
echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2021.018159

Article

Monarch Butterfly Optimization for Reliable Scheduling in Cloud

B. Gomathi1, S. T. Suganthi2,*, Karthikeyan Krishnasamy3 and J. Bhuvana4

1Department of Information Technology, Hindusthan College of Engineering and Technology, Coimbatore, 641032, India
2Department of Computer Networking, Lebanese French University, Erbil, 44001, Iraq

3Department of Information Technology, Coimbatore Institute of Technology, Coimbatore, 641014, India
4Department of MCA, School of Computer Science and IT, Jain (Deemed to be) University, Bangalore, 560069, India

*Corresponding Author: S. T. Suganthi. Email: suganthi@lfu.edu.krd
Received: 27 February 2021; Accepted: 03 May 2021

Abstract: Enterprises have extensively taken on cloud computing environ-
ment since it provides on-demand virtualized cloud application resources. The
scheduling of the cloud tasks is a well-recognized NP-hard problem. The Task
scheduling problem is convoluted while convincing different objectives, which
are dispute in nature. In this paper, Multi-Objective Improved Monarch But-
terfly Optimization (MOIMBO) algorithm is applied to solve multi-objective
task scheduling problems in the cloud in preparation for Pareto optimal solu-
tions. Three different dispute objectives, such as makespan, reliability, and
resource utilization, are deliberated for task scheduling problems.The Epsilon-
fuzzy dominance sort method is utilized in the multi-objective domain to
elect the foremost solutions from the Pareto optimal solution set. MOIMBO,
together with the Self Adaptive and Greedy Strategies, have been incorpo-
rated to enrich the performance of the proposed algorithm. The capability
and effectiveness of the proposed algorithm are measured with NSGA-II
and MOPSO algorithms. The simulation results prompt that the proposed
MOIMBO algorithm extensively diminishes the makespan, maximize the reli-
ability, and guarantees the appropriate resource utilizationwhen associating it
with identified existing algorithms.

Keywords: Improved monarch butterfly optimization; cloud computing;
makespan; reliability; fuzzy dominance; task scheduling

1 Introduction

Cloud Environment is an internet-based service that provides virtual resources to users based
on their demand [1]. An efficient task scheduling technique must utilize an upgraded resource
utilization in the cloud data center to dispatch the application tasks to cost-effective virtual
resources,. The simultaneous provision of heterogeneous resources to the cloud data center causes
a task scheduling problem and makes it an NP-hard problem. Many heuristics algorithms in
past research have proposed to resolve this problem to improve the service quality in the cloud
environment. Improved Genetic Algorithm [2] is a suggested algorithm for task scheduling in
the cloud environment and it is considered to reduce the makespan and upgrade the resource

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2021.018159

3694 CMC, 2021, vol.69, no.3

utilization. Priority-based self-adaptive learning Particle Swarm Optimization(PSO) [3] is adopted
to schedule the tasks in a cloud environment. This process is done by elastically choosing velocity
updating techniques, guaranteeing the QoS at the user level and enhancing the trustworthiness
and economic benefit of the cloud provider. To provide an uninterrupted cloud service, cloud data
centers host hundreds of thousands of commodity servers. There is a probability of hardware
failure that will affect the enactment of the cloud environment. Nowadays, hardware failure needs
to be focused on when processing takes place in the cloud data center. In preparation for sinking
the impact of cloud system failures, an Optimal MOIMBO task scheduling algorithm is used to
put forward the back-and-forth approach to exploit the reliability and reduce the makespan.

Based on previous works [4], the classical optimization methods has been utilized to pool
multi-objectives into a particular objective which produced only one solution at a time. The
classical method has proved to be successful when run several times, which takes more significant
execution time leading to optimal solutions during each execution. To overcome these problems,
the Epsilon-fuzzy dominance-based Multi-Objective Improved Monarch Butterfly Optimization
(MOIMBO) algorithm is recommended to resolve the multiple objectives task scheduling problem
in the cloud environment. The suggested algorithm is utilized to consider different contradictory
objectives like makespan, reliability, and consumption of cloud resources and provide faster
convergence towards the Pareto front in a short duration while preserving reasonable diversity
solutions to produce better efficiency. The Cloudsim toolkit simulates the task scheduling problem
in the data center and castoff to compare the prominence connection with the proposed approach
along with the well-known task scheduling algorithms like NSGA-II [5], MOPSO [6] in the cloud
environment.

The following details are given in the rest of the paper. Section 2 contains the related work
of the task scheduling problem. The problem formulation is specified in Section 3. The following
section presents a multi-objective optimization approach. Section 5 gives the information about
the Epsilon-fuzzy dominance-based Multi-Objective Improved Monarch Butterfly Optimization
algorithm. Section 6 mentioned the usage of the simulation environment and the performance
evaluation of the proposed approach. Finally, the last section contributes to the conclusion.

2 Related Work

Nowadays, researchers are focused on generating robust schedules to handle multi-objective
under-task scheduling problems. When task scheduling problems are solved, scheduling criteria
such as makespan, reliability, execution cost, etc., are considered. Authors in [7] put forward to
design reliability-based scheduling architecture using reliability ware scheduling algorithm. Depen-
dency between precedence constrained tasks was designed using a directed acyclic graph and
duplicated to achieve high quality of reliability on a heterogeneous distributed system. However,
scheduling length is not considered. Reference [8] handled precedence constrained tasks in a
heterogeneous computing system while considered reliability and energy constraint simultaneously.
That algorithm is comprised of three phases such as building a topological order among appli-
cation tasks, picking out energy-efficient frequency to complete each task, and mapping tasks
with a suitable processor to maximize system reliability with minimum energy consumption.
Reference [9] anticipated a fault tolerance flexible scheduling technique in the data center. The
backup model was utilized for fault tolerance purposes and an adaptable resource allocation
technique to improve the resource application. However, the fault tolerance mechanism fails to
take scheduling length into account.

CMC, 2021, vol.69, no.3 3695

In [10], the author proposed different scaling techniques to enhance the reliability of heteroge-
neous distributed embedded systems along with energy and response time criteria in the Automatic
Cyber-Physical Systems. Simultaneously, the pessimistic energy pre-allocation method was used to
decrease the reply time of function during energy constraint time. A Failure-aware VM consolida-
tion mechanism [11] was proposed for VM considering failure and physical machines’ hazard rates.
It helped to avoid more failures and recreation of VMs by allocating VMs on reliable physical
machines, thus improving energy efficiency. The failure prediction technique helped to trigger the
fault tolerance mechanism with less computation time. However, it failed to consider the presence
of correlation failures.

In [12], they were presented to solve reliability redundancy allocation. This multi-objective
algorithm was aimed to maximize system reliability while minimizing the system cost simultane-
ously. The Continuous-time Markov Chain Model has been applied to compute the precise value
of reliability in a standby system. Refrence [13] presented fault-tolerant scheduling algorithms
that also considered energy efficiency for real-time applications in a 5G cloud-based network.
The proactive strategy was adopted to upturn the processing capability. The Rearrange technique
improved Resource usage. While reducing energy consumption, the primary backup model was
used to handle fault tolerance in the cloud environment. Reference [14] proposed optimal commu-
nication path search algorithm and reliability-driven lookahead scheduling maximizes performance
and reliability by considering communication and processor failure in heterogeneous distributed
systems. Iterative duplication strategy utilized for reliability improvement.

The non-DVFS and DVFS [15] methods have been proposed to improve reliability and energy
efficiency under embedded systems with heterogeneous nature. When assigning tasks for execution,
tasks’ reliability goal determined choosing a processor with opted energy efficiency. Here, the
applications’ reliability goal was transformed into each task later assigned to the processor that
gratifies energy efficiency and reliability [16]. put forward a reliability-conscious resource allocation
technique in fog based cloud environment. Fog integrated resource allocation mechanism mapped
industry applications with VMs by considering replication of VM and reliability threshold. To
generate an optimal solution, an exhaustive search algorithm was proposed for the VM placement
problem.

In literature, there are references of numerous reliable scheduling algorithms that improve the
reliability, it may produce high scheduling length, and many practical scheduling algorithms that
minimize makespan and may also minimize the reliability. It can be concluded that the scheduling
algorithm must give importance to both the makespan and the reliability of the system to diminish
the execution time at the charge of high reliability. Simultaneously, the above aforementioned
multi-objective algorithms were utilized to generate the Pareto optimal solutions in the multiple
objectives problem; Solutions in the Pareto set were considered equal and unable to measure how
another solution dominates one solution. Hence, the proposed Epsilon-fuzzy dominance-based
Improved Monarch Butterfly Optimization is utilized to estimate the comparative fitness of non-
dominated individuals in the Pareto optimal set. This method helps to minimize both makespan
and failure probability system as well as to provide the better and quicker convergence than
other algorithms like NSGA-II and MOPSO especially when the number of objectives is more
significant.

3 Problem Formulation

To confirm the parallel and distributed cloud environment, the dynamic batching mode is
chosen. The required tasks are collected in a set that is analyzed for mapping instead of mapping

3696 CMC, 2021, vol.69, no.3

tasks into resources as they arrive. According to the collected information, such as the actual
status of resources and task details, a more reasonable scheduling strategy can be designed in the
cloud environment. In this paper, a Multi-objective Improved MBO scheduling algorithm using an
epsilon-fuzzy mechanism is suggested to discover the optimal schedule by minimizing the finishing
time of allocated tasks, maximizing system reliability will stabilize the load all over the resources.

To formulate a multi-objective task scheduling problem, the set of n mutually independent
tasks are represented as Ti, where i ={0, 1. . .,n−1} and set of m heterogeneous resources are
represented as Rj, where j ={0, 1,. . .,m−1}. Suppose the execution time Pi,j for task j on resource
i is known. Furthermore, tasks are considered non-preemptive. The task scheduling helps assign
tasks to resources for their execution. In task scheduling, the following constraints assure that
processing resources can execute only one task at a time (constraint 2). An individual task is
assigned to accurately processing one resource at a time (condition 1). The permutation matrix
entry Xi,j (as shown in Tab. 1) is defined as,

Table 1: Resource-task mapping

t1 t2 t3 t4 t5 t6 t7 t8 t9

r1 1 0 1 0 0 0 0 0 1
r2 0 1 0 1 0 0 1 0 0
r3 0 0 0 0 1 1 0 1 0

Xi,j =
{
1, if task j is assigned to resource i
0, otherwise

}
(1)

m∑
i=1

Xi,j = 1, 1≤ j≤ n (2)

Let nj be the number of tasks assigned for resource Rj such that
∑

j∈{1..m}
nj = n The completion

time of the assigned tasks on resource Rj is,

Cj =
∑

i∈{1...nj}
Pi,j∗Xi,j (3)

The makespan [17] of the task schedule is the last task’s finishing point in the schedule.

Minimize MS= max
1≤j≤m

Cj (4)

Hardware failure cannot be ignored when processing occurs in the cloud environment where
large quantity of resources are interconnected. The reliability of the schedule depends on the
success of the execution of the schedule on the resources. The resources are assumed to be fail-
silent [18]. There is an assumption that failure only affect the current tasks running on the failure
resource, but not the following tasks. Consider that failures are independent events. The failure

CMC, 2021, vol.69, no.3 3697

model follows Poisson’s law where the failure rate of resource Ri is represented by constant
parameters λi. The probability that all the tasks are completed on resource Ri is expressed by
exponential law as follows,

pisucc = e−λiCi (5)

Assume that the failures are independent, so the reliability of assigned tasks on the set of
resources can be defined as,

Maximize Rs = e
−λi

∑
i
Ci

(6)

The failure probability of schedule is defined as

Minimize Fp = λi

∑
i

Ci (7)

Reducing the failure probability of schedule is equivalent to maximizing the reliability of
schedule in the cloud environment. Hence, the MOIMBO task scheduling algorithm is used to
minimize the makespan and failure probability of the schedule to maximize the reliability of the
whole schedule. Due to the heterogeneous nature of resources in the cloud, processing capability
varies from resource to resource. When allocating processing resources to task set, most of the
tasks are assigned for the better processing capability resources which will get more workload than
other idle resources. A third objective, such as Load Balancing Index (β), is also considered in
our problem to balance the load across different processing resources. β is computed to gauge the
deviations of load on processing resources as follows [19].

β =
√∑m

i=1Li− L̄
m

(8)

where Li is the load of the resource, i and L is the average load of all resources. The lesser
β shows the enhanced load balance in the cloud environment. To augment task scheduling
performance in the cloud, the load will be balanced across resources and maximize their utilization
and reliability while minimizing makespan in the cloud environment.

4 Method to Handle Multiple Objectives Optimization Problem

The concurrent optimization of different objectives in the optimization problem is called a
multi-objective optimization problem (MOP) [20,21]. The multi-objective optimization problem is
well-defined as follows:

MinimizeS(x)= (S1(x), S2(x), . . . , ST(x)) (9)

Let T be the number of objectives in the problem, Si(x) is the ith objective function, and X is
the solution. Many traditional methods like the weighted method, distance method, and min-max
formulation method are available to optimize multiple objectives. However, these methods combine
multiple objectives into a single objective that may provide the single incorrect solution and need
prior information about the optimum before optimization. In this situation, the rank-based non-
dominance sorting algorithm was used to generate a Pareto dominance solution for multi-objective
optimization.

3698 CMC, 2021, vol.69, no.3

Let us take the Pareto dominance relation, which shows that a minor reduction in few
objectives is typically allowed if an outstanding upgrading in other objectives is capable of being
attained. Let us take two solution vectors x1 and x2, then x1 is defined as dominate x2 (also
written as x1≺x2) if and only if the below two constraints carry:

∀i ∈ {1, 2, . . . , T} : Si(X1)≤ Si(X2)

∃j ∈ {1, 2, . . . , T} : Sj(X1) < Sj(X2)

A solution is called a Non-dominated or Pareto-optimal solution if there is no feasible
solution that improves one objective without reducing another objective. The collection of Pareto-
optimal solutions is called the Pareto set, and the boundary of mapping the Pareto solutions in
solution space is called Pareto-Front. Since all the non-dominated solutions in the Pareto set must
be considered as an equal rank-based method is not able to measure how one solution extends
to dominate another solution. It is provided by the new dominance relation called the Fuzzy
dominance [22] method. Let us assume to reduce T quantity of objectives functions Si(x), i = 1. . .,
T in the multi-objective optimization problem. The solution set is represented as � ⊂Rn, where
n is the dimensionality.

4.1 Solution and its Fuzzy Dominance

Solution u∈ � is defined as fuzzy dominate solution v∈ � iff ∀i∈{1, 2,. . ., T}, u	S
i v holds.

This association can be designated as u	Sv. The degree of fuzzy dominance can be represented
by entreating the concept of fuzzy intersection and expending t-norm and is calculated as

μdom (u	Sv)=∩T
i=1μ

dom
i (u	S

i v) (10)

In the prior fuzzy dominance work [22], the membership functions μdom(.), which were utilized
to assess the fuzzy dominance, were said to be zero for negative arguments. Hence, if Si(u)>Si(v),
the degree of fuzzy dominance u	S

i v was zero mandatorily. Hence, non-dominated solutions shall
not be allotted zero values mandatorily with the help of ε. The membership functions utilized are
trapezoidal, yielding non-zero values at whatever time their arguments are equivalent to threshold
ε. Mathematically, the membership function μdom

i (u	S
i v) is said to be:

μdom
i (�Si)=

⎧⎪⎨
⎪⎩
0, ΔSi ≤−ε
ΔSi
�i

, ε−< �Si < �i − ε

1 ΔSi ≥�i − ε

⎫⎪⎬
⎪⎭ (11)

where Si = Si(v)− Si(u) If many solutions have a similar ε-fuzzy dominance value, at that time,
the diversity fitness function, which is equivalent to the perimeter of the most significant M
dimensional hypercube in the objective space, can be used. The value of perimeter I (y) for any
solution y is given by:

I(y)=
T∑
i=1

(Si(x)−Si(z))/(max(Si)−min(Si)) (12)

where x and z are the next to the solutions to y while merging the population in rising order
giving to the ith objective, Si. Boundary solutions are assigned ∞ values when relating multiple

CMC, 2021, vol.69, no.3 3699

solutions with the same ε -fuzzy dominance values, the priority is specified to solutions with more
significant I(y).

4.2 Fuzzy Dominance in a Population
Given a population of solutions P⊂ �, a solution v∈P is said to be fuzzy dominated in P

if it is fuzzy dominated by any other solution u∈P. In this case, the degree of fuzzy dominance
can be computed by performing a union operation over every possible μdom (u	Sv), carried out
using t-co norms as,

μdom (P	Sv=)= ∪
u∈P

μdom(u	Sv) (13)

Similarly, an individual solution is allocated a particular measure to represent the quantity
it takes over the others in a population. Improved solutions within the set are allocated lower
fuzzy dominance values. The global best solution can be selected by this sorting method after the
completion of each iteration.

5 Multi-Objective IMBO Algorithm

Monarch Butterfly Optimization (MBO) suggested by [23] to influence the behavior of
Monarch Butterflies. Since MBO requires fewer computational parameters and more appropriate
for parallel processing, researchers attempt to extend the MBO to resolve multi-objective optimiza-
tion problems and showed that the MBO algorithm’s performance is competitive to other swarm
intelligence algorithms. The proposed Multi-Objective Improved Monarch Butterfly Optimization
(MOIMBO) algorithm is utilized to resolve the multi-objective task scheduling problem in the
data center. The main features of the proposed MOIMBO are as follows: (a) Improved MBO is
proposed to solve task scheduling problem in the cloud (b) To balance exploitation and explo-
ration ability, a self-adaptive technique is applied by changing the population sizes dynamically,
this gives on to magnify the exploitation outcome of the MBO algorithm (c) Greedy strategy is
applied to allow new butterfly individuals with better fitness value into the next generation. It
guides to revamp the proposed algorithm’s convergence speed (d) Non-dominated solutions are
maintained with the Pareto archive set’s help. The proposed Multi-Objective Improved Monarch
Butterfly Optimization (MOIMBO) algorithm is described in the upcoming section.

5.1 Monarch Butterfly Optimization (MBO)
Monarch Butterfly Optimization (MBO) is a swarm-based intelligent optimization method

that mimics monarch butterflies’ relocation activities based on seasonal conditions in nature.
However, the entire swarms of butterflies are partitioned into swarm_1 and swarm_2, respectively.
The butterfly migration operator as well as adjusting operator are the critical processes used in
the search process.

5.1.1 Butterfly Migration Operator (BMO)
BMO creates information exchange between individuals of swarm_1 and swarm_2. Suppose

the number of individuals staying in swarm_1 and swarm_2 is called Nsa and Nsb, calculated as
ceil(r*Ns) and (Ns-Nsa). Whereas r and Ns represent the ratio of individuals in swarm_1 and
whole individuals in both swarms. The variable v is calculated for the migration operator as
follows:

v= rand ∗mp (14)

3700 CMC, 2021, vol.69, no.3

Let rand is the random value produced using the Uniform distribution function, and mp is
the migration period. However, if v≤r, then the novel place of the nth individual is modified by
utilizing the migration operator in the following way:

Pn,k
(t+1) = Pv1,k

(t) (15)

P(t+1)
n,k represents the kth element of Pm that denotes the nth butterfly position in Iteration

t+1. Similarly, P(t)
v1,k, is the kth element of Pv1 for current iteration t. Besides, v1 is an individual

in swarm_1 that is selected randomly. When v> r, then the kth element of a new position for nth

butterfly is computed by using,

Pn,k
(t+1) = Pv2,k

(t) (16)

where P(t)
v2,k is the kth portion of Pv2 for current iteration t. Besides, v2 is an individual in swarm_2

that is selected randomly.

5.1.2 Self-Adaptive Strategy
In the basic MBO algorithm, the number of individuals in swarm_1 and swarm_2 are fixed

during the whole optimization process to expand basic MBO; self-adaptive strategy [24] is used
to resolve the high dimensional optimization problem. The following dynamic technique is used
to update variable by using the self-adaptive strategy as shown below:

r= c + dt (17)

Let t is the present iteration, c and d are constants which are generated by using,

c= rmintm− rmax

tm− 1
(18)

d= rmax− rmin

tm− 1
(19)

Here, tm is the maximum iteration. In the same way, rmin and rmax are the minimum and
maximum bound values of variable r. The value of rmin and rmax lies in the range [0, 1]. Using
Eq. (17), the value of r is updated in a linear fashion from rmin and rmax.

5.1.3 Greedy Strategy
Every afresh produced butterflies are allowed as fresh butterflies for upcoming iteration in the

basic MBO algorithm. If the recently produced butterflies give the worst performance, it leads to
reduce convergence speed. By using a Greedy strategy [24], new butterflies with superior fitness
value can enter into the upcoming iteration. The new individual will be decided by using the
below greedy strategy in minimal problem,

P(t+1)
i,new =

{
Pt+1,
i f(Pt+1

i) < f (Pt
i)

Pt
i , else

}
(20)

where f(Pt+1
i) and f(Pt

i) are the fitness value of individuals Pt+1
i and Pt

i respectively. P
(t+1)
i,new is the

new individual that will be moved to the next iteration.

CMC, 2021, vol.69, no.3 3701

5.1.4 Butterfly Adjustment Operator (BAO)
Furthermore, the location of butterflies can also be modified by using the below Butterfly

Adjustment Operator. Like BMO, when arbitrarily created variable rand ≤ r, then the location of
mth butterfly can be modified as follows:

P(t+1)
m,k = P(t)

best,k (21)

where, P(t+1)
m,k represents the position of a kth element of mth individual at iteration t+1.

Moreover, P(t)
best, k indicates the position of the kth component of best individual among swarm_-

1 and swarm_2 in current iteration t. In contrast, if rand is greater than r, then the position can
be modified for mth individual as follows:

P(t+1)
m,k = P(t)

v3,k (22)

whereas Pv3 represents the position of a kth element of v3 individual, this is randomly chosen from
swarm_2. With this condition, individual adjustment rate α is compared with the rand variable.
If rand>α, then the below equation is used to alter the position of mth individual as follows:

P(t+1)
m,k = P(t+1)

m,k +β∗(dpk− 0.5) (23)

Here, β is the weighting factor given at current iteration t as follows:

β = swmax/t2 (24)

where swmax is the highest step walk done by an individual in one step, and dpk is the step walk
of mth individual that can be computed by using Levy fight

dp=Levy(Ptm) (25)

According to Eq. (24), the high value of β makes lengthy step length that causes enhancement
in the proposed algorithm’s exploration ability. In contrast, the small value of β reduces step size
to expand the proposed algorithm’s exploitation capability.

Hence, an Improved MBO algorithm with Self-Adaptive and Greedy techniques are suggested
to resolve the scheduling problem in the data center. The Self-Adaptive technique is utilized to
enhance the searching ability to prevent sticking to the local optimum. A greedy technique is
proposed to magnify the convergence speed of the MOIMBO algorithm.

5.2 Multi-Objective Improved Monarch Butterfly Optimization (MOIMBO) Algorithm for Task
Scheduling
To resolve the task scheduling problem in the data center, the Basic MBO algorithm is

modified as Improved Monarch Butterfly Optimization incorporates Pareto dominance relation to
resolve the problems with multiple objectives as shown below.

(1) Initialize number of tasks as n, number of VMs as m, iteration counter as c, and maximum
iteration as CG

(2) Set the two swarm sizes as Nsa and Nsb. Each individual in both the swarms are initialized
randomly, as shown in Tab. 1

3702 CMC, 2021, vol.69, no.3

(3) Assess the individuals against fitness function. Order the individuals in the whole swarm
derived from the ef-dominance method and perimeter technique. Keep the values in the
external archive set.

(4) While c<CG do
i. Order the individuals in the whole swarm based on their fitness value
ii. Split the whole swarm into swarm_1 and swarm_2
iii. For i = 1 to Nsa, do

a. The Self-Adaptive Technique determines the ratio of individuals r
b. Produce fresh individuals in swarm_1 by using Butterfly Migration

Operator
c. Based on the Greedy Technique, fresh individuals with better fitness

value will be included in swarm_1
End For

iv. For i = 1 to Nsb, do
Produce fresh individuals in swarm_2 by using Butterfly Adjustment
Operator

End For
v. Merge fresh individuals decided for swarm_1 and swarm_2 as the whole

swarm
vi. Assess the individuals against fitness function. Order the individuals in the whole

swarm derived from the ef-dominance method and perimeter technique. Keep the
values in the external archive set.

vii Increase the iteration counter c by one
(5) Return Solutions in the External Archive set as Output

Apart from the essential components of MBO, the proposed algorithm contains the following
additional components:

5.2.1 Representation of Solution by MOIMBO
To enhance the task scheduling problem using MOIMBO in the cloud environment, the pop-

ulation requires to map a different solution. Each individual represents Task-Resource mapping,
which maps each task into a relevant resource in the cloud. Task-Resource mapping produces
m*n matrix, where m is the number of available resources and n is the number of tasks shown
in Tab. 1.

5.2.2 Enhancement of Elite Archive
Elite archive method [20] in multi-objective optimization problem is utilized to maintain best

non-dominated solutions in elite archive set. Initially, SN numbers of solutions are stored in the
archive set. In each iteration, solutions from the present iteration and the solutions from the
archive set of prior iterations are combined, and 2*SN solutions are arranged using Epsilon-fuzzy
values. If numerous solutions hold similar Epsilon-fuzzy dominance values, then the perimeter I
(.) value is calculated using (12), and the solution with the most significant perimeter value is
preferred. Hence, the leading SN solutions modify the archive set from 2*SN solutions based on
Epsilon-fuzzy dominance and perimeter.

CMC, 2021, vol.69, no.3 3703

6 Experimental Evaluation

Cloudsim toolkit [25] simulates the task scheduling problem and evaluates the proposed
approach in the data center. Cloudsim is a java based toolkit that permits modeling and simulation
of resources and task scheduling in the cloud data center. The cloudsim toolkit models the
components such as data centers, resource provisioning policies, and virtual machines (VMs).

The simulation design for the proposed algorithm consists of two data centers with three
hosts. The first host has a 2-core processor, and the next two hosts consist of 4-core processors.
Let us consider each host consists of 16 GB RAM and an 800 GB hard disk capacity. Each host
consists of 5 VMs. The speed of the VMs can be measured by Million Instructions Per Second
(MIPS). Two data sets, such as HPC2N data set [26] and Braun’s data set [27], are considered
to evaluate the proposed algorithm in the cloud environment. HPC2N data set is the popular
parallel workload of the high-performance computing center. This data set consists of related
details about 527,371 tasks. In another way, Braun’s data set represents the uniform distribution
of data, consistency types (consistent, inconsistent, or semi-consistent) of data, and heterogeneity
nature of resources and tasks. With this data collection, simulation is conducted in cloudsim to
test the proposed algorithm.

This division demonstrates the accomplishment of the suggested MOIMBO algorithm for
multi-objective task scheduling problems by comparing with highly competitive techniques: GA-
based non-dominated sort genetic algorithm (NSGA-II), Weight-based Multi-objective Particle
Swarm Optimization (MOPSO) algorithm. Parameters used in the MOIMBO, NSGA-II, and
MOPSO are given below, which helps fine-tune the algorithms to produce the best perfor-
mance. The parameters are assigned for MOIMBO: swmax=1.0, mp=1.2, v = 5/12, α=5/12, CG
=200, Nsa = 21, Nsb = 29; NSGA-II: Population size = 25, mutation rate= 0.4, Crossover rate =
0.9;MOPSO: Population size = 25, c1= 0.5 and c2= 0.5, ω = 0.1 to 0.9; failure rate of resource
(λ_(j))=0.0001 to 0.0005.The proposed algorithm’s efficiency is evaluated with test suits drawn
from the data mentioned in the above sets.

6.1 Performance Metrics
The proposed multi-objective task scheduling algorithm is evaluated by the following met-

rics [28] (1) Generation Distance(GD) is the metric that measures th3e distance between true
Pareto Optimal Solutions (acquired by combining the non-dominated solutions over ten runs) and
Pareto front produced at termination stage of the algorithm. (2) A spacing metric(SM) is used
to measure the spacing between solutions in the Pareto front. Generation Distance and Spacing
metrics can be represented as follows:

For Generation Distance,

di =min|Q|
j=1

√√√√ F∑
i=1

(Si(k)−Si(j))
2 (26)

GD=
∑|Q|

i=1 di
|Q| (27)

where F is the amount of objective functions, Si is the fitness value for objective i, and di is the
Euclidean distance between true Pareto front solutions Q and nearer Pareto front solutions. The
average of di is used to calculate GD.

3704 CMC, 2021, vol.69, no.3

For Spacing metrics,

di =min|Q|
j=1

[
F∑
i=1

|Si(k)−Si(j)|
]

(28)

SM=
√∑F

i=1 (d̄−di)
2

F− 1
(29)

di is the interval between the solution and its adjacent solution in the Pareto front solutions.
It is distinct from Euclidean distance. d is the average value of the di. The lowest rate of GD
and SM are advisable for heuristics algorithms.

6.2 Best Compromise Solution
To choose the most acceptable compromised solution among the non-dominated solutions in

the Pareto optimal set, the following simple linear membership function [28] acts as decision-
maker,

μi =

⎧⎪⎪⎨
⎪⎪⎩
1, Fi ≤ Fmini
Fmaxi −Fi
Fmaxi −Fmini

, Fmini ≤ Fi ≤ Fmaxi

0, Fi ≥ Fmaxi

⎫⎪⎪⎬
⎪⎪⎭ (30)

Let Fmax
i and Fmin

i are the extreme and most negligible value of the ith objective function in

the Pareto set. The normalized membership function μk for the kth non-dominated solution is
defined as

μk =
∑F

i=1 μk
i∑Q

k=1

∑F
i=1 μk

i

(31)

where Q is the quantity of non-dominated solutions in the Pareto Group and F is the number of
objective functions in the multi-objective optimization problem. The best-compromised solution is
the solution which is having the highest membership function value.

6.3 Evaluation of Proposed Approach
6.3.1 Test Suit 1

First test suits have been taken from the above mentioned High-performance computing center
workload to evaluate the proposed approach, The proposed multi-objective approach, makespan,
reliability, and load balancing index are examined to analyze the MOIMBO algorithm’s charac-
teristics. The simulation results are presented and analyzed by using tables and graphs, as shown
below. Initially, individual objectives are examined, and then multiple objectives are considered.
Fig. 1 shows the makespan of three algorithms based on ten virtual machines with different task
sets. The proposed MOIMBO algorithm provides better results when compared to the other two
methods NSGA-II and MOPSO. For small datasets, the makespan of the MOIMBO algorithm
is relatively closer to the other two algorithms. However, as the quantity of tasks improves, the
suggested approach has a higher chance to reduce the makespan by 9–11% compared to NSGA-II
and 17–18% compared to MOPSO because the MOIMBO algorithm can avoid the premature
convergence by using the composite mutation techniques.

CMC, 2021, vol.69, no.3 3705

300

400

500

600

700

800

900

1000

50 100 150 200 250 300 350 400 450 500 550 600

M
ak

es
pa

n

Number of Tasks

MOIMBO
MOPSO
NSGA-II

Figure 1: Measure of makespan using ten resources

Fig. 2 shows the Failure probability rates of the different resources with the same workload.
It expresses that the failure probability rate reduces as the quantity of resources improves. It
explicitly illustrates that scheduling algorithms have more options for assigning tasks to resources
when the number of resources is increased. Apart from that, MOIMBO with a fast local search
algorithm provides better results when compared to the other two algorithms. However, if the
number of resources and tasks are high simultaneously, it increases failure probability due to
longer scheduling length.

0.001

0.002

0.003

0.004

0.005

0.006

0.007

10 20 30 40 50 60 70 80 90 100

eta
R

ytili
ba

bor
P

er
uliaF

Number of Resources

MOIMBO
NSGA-II
MOPSO

Figure 2: Measure of failure probability for different resources

According to Fig. 3, when the number of tasks increases, the failure probability of tasks
also increases because computational resources take a long time to complete a large number of
tasks [29]. It gives more chance to increase the failure probability of resources which causes the
increment in failure probability of tasks. The failure probability rate and makespan are considered
together in the multi-objective task scheduling problem, as shown below. The Pareto optimal
solutions are analyzed and generated by MOIMBO, NSGA-II, and MOPSO, as well as the best
compromise solution (using (30) and (31)) among Pareto solutions, are obtained with the help of
fuzzy approach as shown in Fig. 4.

Even though NSGA-II and MOPSO were used to generate non-dominated solutions at each
iteration, the level of non-domination between solutions was not measured, so the solutions are
not closer to the Pareto front when compared to the MOIMBO algorithm. Since the usage
of perimeter operator and Epsilon-fuzzy dominance in the proposed approach, it selects the
solutions near to Pareto front and shows that the deviation of the Pareto optimal solutions of

3706 CMC, 2021, vol.69, no.3

the MOIMBO is more suitable than other two algorithms. The finest compromise solution among
25 Pareto front solutions for different task sets was shown in Tab. 2.

0.001
0.0015

0.002
0.0025

0.003
0.0035

0.004
0.0045

0.005
0.0055

10 20 30 40 50 60 70 80 90 100

F
ai

lu
re

 P
ro

ba
bi

lit
y

R
at

e

Number of Tasks

MOIMBO
NSGA-II
MOPSO

Figure 3: Measure of failure probability for different tasks

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

380 385 390 395 400 405 410 415 420

eta
R

ytili
ba

bor
P

er
uliaF

Makespan

MOIMBO
MOPSO
NSGA-II

Best
Compromise
Solution

Figure 4: Pareto front and performance of algorithms for ten resources and 20 tasks

Table 2: Best compromised solution generated by MOIMBO algorithm using test suit 1

Objective 20 Tasks 50 Tasks 100 Tasks

Makespan 397.3604 473.1025 589.7032
Failure probability rate 0.00358 0.00596 0.00701
Load metrics 0.104923 0.133639 0.165623

These different sets of tasks were run using ten resources. When the number of tasks
increased, then the execution time, failure probability, and load metrics values began to increase.
The results generated by (taking the average of 20 runs) the three algorithms based on GD and
Spacing metrics were compared in Tab. 3. Since the Epsilon-fuzzy dominance sort technique in
the proposed approach is selected as the better solution for the next iteration, the Pareto solution
set was very nearer to the Pareto front, which causes the smaller value of GD for the proposed

CMC, 2021, vol.69, no.3 3707

algorithm. The lower value of the spacing metric of the proposed approach represented that there
is a uniform spacing between solutions in the Pareto optimal set.

Table 3: Results of the performance metrics using test suit 1

Tasks Metrics MOIMBO NSGA-II MOPSO

20 GD 0.015111 0.01607 0.02653
Spacing(SM) 0.033596 0.0452 0.19501

50 GD 0.013113 0.01735 0.02492
Spacing(SM) 0.041923 0.06967 0.19027

100 GD 0.012713 0.01689 0.02010
Spacing(SM) 0.088159 0.093173 0.18355

Fig. 5 demonstrates that makespan is reduced when the amount of iterations is increased.
Since epsilon-fuzzy dominance sorting selects the Pareto front solutions, the quality algorithm
improves at each iteration is shown. However, NSGA-II and MOPSO were getting stuck into
the local optimum. However, composite mutation strategies and fast local search algorithm in
MOIMBO provide a better and quicker convergence as well as reduce the makespan as compared
to the other two algorithms.

300

400

500

600

700

800

900

M
ak

es
pa

n

Number of Iterations

MOIMBO

MOPSO

NSGA-II

Figure 5: Convergence analysis for makespan

6.3.2 Test Suit 2
For the evaluation of the proposed approach, Braun’s data set has been taken as a second

test suit. The data set considered for the second test suit consists of 16 cloud resources with 512
tasks. Twelve different instances are available in this data set. To explicitly compare the proposed
MOIMBO algorithm with NSGA-II and MOPSO algorithms, the different tables are used to
show the above-stated algorithms’ accomplishment. Tab. 4 depicts the performance of MOIMBO,
NSGA-II, and MOPSO algorithms with the help of the following metrics such as makespan,
failure probability rate, and load metrics. The best compromise solution produced by the proposed
algorithm using Test suit2 was shown in Tab. 5.

3708 CMC, 2021, vol.69, no.3

Table 4: Comparison of performance metrics

Number of
Tasks

MOIMBO NSGA-II MOPSO

Makespan Failure
prob.

Load
metrics

Makespan Failure
prob.

Load
metric

Makespan Failure
prob.

Load
metrics

100 182.56 0.00183 0.1298 223.78 0.00228 0.1324 306.78 0.00268 0.2834
150 298.34 0.00228 0.1793 389.45 0.00266 0.1722 502.74 0.00301 0.3015
200 502.45 0.00285 0.1927 526.46 0.00317 0.1938 745.67 0.00365 0.4928
250 813.56 0.00328 0.2285 1016.34 0.00331 0.2478 1149.28 0.00397 0.7284
300 1013.47 0.00379 0.2583 1439.46 0.00398 0.2692 1801.34 0.00412 0.8926
350 1214.45 0.00416 0.2957 1923.67 0.00437 0.2999 2845.39 0.00477 0.9467
400 1419.34 0.00447 0.3517 2274.45 0.00475 0.3416 3679.23 0.00489 1.0179
450 1756.43 0.00464 0.3825 2967.34 0.00503 0.3902 3926.38 0.00523 1.2678
500 1989.45 0.00493 0.4267 3267.23 0.00538 0.4012 4338.45 0.00592 1.4925

Table 5: Best compromised solution generated by MOIMBO algorithm using test suit 2

Objective 50 Tasks 100 Tasks 150 Tasks

Makespan 162.247 193.345 307.473
Failure probability rate 0.00148 0.00206 0.00250
Load metrics 0.11563 0.14389 0.18237

Tab. 6 demonstrates the assessment results of the three algorithms concerning GD and spac-
ing. It shows that the proposed MOIMBO algorithm provides uniform spacing when compared to
the other two algorithms. The above experiment results show that MOIMBO is a better approach
for multi-objective task scheduling problem in the data center.

Table 6: Results of the performance metrics using test suit 2

Tasks Metrics MOIMBO NSGA-II MOPSO

50 GD 0.00389 0.0079 0.00935
Spacing(SM) 0.05245 0.0692 0.09246

100 GD 0.00637 0.0072 0.00723
Spacing(SM) 0.04578 0.0584 0.06343

150 GD 0.00527 0.0147 0.01842
Spacing(SM) 0.65456 0.7284 0.67236

7 Conclusions

The multi-objective task scheduling problem in the data center is solved with the Epsilon-fuzzy
dominance sort-based CABC algorithm. The proposed approach emphasizes on three contradic-
tory objectives like Makespan, Reliability, and Average load balancing index while solving the
task scheduling problem. The Self-adaptive and Greedy methods in the MOIMBO algorithm
provide an excellent weighing scale between global exploration and local exploitation capabilities,

CMC, 2021, vol.69, no.3 3709

enhancing convergence speed and quality of the solution. The simulation results show that the
MOIMBO approach produces better results than NSGA-II and MOPSO in terms of convergence
towards the Pareto front set. Uniform space between solutions in the Pareto set reduces the
computation overhead with the Epsilon-fuzzy dominance sorting method and perimeter operator.
The best-compromised solution among the Pareto optimal solutions is generated using the linear
membership function. The load among heterogeneous cloud computing systems is balanced better
than NSGA-II and MOPSO. In future research, the Hybrid heuristics approach will be used to
schedule tasks which will consider task priorities and extend the problem to minimize energy
consumption.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
[1] M. D. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis and A. Vakali, “Cloud computing: Distributed

internet computing for IT and scientific research,” IEEE Internet Computing, vol. 13, no. 5, pp. 10–11,
2009.

[2] P. Kumar and A. Verma, “Scheduling using improved genetic algorithm in cloud computing for
independent tasks,” in Proc. ICACCI Series, Chennai, India, pp. 137–142, 2012.

[3] X. Zuo, G. Zhang and W. Tan, “Self-adaptive learning PSO-based deadline constrained task scheduling
for hybrid IAAS cloud,” IEEE Transactions on Automation Science and Engineering, vol. 11, no. 2, pp.
564–573, 2014.

[4] A. Dogan and F. Özgüner, “Matching and scheduling algorithms for minimizing execution time and
failure probability of applications in heterogeneous computing,” IEEE Transactions on Parallel and
Distributed Systems, vol. 13, no. 3, pp. 308–323, 2002.

[5] A. S. Sofia and P. G. Kumar, “Multi-objective task scheduling to minimize energy consumption and
makespan of cloud computing using NSGA-II,” Journal of Network and Systems Management, vol. 26,
no. 2, pp. 463–485, 2018.

[6] E. S. Alkayal, N. R. Jennings and M. F. Abulkhair, “Efficient task scheduling multi-objective particle
swarm optimization in cloud computing,” in Proc. LCN, Dubai, pp. 17–24, 2016.

[7] X. Tang, K. Li, R. Li and B. Veeravalli, “Reliability-aware scheduling strategy for heterogeneous dis-
tributed computing systems,” Journal of Parallel and Distributed Computing, vol. 70, no. 9, pp. 941–952,
2010.

[8] L. Zhang, K. Li, Y. Xu, J. Mei, F. Zhang et al., “Maximizing reliability with energy conservation for
parallel task scheduling in a heterogeneous cluster,” Information Sciences, vol. 319, pp. 113–131, 2015.

[9] J. Wang, W. Bao, X. Zhu, L. T. Yang, and Y. Xiang, “FESTAL: Fault-tolerant elastic scheduling
algorithm for real-time tasks in virtualized clouds,” IEEE Transactions on Computers, vol. 64, no. 9, pp.
2545–2558, 2015.

[10] G. Xie, H. Peng, Z. Li, J. Song, Y. Xie et al., “Reliability enhancement toward functional safety
goal assurance in energy-aware automotive cyber-physical systems,” IEEE Transactions on Industrial
Informatics, vol. 14, no. 12, pp. 5447–5462, 2018.

[11] Y. Sharma, W. Si, D. Sun and B. Javadi, “Failure-aware energy-efficient VM consolidation in cloud
computing systems,” Future Generation Computer Systems, vol. 94, pp. 620–633, 2019.

[12] M. A. Ardakan and M. T. Rezvan, “Multi-objective optimization of reliability–redundancy allocation
problem with cold-standby strategy using NSGA-iI,” Reliability Engineering & System Safety, vol. 172,
pp. 225–238, 2018.

[13] P. Guo, M. Liu, J. Wu, Z. Xue and X. He, “Energy-efficient fault-tolerant scheduling algorithm for
real-time tasks in cloud-based 5G networks,” IEEE Access, vol. 6, pp. 53671–53683, 2018.

3710 CMC, 2021, vol.69, no.3

[14] H. Wang and Y. Wang, “Maximizing reliability and performance with reliability-driven task schedul-
ing in heterogeneous distributed computing systems,” Journal of Ambient Intelligence and Humanized
Computing, vol. 9, pp. 1–11, 2018.

[15] H. Xu, R. Li, C. Pan, and K. Li, “Minimizing energy consumption with reliability goal on het-
erogeneous embedded systems,” Journal of Parallel and Distributed Computing, vol. 127, pp. 44–57,
2019.

[16] S. Dehnavi, H. R. Faragardi, M. Kargahi, and T. Fahringer, “A reliability-aware resource provisioning
scheme for real-time industrial applications in a fog-integrated smart factory,” Microprocessors and
Microsystems, vol. 70, pp. 1–14, 2019.

[17] B. Gomathi and K. krishnasamy, “A task scheduling based on hybrid self-organizing migrating
algorithm in cloud environment,” Asian Journal of Information Technology, vol. 15, pp. 3703–3707, 2016.

[18] A. Girault, É. Saule and D. Trystram, “Reliability versus performance for critical applications,” Journal
of Parallel and Distributed Computing, vol. 69, no. 3, pp. 326–336, 2009.

[19] B. Kruekaew and W. Kimpan, “Virtual machine scheduling management on cloud computing using
artificial bee colony,” Lecture Notes in Engineering and Computer Science, vol. 2209, pp. 18–22, 2014.

[20] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multi objective genetic algorithm:
NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[21] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms: An Introduction, Accessed, USA:
John Wiley & Son, 2011 [Online]. Available: http://www.iitk.ac.in/kangal/deb.htm.

[22] P. Koduru, Z. Dong, S. Das, S. M. Welch, J. L. Roe et al., “A multiobjective evolutionary-simplex
hybrid approach for the optimization of differential equation models of gene networks,” IEEE
Transactions on Evolutionary Computation, vol. 12, no. 5, pp. 572–590, 2008.

[23] G. G. Wang, S. Deb and Z. Cui, “Monarch butterfly optimization,” Neural Computing and Applications,
vol. 31, no. 7, pp. 1995–2014, 2019.

[24] H. Hu, Z. Cai, S. Hu, Y. Cai, J. Chen et al., “Improving monarch butterfly optimization algorithm
with self-adaptive population,” Algorithms, vol. 11, no. 5, pp. 71–90, 2018.

[25] R. N. Calheiros, R. Ranjan, C. A. F. De Rose, and R. Buyya, CloudSim: A Novel Framework for
Modeling and Simulation of Cloud Computing Infrastructures and Services, Technical Report GRIDS-TR-
2009–1, Grid Computing and Distributed Systems Laboratory, The University of Melbourne, 2009.
[Online]. Available: http://arxiv.org/abs/0903.2525.

[26] M. Sivaram, V. Porkodi, A. S. Mohammed, V. Manikandan and N. Yuvaraj, “Retransmission DBTMA
protocol with fast retransmission strategy to improve the performance of MANETs,” IEEE Access, vol.
7, pp. 85098–85109, 2019.

[27] M. Sivaram, D. Yuvaraj, A. S. Mohammed, V. Manikandan, V. Porkodi et al., “Improved enhanced
DBTMA with contention-aware admission control to improve the network performance in MANETS,”
computers, Materials & Continua, vol. 60, no. 2, pp. 435–454, 2019.

[28] V. Manikandan, M. Sivaram, A. S. Mohammed and V. Porkodi, “Nature inspired improved firefly
algorithm for node clustering in WSNs,” computers, Materials & Continua, vol. 64, no. 2, pp. 753–776,
2020.

[29] C. A. Coello, G. T. Pulido and M. S. Lechuga, “Handling multiple objectives with particle swarm
optimization,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 3, pp. 256–279, 2004.

http://www.iitk.ac.in/kangal/deb.htm
http://arxiv.org/abs/0903.2525

