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Abstract: Supply chain 4.0 refers to the fourth industrial revolution’s supply
chain management systems, which integrate the supply chain’s manufactur-
ing operations, information technology, and telecommunication processes.
Although supply chain 4.0 aims to improve supply chains’ production systems
and profitability, it is subject to different operational and disruptive risks.
Operational risks are a big challenge in the cycle of supply chain 4.0 for
controlling the demand and supply operations to produce and deliver prod-
ucts across IT systems. This paper proposes a voting classifier to identify the
operational risks in the supply chain 4.0 based on a Sine Cosine Dynamic
Group (SCDG) algorithm. Exploration and exploitation mechanisms of the
basic Sine Cosine Algorithm (CSA) are adjusted and controlled by two groups
of agents that can be changed dynamically during the iterations. External
and internal features were collected and analyzed from different data sources
of service level agreements and transaction data from various KSA firms to
validate the proposed algorithm’s efficiency. A balanced accuracy of 0.989
and a Mean Square Error (MSE) of 0.0476 were achieved compared with
other optimization-based classifier techniques. A one-way analysis of variance
(ANOVA) andWilcoxon rank-sum tests were performed to show the superior-
ity of the proposed SCDG algorithm. Thus, the experimental results indicate
the effectiveness of the proposed SCDG algorithm-based voting classifier.

Keywords: Machine learning; artificial intelligence; supply chain 4.0; risk
factors; risk management

1 Introduction

Given the array of uncertainties in supply chain management, supply chain performance is
vulnerable to several risk factors. Supply chain risk is defined as the probability of a risk event
that impacts the supply chain at the micro or macro level and leads to disruption at any stage
of supply chain operations [1]. Risk management is the process of assessing and predicting risks
to identify risk events to minimize or avoid their effects [2]. Supply risk can be categorized
into disruption type or operation type [3–5]. The risk associated with natural disasters, such
as earthquake or flooding, is difficult to control. Operational risk leads suboptimal or failed
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supply and demand operations while delivering or producing final products [6]. The quality of
products or delivery of products or services to end customers is a challenge that can be controlled
and predicted if it is well-recognized [7]. These events are categorized based on supply chain
components such as planning, sourcing, making, delivery, and return [8].

Operational risk events can arise from external sources and inherent supply chain features.
The probability of external risk events may affect the whole supply chain, leading firms to
declare bankruptcy or fall behind in their finances [9]. The supply chain depends on defining
and controlling the external factors by an appropriate method [10]. For example, to increase the
sustainability of profits, supply chain firms should take action on factors from external risks or
internal risks for maintaining their business [11]. Defining risks is one of the significant challenges
for the success of managing risks and decreasing supply chain firms’ uncertainty [12]. External
risk events that occur within the internal processes of supply chain 4.0 can cause issues if not
planned adequately and affect supply chain firms if methods to mitigate the risks are lacking.
Thus, the supply chain risk assessment process has become a necessity today.

A precise analysis of managing risks through better methods is necessary for supply chain
4.0 risk management. Identification and mitigation processes are the main elements of controlling
risk events and that includes the concept of understanding the reasons for risk probability and
impacts. Management of risk is an essential component of risk analysis, and it can improve
decision making for mitigating risks. A supply chain’s profitability depends mainly on identifying
and controlling external and internal factors through appropriate responsiveness, efficiency, and
reliability [10]. To sustain firms’ profitability levels, supply chains must respond rapidly to internal
and external risk events to maintain their businesses effectively and dynamically [11–13]. Different
researchers have applied several methods, including quantitative methods, for defining risk events
in the supply chain’s operational processes [14–16].

This paper focuses on managing risk in supply chain 4.0 by identifying, assessing, and
mitigating external risk events. It proposes a voting classifier based on a Sine Cosine Dynamic
Group (SCDG) optimization algorithm to identify and quantify external and internal risk events.
The proposed method helps firms mitigate risk events. Exterior and interior features were collected
and analyzed from data sources such as service level agreements and Kingdom of Saudi Arabia’s
(KSA) firms’ transaction data to validate the proposed algorithm’s efficiency. Experiments were
designed to determine the proposed SCDG algorithm-based voting classifier’s effectiveness using
balanced accuracy and Mean Square Error (MSE) metrics. Results were compared with other
optimization-based classifier techniques. The proposed voting SCDG classifier was compared with
Particle Swarm Optimization (PSO) [17,18], Whale Optimization Algorithm (WOA) [19,20], Grey
Wolf Optimizer (GWO) [21,22], and Genetic Algorithm (GA)-based [23,24] voting classifier algo-
rithms. One-way analysis of variance (ANOVA) and Wilcoxon rank-sum tests were performed to
test the proposed SCDG algorithm’s superiority.

This paper is organized as follows. Section 2 discusses the background and related work of
this research. Section 3 explains the artificial intelligence methods for managing risk in supply
chain 4.0. Section 4 discusses the proposed Sine Cosine Dynamic Group Algorithm. Section 5
describes the experimental results. Finally, Section 6 presents the conclusions of the study.

2 Related Work

Different external risk events affect supply chain performance and cause harm to a supply
chain’s internal processes, which can lead to severe financial issues that drag down firms [14,15].
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The authors in [8] defined risk management as helping firms describe risk before it happens and
trying to mitigate it in any possible way. Most of the previous studies have categorized risk
management into three steps: risk identification, risk assessment, and risk mitigation. There have
been multiple descriptions of the risk management process from different authors. The authors
in [8,25,26] described risk identification as the first step in risk management, which can help the
decision maker manage the risk if defined well.

The authors in [27–29] explained risk assessment as the method or system that helps a firm
assess and evaluate the impact of historical data of the firm. In [16,30,31], the authors discussed
risk mitigation as the method that helps the decision makers quantify risk before it occurs, thus
allowing the firm to prevent it. It is essential to study the external risk of supply chain 4.0 to
find a better method for measuring its impact on the supply chain. For example, DHL provides
Resilience 360, which helps firms map the supply chain end to end and build a system for
identifying critical risks by alerting stakeholders on time, which helps mitigate the risk [32]. Many
recent machine learning techniques, such as [33–39], can be applied to such problems. Fig. 1 shows
the importance of industry 4.0 in the supply chain, which can help firms to attain competitive
and sustainable advantages. This paper focuses on quantifying risk events for improving supply
chain 4.0 firms’ decision making.

Figure 1: Industry 4.0 in a supply chain smart factory

3 Background

3.1 Supply Chain 4.0 Operation
Industry 4.0 refers to the fourth industrial revolution and a new model of an intelligent system

that helps enterprises in the production and manufacturing environment. It emphasizes global
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networks in a smart factory for controlling and exchanging information [40]. Supply chain 4.0
consists of independent activities that are geographically separated, combined in various ways, and
linked through varied companies, resulting in a capability to respond to consumers’ necessities and
needs. As shown in Fig. 2, the dependencies in a supply chain 4.0 include customers, vendors,
devices, manufacturing plants, and other physical source systems [41].

Figure 2: The context of the supply chain within industry 4.0

Supply chain 4.0 is a disruption that causes firms to rethink the components, processes,
and designs of their supply chain. In response to client requirements and the need for speedy
for fulfillment, numerous strategies have arisen that have changed typical working techniques.
Furthermore, the demand for naturalization and supply establishments can also be used to reach
the next horizon of operational efficiency, establish the company as an electronic supply chain,
as well as change the service provider right into a digital supply chain [42]. To take advantage
of these trends and deal with changing requirements, supply chains need to become faster, more
credible, and more accurate.

Different researchers have attempted to apply various techniques for defining risks, which is
the first step in risk management [43–45]. The authors in [46] stated that artificial intelligence
is the technique of the future, and it will help capture risk events automatically by finding the
correlation between risk features and labels, as shown in Tab. 1. One of the significant challenges
in previous studies was the lack of real data or visible data sources that help yield accurate
results for defining risk events by categorizing the firm’s decision when risks occur into three
decisions: avoid, reduce, or accept the risks. The proposed framework quantifies the risk as either
low, medium, or high, which helps firms make better decisions without uncertainty. Fig. 3 shows
the internal and external risk events that impact the processes of supply chain 4.0.
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Table 1: Attributes and risk labels of the companies’ dataset

Attribute Stream of risks Description

Minimum quantity Interior Is the minimum number of materials that
firms need to order

Quantity on hand Interior Are the materials that available in the
firm’s inventories

Estimated date for
receipt

External Is the predictable date for delivering
orders in the long or short term

Quantity to buy External Is the number of materials that firms
need to purchase at one time

Price External Is the suppliers’ plans for selling their
products

Safety stock Interior/exterior Are the extra materials available in the
inventory reserved for reducing the
shortages

Maximum quantity Interior/exterior Is the maximum number of materials that
firms need to order

Quantity in
purchase requisition

Interior/exterior Are the firm’s requests that are needed to
make an order

Risk labels Interior/exterior Is any attribute that may raise the
uncertainty of risk occurrence

Products Interior/exterior Is the final product for sale
Location Interior/exterior Is the local or international venue where

firms receive or dispatch their orders

3.2 Big Data Collection Process
Big data collection from different KSA firms was performed, and the data was pre-processed

to make it more meaningful for the proposed technique, as depicted in Fig. 4. The first step is
categorized into two stages. The first stage involved gathering information from SLAs, including
the products’ features and supply chain 4.0 attributes. The second stage linked the labels to the
data’s features and attributes by the firms’ chief executive officer (CEO), as shown in Tab. 1.
According to these features’ values, the CEOs can manually identify the potential risks that the
company faces. The next step logged the data into the Structured Query Language (SQL) format
to read the data to identify the risk labels and then sort them into Object Linking and Embedding,
Database (Ole DB). The tested dataset in this work comprised nine risk labels. To automatically
define the firms’ risks, the relationships between risk labels and their attributes are identified by
the proposed voting classifier based on the SCDG optimization algorithm.

3.3 Sine Cosine Algorithm
The basic Sine Cosine Algorithm (SCA) was first proposed in [47] for optimization problems.

The algorithm was based initially on the sine and cosine oscillation functions for updating the
candidate solutions’ position. SCA uses a set of random variables to indicate the movement
direction and how far the movement should be in order to emphasize/deemphasize the effect of
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the destination and to switch between the cosine and sine components. SCA uses the following
mathematical form for updating the positions of different solutions:

Xt+1
i =

{
Xt
i + r1 × sin (r2)×

∣∣r3Pti −Xt
i

∣∣ r4 < 0.5
Xt
i + r1 × cos (r2)×

∣∣r3Pti −Xt
i

∣∣ r4 ≥ 0.5
(1)

Figure 3: Internal and external risk events of supply chain 4.0
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Figure 4: Pre-processing big data gathered from different KSA firms
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where Xit is the current solution position in the ith dimension, and Pit represents the best solution
in the ith dimension. The parameters r2, r3, and r4 are random values in [0,1]. Eq. 1 shows that
the agents’ positions are updated using the position of the best solution. To achieve a balance
between the exploitation and exploration processes in the SCA algorithm, parameter r1 can be
updated during iterations as:

r1 = a− a× t
tmax

(2)

where t represents the current iteration; a is a constant; and tmax is the maximum number of
iterations.

The initial population positions with n agents in the SCA algorithm are randomly set up as
shown in Algorithm (1). The objective function is computed in Step 5 for all agents to find the
best solution’s position. P in Step 6 indicates the best solution. Parameter r1 is updated according
to Eq. (2) in Step 7. The positions of different agents are updated by Eq. (1) in Steps 8–13. Steps
4–16 are repeated according to the number of iterations. The best solution is updated until the
end of the iteration.

The original SCA algorithm shows high exploitation of the search space compared to a wide
range of other meta-heuristics owing to its use of a single best solution to guide other candidate
solutions. This makes the algorithm efficient in terms of memory usage and convergence speed.
However, this algorithm may show slightly lower performance in problems with many locally
optimal solutions. This motivated our attempt to overcome this drawback in the proposed Sine
Cosine Dynamic Group algorithm.

Algorithm 1: Basic SCA Algorithm

4 Proposed Sine Cosine Dynamic Group Algorithm

The proposed optimization technique in this work is called the SCDG algorithm. The SCDG
algorithm can be employed for risk identification in supply chain 4.0 based on an ensemble model.
The SCDG algorithm starts by randomly generating several individuals, as shown in Algorithm
(2). Each individual indicates a solution that can be a candidate solution to the supply chain 4.0
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problem. After calculating the objective function Fn for each agent Xi, the best solution is selected
and indicated as P.

The Dynamic Groups behavior of the SCDG algorithm divides all the individuals into an
exploration group (n1) and an exploitation group (n2). The number of solutions in each group is
managed dynamically with each iteration according to the best solution. The exploration group
processes with n1 agents, and the exploitation group with n2 agents, as shown in Fig. 5. SCDG
initiates the groups with 50% exploration and 50% exploitation. Then, the number of agents in
the exploration group (n1) is decreased, and the number of agents in the exploitation group (n2)
is increased.

Algorithm 2: Proposed SCDG Algorithm

However, suppose the best solution’s objective function value did not change for three con-
tinuous iterations. In that case, the algorithm starts to increase the number of agents in the
exploration group (n1) to get another best solution and hopefully avoid local optima. Fig. 6 shows
the balancing between exploration and exploitation in the proposed SCDG algorithm during
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iterations. SCDG uses the Sine Cosine Eq. (1) for updating the positions of the exploration group
(n1) and the exploitation group (n2). Parameter r1 is updated during iterations as r1 = a− a×t

tmax
,

where t is the current iteration; a is a constant; and tmax is the number of iterations. At the end
of each iteration, SCDG updates the agents in the search space, and the agent’s order is randomly
changed to exchange the agents’ roles in the exploration and exploitation groups. In the final step,
SCDG returns the best solution.

5 Experimental Results

This section details three different experiments and statistical tests that were conducted to
verify the accuracy of the proposed algorithm. In the first experiment, Support Vector Machine
(SVM) [48], Neural Network (NN) [49], k-Nearest Neighbor (KNN) [50], and Random Forest [51]
classifiers were applied to identify the operational risks in the supply chain 4.0. The second
experiment was designed to compare the proposed SCDG-based voting classifier with the bagging
and majority voting ensemble techniques. The last experiment compared the proposed voting
SCDG algorithm with Particle Swarm Optimization (PSO) [17], Whale Optimization Algorithm
(WOA) [19], Grey Wolf Optimizer (GWO) [21], and the Genetic Algorithm (GA)-based [23] voting
classifier algorithms to test the algorithm’s effectiveness. The ANOVA and Wilcoxon’s rank-sum
statistical tests were performed to verify the efficacy of the proposed SCDG algorithm. Tab. 2
lists the configurations of the proposed SCDG algorithm and the other algorithms used in the
experiments.

Figure 5: The proposed SCDG algorithm’s exploration and exploitation processes. (a) Exploration
group, (b) Exploitation group

5.1 Metrics of Performance Evaluation
The AUC (area under the ROC curve) and MSE (Mean Square Error) metrics were employed

in this experiment as performance metrics. AUC or balanced accuracy indicates the classification



3758 CMC, 2021, vol.69, no.3

performance independently between class distribution [20]. For binary classification, AUC can be
directly calculated as the average of sensitivity and specificity, resulting in binary predictions rather
than scores. The balanced accuracy or AUC value is mathematically expressed as:

AUC= (Specificity+Sensitivity)/2 (3)

Figure 6: Balancing between exploitation and exploration in the proposed SCDG algorithm

Table 2: Configuration of the proposed SCDG and the compared algorithms

Mean Square Error or MSE indicates the performance of the classifiers. The MSE value is
mainly based on the difference between the actual and the required value of the classifier’ output
using the following form:
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MSE =
n∑

x=1

(ohxd
h
x)

2 (4)

where n is the number of outputs when the hth training instance is applied, and dthx is the xth

optimal output of the input neuron. When the hth training instance appears in the input, ohx is
the actual output of the xth input neuron.

5.2 Results
In the first experiment, the output results for the single classifiers SVM, NN, KNN, and

Random Forest (RF) are shown in Tab. 3. As the table shows, the single classifier of Random
Forest achieved the AUC percentage of 0.823, which was the highest value among single classifiers,
with the minimum MSE being 0.042853. However, this is not an acceptable percentage and can be
improved based on ensemble techniques. The second experiment’s results comparing the proposed
SCDG voting classifier with the bagging and majority-based ensemble learning methods are shown
in Tab. 4. The proposed SCDG-based voting classifier achieved an AUC result of 0.989, which
was much better than the compared ensemble techniques and the single classifiers. The MSE of
the SCDG algorithm-based voting classifier (3.30E-06) was much better than the MSE of the
bagging (0.0476) and the majority voting (0.007921) techniques.

The SCDG voting classifier was compared in the third experiment with the voting classifiers
based on PSO, WOA, GWO, and GA, and the output results are mentioned in Tab. 5. The results
show the superiority of the proposed SCDG voting classifier, with an AUC of 0.989 and MSE
of 3.30E-06 compared to the voting PSO (AUC = 0.931), voting WOA (AUC = 0.913), voting
GWO (AUC = 0.925), and voting GA (AUC = 0.872). To show the proposed SCDG optimization
algorithm’s performance versus other optimization algorithms of PSO, WOA, GWO, and GA,
Fig. 7 shows the algorithms’ convergence curves.

Table 3: Single classifiers’ AUC and MSE

SVM NN KNN Random forest

AUC 0.784 0.713 0.761 0.823
MSE 0.099845 0.082373 0.114932 0.042853

Table 4: Proposed SCDG-based voting classifier compared to other ensemble techniques

Bagging Majority voting Voting (SCDG)

AUC 0.842 0.924 0.989
MSE 0.0476 0.007921 3.30E-06

As seen from the results, the proposed algorithm obtains a better solution in minimum time.
To confirm the proposed SCDG voting classifier’s effectiveness with other voting classifiers based
on PSO, WOA, GWO, and GA algorithms through visualization, Fig. 8 shows the respective
ROCs. Tab. 6 lists the results for this curve. As shown from the output results in Tab. 6, the
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proposed SCDG classifier achieved an area under the curve of about 1.0. Therefore, the proposed
classifier has a performance that can distinguish the data in supply chain 4.0 with a high AUC.

Table 5: Proposed SCDG-based voting classifier compared to other voting-based algorithms

Voting (SCDG) Voting (PSO) Voting (WOA) Voting (GWO) Voting (GA)

AUC 0.989 0.931 0.913 0.925 0.872
MSE 3.30E-06 0.00251 0.00918 0.00425 0.016721

Figure 7: Convergence curve of the proposed SCDG algorithm vs. compared optimization
algorithms

5.3 Statistical Analysis
The ANOVA test was first applied to identify the statistical difference between the

MSE of the proposed SCDG voting classifier and other compared classifiers. Two hypothe-
ses, the null hypothesis and alternate hypothesis, were formulated. The null hypothesis was
( ), and the alternate
hypothesis was (H1: non-equal means). Tab. 7 shows the descriptive statistics of the data. The
results of the ANOVA test are provided in Tab. 8. Fig. 8 also shows the ANOVA test results
based on the proposed voting SCDG classifier’s objective function and the compared classifiers.
The results show that the alternate hypothesis H1 was accepted.

Wilcoxon’s rank-sum test was then employed to obtain the p-values between the pro-
posed SCDG voting classifier and other classifiers. The main aim of this test was to
determine whether the results of the proposed SCDG voting classifier and different clas-
sifiers had a significant difference. p-value < 0.05 means significant superiority of the
SCDG classifier. If the p-value > 0.05, it means that there is no significant difference.
Two hypotheses, the null hypothesis and alternate hypothesis, were formulated for this

test also. The null hypothesis was
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, and the alternate hypothesis was (H1: non-
equal means). The p-value results are presented in Tab. 9. The p-values were less than 0.05. This
was achieved for the results between the proposed SCDG classifier and other classifiers. The results
showed superiority of the proposed classifier and the statistical significance of the classifier. The
alternate hypothesis H1 was accepted.

Figure 8: SCDG voting classifier vs. other voting classifiers

Table 6: ROC curve data of SCDG voting classifier vs. other voting classifiers

Voting
(SCDG):
Voting
(PSO)

Voting
(SCDG):
Voting
(WOA)

Voting
(SCDG):
Voting
(GWO)

Voting
(SCDG):
Voting
(GA)

Area 1 1 1 1
Std. Error 0 0 0 0
95% confidence interval 1.000 to 1.000 1.000 to 1.000 1.000 to 1.000 1.000 to 1.000
P value 0.0001 0.0001 0.0001 0.0001

5.4 Residuals vs. Fits Plot
The possible issues could be observed from the recurring values as well as the residual plots

as opposed to the original dataset plot. Some datasets are not good for classification. The ideal
situation is attained if the residual values are equally randomly spaced around the horizontal axis.
The residual value is calculated as (Real value - Predicted value), with the mean and sum of the
residuals equal to zero. Fig. 9 shows the residual plot. The heteroscedasticity plot, also shown in
Fig. 9, can help discover violations of assumptions, thus boosting the credibility of the research
study’s findings.

Homoscedasticity describes a situation in which the error term (arbitrary disturbance in the
connection between the dependent variable and the independent variables, or noise) is the same



3762 CMC, 2021, vol.69, no.3

throughout the independent variables’ values. The quantile-quantile (QQ) plot, shown in Fig. 9,
is known as a chance plot. It is mostly used by plotting the quantiles and comparing them to
contrast two probability distributions. As the figure shows, the points’ distributions in the QQ
approximately fit the line. Therefore, the actual and the forecasted residuals were linearly related,
thus validating the recommended SCDG ballot classifier’s efficiency in identifying operational
threats in the supply chain 4.0.

Table 7: Descriptive statistics of data

Voting (SCDG) Voting (PSO) Voting (WOA) Voting (GWO) Voting GA)

Number of values 20 20 20 20 20
Mean 0.0000033 0.006525 0.004963 0.004572 0.002406
Std. Deviation 0 0.002004 0.003645 0.002573 0.00114
Std. Error of Mean 0 0.0004482 0.000815 0.0005754 0.0002549

Table 8: ANOVA test results of SCDG voting classifier vs. other voting classifiers

SS DF MS F (DFn, DFd) P-value

Treatment (between columns) 0.000514 4 0.000128 F (4, 95) = 25.45 P < 0.0001
Residual (within columns) 0.000479 95 5.04E-06 – –
Total 0.000993 99 – – –

Table 9: Wilcoxon rank-sum test results of SCDG voting classifier vs. other voting classifiers

Voting Voting Voting Voting Voting
(SCDG) (PSO) (WOA) (GWO) GA)

Theoretical median 0 0 0 0 0
Actual median 0.0000033 0.006174 0.005105 0.004533 0.002936
Number of values 20 20 20 20 20
Wilcoxon Signed-Rank 210 210 210 210 210
Test Sum of signed
ranks (W)
Sum of positive ranks 210 210 210 210 210
Sum of negative ranks 0 0 0 0 0
P-value (two-tailed) 0.0001 0.0001 0.0001 0.0001 0.0001
Exact or estimate? Exact Exact Exact Exact Exact
P-value summary ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗
Significant Yes Yes Yes Yes Yes
(alpha = 0.05)?
How big is the 0.0000033 0.006174 0.005105 0.004533 0.002936
discrepancy? Discrepancy
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Figure 9: Residuals vs. Fits Plot

6 Conclusion

Supply chain management systems’ fourth revolution, called supply chain 4.0, integrates the
manufacturing operations of the supply chain, telecommunication, and information technology
processes. Supply chain 4.0 aims to improve supply chains’ production systems and profitability;
however, it suffers from different operational and disruptive risks. A voting classifier based on a
proposed optimization algorithm is proposed in this paper to identify the operational risks in the
supply chain 4.0. The Sine Cosine Dynamic Group (SCDG) algorithm is proposed. The mecha-
nisms of exploitation and exploration of the original Sine Cosine Algorithm (CSA) are adjusted
by dynamic groups that are updated based on some conditions during the iterations. External
and internal features were collected and analyzed from different data sources of service level
agreements (SLAs) and various KSA firms’ transaction data to validate the proposed algorithm’s
efficiency. A high balanced accuracy or AUC and a Minimum Mean Square Error (MSE) were
achieved compared with other optimization-based classifiers. The ANOVA and Wilcoxon-rank-sum
tests were performed, which showed the superiority of the proposed SCDG voting classifier. Thus,
the experimental results indicate the effectiveness of the proposed SCDG algorithm-based voting
classifier.
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