many solutions. Using Microsoft Excel software,
we obtain the solution as u1 = −0.2256, u2 = −0.3496, u3 = 0.2541, u4 = −1.2075, u5 = 0.8819,
u6 = 0.7144, u7 = 0.8755, u8 = 2.798, and u9 =−0.3646.
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4 Implementation of the Proposed Eigenspace Decomposition on the Transition Matrix of Humidity
and COVID-19 Confirmed Cases in Iraq

The transition matrix based on Tab. 1 is constructed as shown in Eq. (22);

Th =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

State 75 100 125 150 175 200 225 250 275

75 0.000 0.030 0.208 0.084 0.170 −0.013 −0.147 −0.160 −0.190

100 −0.030 0.000 0.386 0.111 0.217 −0.024 −0.182 −0.192 −0.221

125 −0.208 −0.386 0.000 −0.164 0.132 −0.161 −0.324 −0.307 −0.323

150 −0.084 −0.111 0.164 0.000 0.428 −0.159 −0.377 −0.343 −0.354

175 −0.170 −0.217 −0.132 −0.428 0.000 −0.745 −0.780 −0.600 −0.550

200 0.013 0.024 0.161 0.159 0.745 0.000 −0.815 −0.527 −0.485

225 0.147 0.182 0.324 0.377 0.780 0.815 0.000 −0.240 −0.320

250 0.160 0.192 0.307 0.343 0.600 0.527 0.240 0.000 −0.400

275 0.190 0.221 0.323 0.354 0.550 0.485 0.320 0.400 0.000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(22)

The eigenspace of the matrix Eq. (22) is formulated as Eq. (23).

(In−Th)u=0 (23)
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.000 0.030 0.208 0.084 0.170 −0.013 −0.147 −0.160 −0.190

−0.030 0.000 0.386 0.111 0.217 −0.024 −0.182 −0.192 −0.221

−0.208 −0.386 0.000 −0.164 0.132 −0.161 −0.324 −0.307 −0.323

−0.084 −0.111 0.164 0.000 0.428 −0.159 −0.377 −0.343 −0.354

−0.170 −0.217 −0.132 −0.428 0.000 −0.745 −0.780 −0.600 −0.550

0.013 0.024 0.161 0.159 0.745 0.000 −0.815 −0.527 −0.485

0.147 0.182 0.324 0.377 0.780 0.815 0.000 −0.240 −0.320

0.160 0.192 0.307 0.343 0.600 0.527 0.240 0.000 −0.400

0.190 0.221 0.323 0.354 0.550 0.485 0.320 0.400 0.000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
u2
u3
u4
u5
u6
u7
u8
u9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)
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Finally, from simplifications, we get Eq. (25);

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −0.030 −0.208 −0.084 −0.170 0.013 0.147 0.160 0.190

0.030 1 −0.386 −0.111 −0.217 0.024 0.182 0.192 0.221

0.208 0.386 1 0.164 −0.132 0.161 0.324 0.307 0.323

0.084 0.111 −0.164 1 −0.428 0.159 0.377 0.343 0.354

0.170 0.217 0.132 0.428 1 0.745 0.780 0.600 0.550

−0.013 −0.024 −0.161 −0.159 −0.745 1 0.815 0.527 0.485

−0.147 −0.182 −0.324 −0.377 −0.780 −0.815 1 0.240 0.320

−0.160 −0.192 −0.307 −0.343 −0.600 −0.527 −0.240 1 0.400

−0.190 −0.221 −0.323 −0.354 −0.550 −0.485 −0.320 −0.400 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
u2
u3
u4
u5
u6
u7
u8
u9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(25)

The homogenous system Eq. (25) has infinitely many solutions. The Microsoft Excel solution
of the system gives u1 = −1.3388, u2 = −0.8187, u3 = 1.3506, u4 = −0.5861, u5 = 0.2064, u6 =
−0.1283, u7 =−2.3931, u8 =−4.9108, and u9 = 0.1039.

5 Implementation of the Proposed Eigenspace Decomposition on the Transition Matrix of Wind Speed
and COVID-19 Confirmed Cases in Iraq

Using Tab. 1 and based on [31,38–40], we construct the transition matrix of the COVID-19
cases concerning the wind speed as shown in Eq. (26).

Tw =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

State 25 30 35 40 45 50 55 60

25 0.000 2.400 1.367 0.036 0.958 0.851 0.446 −0.177

30 −2.400 0.000 0.333 −1.145 0.477 0.464 0.055 −0.607

35 −1.367 −0.333 0.000 −2.624 0.549 0.508 −0.015 −0.795

40 −0.036 1.145 2.624 0.000 3.722 2.074 0.855 −0.337

45 −0.958 −0.477 −0.549 −3.722 0.000 0.426 −0.578 −1.690

50 −0.851 −0.464 −0.508 −2.074 −0.426 0.000 −1.582 −2.749

55 −0.446 −0.055 0.015 −0.855 0.578 1.582 0.000 −3.915

60 0.177 0.607 0.795 0.337 1.690 2.749 3.915 0.000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(26)

The eigenspace decomposition is presented in Eq. (27);

(In−Tw)u=0 (27)
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.000 2.400 1.367 0.036 0.958 0.851 0.446 −0.177

−2.400 0.000 0.333 −1.145 0.477 0.464 0.055 −0.607

−1.367 −0.333 0.000 −2.624 0.549 0.508 −0.015 −0.795

−0.036 1.145 2.624 0.000 3.722 2.074 0.855 −0.337

−0.958 −0.477 −0.549 −3.722 0.000 0.426 −0.578 −1.690

−0.851 −0.464 −0.508 −2.074 −0.426 0.000 −1.582 −2.749

−0.446 −0.055 0.015 −0.855 0.578 1.582 0.000 −3.915

0.177 0.607 0.795 0.337 1.690 2.749 3.915 0.000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
u2
u3
u4
u5
u6
u7
u8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(28)

Computations give Eq. (29) such as
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2.400 −1.367 −0.036 −0.958 −0.851 −0.446 0.177

2.400 1 −0.333 1.145 −0.477 −0.464 −0.055 0.607

1.367 0.333 1 2.624 −0.549 −0.508 0.015 0.795

0.036 −1.145 −2.624 1 −3.722 −2.074 −0.855 0.337

0.958 0.477 0.549 3.722 1 −0.426 0.578 1.690

0.851 0.464 0.508 2.074 0.426 1 1.582 2.749

0.446 0.055 −0.015 0.855 −0.578 −1.582 1 3.915

−0.177 −0.607 −0.795 −0.337 −1.690 −2.749 −3.915 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
u2
u3
u4
u5
u6
u7
u8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(29)

The Microsoft Excel software solution (29) yields u1 = 2.5387, u2 = −0.2497, u3 = −0.208,
u4 = 0.01448, u5 =−0.8526, u6 = 1.846, u7 =−4.5585, and u8 = 0.5075.
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6 Implementation of the Proposed Eigenspace on the Transition Matrix of Pressure and Confirmed
Cases of COVID-19 in Iraq

The data shown in Tab. 1 are used to construct the transition matrix Eq. (30).

Tp=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

State 5035 5045 5055 5065 5075 5085

5035 0.000 2.350 0.123 −0.158 −0.436 0.090

5045 −2.350 0.000 −2.104 −1.413 −1.364 −0.475

5055 −0.123 2.104 0.000 −0.721 −0.995 0.068

5065 0.158 1.413 0.721 0.000 −1.268 0.463

5075 0.436 1.364 0.995 1.268 0.000 2.193

5085 −0.090 0.475 −0.068 −0.463 −2.193 0.000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(30)

The eigenspace is presented as Eq. (31);
(
In−Tp

)
u= 0 (31)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.000 2.350 0.123 −0.158 −0.436 0.090

−2.350 0.000 −2.104 −1.413 −1.364 −0.475

−0.123 2.104 0.000 −0.721 −0.995 0.068

0.158 1.413 0.721 0.000 −1.268 0.463

0.436 1.364 0.995 1.268 0.000 2.193

−0.090 0.475 −0.068 −0.463 −2.193 0.000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
u2
u3
u4
u5
u6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(32)

After the simplification, we get Eq. (33).
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2.350 −0.123 0.158 0.436 −0.090

2.350 1 2.104 1.413 1.364 0.475

0.123 −2.104 1 0.721 0.995 −0.068

−0.158 −1.413 −0.721 1 1.268 −0.463

−0.436 −1.364 −0.995 −1.268 1 −2.193

0.090 −0.475 0.068 0.463 2.193 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
u2
u3
u4
u5
u6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(33)

Solving with the Microsoft Excel software helps us obtain the solution as u1 = 0.07709, u2 =
0.04081, u3 =−0.1649, u4 =−0.7841, u5 = 0.8975, and u6 =−0.9336.

7 Results and Discussion

This section is dedicated to analyzing the results obtained from model Eqs. (21), (25), (29),
and (33). The calculation results are shown in Tab. 2 and Figs. 1–4. The intensive analysis showed
that COVID-19 has a cyclic attitude concerning temperature, humidity, wind speed, and pressure.

The dynamics of COVID-19 decrease at 130 F and show a minimum of approximately
120 F; after that, steady behavior is detected at approximately 160 F. It peaks at 170 F and then
decreases; for details, see Fig. 1 and Tab. 2.
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Table 2: Confirmed average COVID-19 cases concerning temperature, humidity, wind speed, and
pressure

Average
temperature

Percent
change in
COVID-19
cases

Average
percent
humidity

Percent
change in
COVID-19
cases

Wind
Speed
KPH

Percent
change in
COVID-19
cases

Pressure
mbar

Percent
change in
COVID-19
cases

100 −0.2256 75 −1.3388 25 2.5387 5035 0.077099
110 −0.3496 100 −0.8187 30 0.2497 5045 0.040818
120 0.2541 125 1.3506 35 −0.208 5055 −0.1649
130 −1.2075 150 −0.5861 40 0.01448 5065 −0.78416
140 0.8819 175 0.2064 45 −0.85262 5075 0.89757
150 0.7144 200 −0.1283 50 1.846 5080 0.93363
160 0.8755 225 −2.3931 55 −4.5585
170 2.798 250 −4.9108 60 0.5075
180 −0.3646 275 0.1039
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Figure 1: Percent change in COVID-19 cases concerning temperature

COVID-19 disease dynamics concerning humidity show cyclic behavior. The percent change
in COVID-19 cases increases until a 125% humid climate. The cases then go until the bottom
level is achieved under a 200% humid climate. The disease has slightly stable dynamics from 150%
to 200% humidity as shown in Fig. 2 and Tab. 2.
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Figure 2: Percent change in COVID-19 cases concerning humidity

The most promising results of the disease are recorded concerning changes in wind speed.
COVID-19 disease dynamics concerning wind speed show a decreasing trend until 45 KPH. The
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percent change in COVID-19 cases then increases to 50 KPH. The cases then go on to spread
disease concerning wind speed until the bottom level is achieved at 55 KPH. This situation is
shown in Fig. 3 and Tab. 2.
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Figure 3: Percent change in COVID-19 cases concerning wind speed

The COVID-19 results for pressure show a stable trend until 5055 mbar pressure. The percent
number of COVID-19 cases then decreases, touching a bottom level at 5065 mbar. Beyond this
level, the percent change in COVID-19 confirmed cases for pressure increases, as shown in Fig. 4
and Tab. 2.
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Figure 4: Percent change in COVID-19 cases concerning pressure

The spread of COVID-19 infection was reported to be lower in Iraq than in many Gulf
countries, especially Iran and Saudi Arabia. We assume that this finding was due to the serious,
strict measures taken by the government of Iraq. Some of the facts are as following:

1. The ban on international travel and immigrants.

2. The postponement of the religious gatherings.

3. Iraq imposed better quarantine and isolation and separation facilities on suspected and
confirmed COVID-19 patients.

8 Conclusion

In this research, the weather effects on confirmed COVID-19 cases are studied. First, the
eigenspace of the average numbers of COVID-19 cases concerning temperature, humidity, wind
speed, and pressure are formulated and then solved. The transition matrix of change in COVID-19
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concerning temperature is formulated. The eigenspace decomposition of COVID-19 infections
concerning the change in the temperature is evaluated using the transition matrix that gives
the long-run disease dynamics of temperature changes. This task is followed by formulating the
transition matrix of the change in COVID-19 to the humidity level. The eigenspace decomposition
of the change in COVID-19 infection to change in the humidity level is evaluated to give the
long-run disease dynamics as a change in humidity level.

Furthermore, the transition matrix of change in COVID-19 concerning the wind speed is
formulated. After formulation of the transition matrix, the eigenspace decomposition of COVID-
19 infection to change in the wind speed is evaluated. Finally, the transition matrix of change
in COVID-19 to pressure is formulated; its eigenspace decomposition is evaluated, giving the
long-run disease dynamics as a change in atmospheric pressure.

Analysis of the results showed that the average numbers of confirmed COVID-19 cases have
cyclic trends in temperature, humidity, wind speed, and atmospheric pressure. The results are
visualized in the figures to show the change in the dynamics of COVID-19.

The analysis of our findings showed that the dynamic behavior of COVID-19 decreases at a
temperature of 130 F. The minimum point of the spread occurred at 120 F, while a steady trend
was reported at 160 F. The spread of the virus showed a peak when it reached 170 F. Moreover,
considering the humidity figures, we noticed that COVID-19 infections increased until a 125%
humid climate. The cases then decreased to a minimum point under a 200% humid climate, while
slightly stable dynamics were seen at 150% to 200% humidity. A comprehensive analysis of the
figures and results concerning the behavioral dynamics of COVID-19 regarding the wind speed
shows a decreasing trend until 45 KPH. The change in COVID-19 cases then increases to 50 KPH.
After that, the spread decreases to a bottom level at 55 KPH. In the end, the visual and analytical
results concerning changes in COVID-19 show a stable trend in atmospheric pressure until 5055
mbar. The number of COVID-19 cases then decreases when this pressure reaches 5065 mbar.

Acknowledgement: This research was funded by the Deanship of Scientific Research at Princess
Nourah Bint Abdulrahman University through the Fast-track Research Funding Program.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
[1] Z. Wang, J. Wang and J. He, “Active and effective measures for the care of patients with cancer during

the COVID-19 spread in China,” JAMA Oncology, vol. 6, no. 5, pp. 631–632, 2017.
[2] H. Chen, J. Guo, C. Wang, F. Luo, X. Yu et al., “Clinical characteristics and intrauterine vertical

transmission potential of COVID-19 infection in nine pregnant women: A retrospective review of
medical records,” The Lancet, vol. 395, no. 2020, pp. 809–815, 2020.

[3] Z. Xu, L. Shi, Y. Wang, J. Zhang, L. Huang et al., “Pathological findings of COVID-19 associated
with acute respiratory distress syndrome,” The Lancet Respiratory Medicine, vol. 8, no. 4, pp. 420–422,
2020.

[4] T. Ai, Z. Yang, H. Hou, C. Zhan, C. Chen et al., “Correlation of chest CT and RT-PCR testing
coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases,” Radiology, vol. 296, no. 2,
pp. 32–40, 2020.



3062 CMC, 2021, vol.69, no.3

[5] X. Chen, Y. Yang, M. Huang and Y. Wan, “Differences between COVID-19 and suspected then
confirmed SARS-CoV-2-negative pneumonia: A retrospective study from a single-center,” Journal of
Medical Virology, vol. 92, no. 9, pp. 1572–1579, 2002.

[6] WHO, Coronavirus Disease 2019 (COVID-19): Situation Report-69. Geneva, Switzerland: World Health
Organization, 2020.

[7] J. Gao, Z. Tian and X. Yang, “Breakthrough: Chloroquine phosphate has shown apparent efficacy in
the treatment of COVID-19 associated pneumonia in clinical studies,” Bioscience Trends, vol. 14, no.
1, pp. 72–73, 2020.

[8] M. Lipsitch, D. L. Swerdlow and L. Finelli, “Defining the epidemiology of Covid-19 studies needed,”
New England Journal of Medicine, vol. 382, no. 2020, pp. 1194–1196, 2020.

[9] F. Zhou, T. Yu, R. Du, G. Fan, Y. Liu et al., “Clinical course and risk factors for mortality of adult
inpatients with COVID-19 in Wuhan, China: A retrospective cohort study,” The Lancet, vol. 395, no.
10229, pp. 1054–1062, 2020.

[10] S. Lee, G. Chowell and C. Castillo-Chávez, “Optimal control for pandemic influenza: The role of
limited antiviral treatment and isolation,” Journal of Theoretical Biology, vol. 265, no. 2, pp. 136–150,
2010.

[11] E. Hansen and T. Day, “Optimal control of epidemics with limited resources,” Journal of Mathematical
Biology, vol. 62, no. 3, pp. 423–451, 2011.

[12] A. R. Tuite, J. Tien, M. Eisenberg, D. J. D. Earn, J. Ma et al., “Cholera epidemic in Haiti-2010: Using a
transmission model to explain the spatial spread of disease and identify optimal control interventions,”
Annals of Internal Medicine, vol. 154, no. 9, pp. 593–601, 2011.

[13] H. S. Rodrigues, M. T. Monteiro and D. F. Torres, “Vaccination models and optimal control strategies
to dengue,” Mathematical Biosciences, vol. 247, no. 2014, pp. 1–12, 2014.

[14] P. Rodrigues, C. J. Silva and D. F. Torres, “Cost-effectiveness analysis of optimal control measures for
tuberculosis,” Bulletin of Mathematical Biology, vol. 76, no. 10, pp. 2627–2645, 2014.

[15] D. P. Moualeu, M. Weiser, R. Ehrig and P. Deuflhard, “Optimal control for a tuberculosis model with
undetected cases in Cameroon,” Communications in Nonlinear Science and Numerical Simulation, vol. 20,
no. 3, pp. 986–1003, 2015.

[16] L. L. Pang, S. Ruan, S. Liu, Z. Zhao and X. Zhang, “Transmission dynamics and optimal control of
measles epidemics,” Applied Mathematics and Computation, vol. 256, no. 2015, pp. 131–147, 2015.

[17] A. Rachah and D. F. Torres, “Mathematical modeling, simulation, and optimal control of the 2014
ebola outbreak in West Africa,” Discrete Dynamics in Nature and Society, vol. 2015, no. 842792, pp.
1–10, 2015.

[18] A. Rachah and D. F. Torres, “Dynamics and optimal control of Ebola transmission,” Mathematics in
Computer Sciences, vol. 10, no. 3, pp. 331–342, 2016.

[19] D. P. Gao and N. J. Huang, “Optimal control analysis of a tuberculosis model,” Applied Mathematical
Modeling, vol. 58, no. 2017, pp. 47–64, 2017.

[20] B. Kolman and D. R. Hill, Introductory Linear Algebra with Applications, 7th ed., Singapore: Pearson
Education Inc, 2003.

[21] M. S. Abdo, K. S. Hanan, A. W. Satish and K. Pancha, “On a comprehensive model of the novel
coronavirus (COVID-19) Mittag–Leffler derivative,” Chaos, Solitons & Fractals, vol. 135, no. 109867, pp.
1–14, 2020.

[22] R. U. Din, K. Shah, I. Ahmad and T. Abdeljawad, “Study of transmission dynamics of novel COVID-
19 by using mathematical model,” Advances in Difference Equations, vol. 2020, no. 323, pp. 1–13, 2020.

[23] A. Zeb, E. Alzahrani, V. S. Erturk and G. Zaman, “Mathematical model for coronavirus disease 2019
(COVID-19) containing isolation class,” BioMed Research International, vol. 2020, no. 3452402, pp. 1–7,
2020.

[24] Z. Zhang, “A novel covid-19 mathematical model with fractional derivatives: Singular and non-singular
kernels,” Chaos, Solitons & Fractals, vol. 139, no. 110060, pp. 1–11, 2020.



CMC, 2021, vol.69, no.3 3063

[25] M. A. Khan and A. Atangana, “Modeling the dynamics of novel coronavirus (2019-nCov) with
fractional derivative,” Alexandria Engineering Journal, vol. 2, no. 33, pp. 1–11, 2020.

[26] K. Shah, T. Abdeljawad, I. Mahariq and F. Jerad, “Quantitative analysis of a mathematical model in
the time of COVID-19,” BioMed Research International, vol. 2020, no. 5098598, pp. 1–11, 2020.

[27] M. S. Abdo, K. Shah, H. A. Wahash and S. K. Panchal, “On a comprehensive model of the novel
coronavirus (COVID-19) under Mittag–Leffler derivative,” Chaos, Soliton and Fractals, vol. 135, no.
109867, pp. 1–14, 2020.

[28] M. Yousef, S. Zamir, M. Riaz, S. M. Hussain and K. Shah, “Statistical analysis of forecasting COVID-
19 for upcoming month in Pakistan,” Chaos, Soliton and Fractals, vol. 138, no. 109926, pp. 1–14, 2020.

[29] S. Ahmad, A. Ullah, Q. M. Al-Mdallah, H. Khan, K. Shah et al., “Fractional order mathematical
modeling of COVID-19 transmission,” Chaos, Soliton and Fractals, vol. 139, no. 110256, pp. 1–5, 2020.

[30] R. U. Din, K. Shah, I. Ahmad and T. Abdeljawad, “Study of transmission dynamics of novel COVID-
19 by using mathematical model,” Advances in Difference Eqations, vol. 2020, no. 323, pp. 1–13, 2020.

[31] M. Arfan, K. Shah, T. Abdeljawad, N. Mlaiki and A. Ullah, “A Caputo power law model predicting
the spread of the COVID-19 outbreak in Pakistan,” Alexandria Engineering Journal, vol. 60, no. 1, pp.
447–456, 2021.

[32] D. Baleanu, H. Muhammadi and S. Rezapour, “A fractional differential equation model for the
COVID-19 transmission by using the Caputo–Fabrizio derivative,” Advances in Difference Equations, vol.
2020, pp. 299, 2020.

[33] W. Gao, P. Veeresha, D. G. Prakasha and H. M. Baskonus, “Novel dynamical structures of 2019-nCoV
with nonlocal operator via powerful computational technique,” Biology, vol. 9, no. 5, pp. 107, 2020.

[34] D. Baleanu, H. Muhammadi and S. Rezapour, “Analysis of the model of HIV-1 infection of CD4+
T-cell with a new approach of fractional derivative,” Advances in Difference Equations, vol. 2020, no.
71, pp. 327, 2020.

[35] W. Gao, P. Veeresha, H. M. Baskonus, D. G. Prakasha and P. Kumar, “A New Study of unreported
Cases of 2019-nCOV epidemic outbreaks,” Chaos, Solitons and Fractals, vol. 138, no. 554, pp. 109929,
2020.

[36] W. Gao, H. M. Baskonus and L. Shi, “New investigation of Bats–Hosts reservoir-people coronavirus
model and apply to 2019-nCoV system,” Advances in Difference Equations, vol. 2020, no. 1, pp. 391,
2020.

[37] S. Kumar, A. Ahmadian, R. Kumar, D. Kumar, J. Singh et al., “An efficient numerical method for
fractional SIR epidemic model of infectious disease by using Bernstein wavelets,” Mathematics, vol. 8,
no. 4, pp. 558, 2020.

[38] Time and Date, “Past weather in Baghdad-April 2020,” 2020. [Online]. Available: https://www.timeand-
date.com/weather/iraq/baghdad/historic?month= 4&year= 2020.

[39] The World Health Organization, WHOHandsOver EssentialHealth Commodities to theMinistry of Health
to Contain COVID-19 in Iraq. New York, United States: OCHA Services, 2020.

[40] Worldometers, COVID-19 pandemic in Iraq-April. Geneva, Switzerland: The World Health Organization,
2020.

https://www.timeanddate.com/weather/iraq/baghdad/historic?month$=4$&year$=2020$
https://www.timeanddate.com/weather/iraq/baghdad/historic?month$=4$&year$=2020$

