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Abstract: Medical Resonance Imaging (MRI) is a noninvasive, nonradioac-
tive, and meticulous diagnostic modality capability in the field of medical
imaging. However, the efficiency of MR image reconstruction is affected by
its bulky image sets and slow process implementation. Therefore, to obtain a
high-quality reconstructed image we presented a sparse aware noise removal
technique that uses convolution neural network (SANR_CNN) for eliminat-
ing noise and improving the MR image reconstruction quality. The proposed
noise removal or denoising technique adopts a fast CNN architecture that
aids in training larger datasets with improved quality, and SARN algorithm
is used for building a dictionary learning technique for denoising large image
datasets. The proposed SANR_CNN model also preserves the details and
edges in the image during reconstruction. An experiment was conducted to
analyze the performance of SANR_CNN in a few existing models in regard
with peak signal-to-noise ratio (PSNR), structural similarity index (SSIM),
and mean squared error (MSE). The proposed SANR_CNN model achieved
higher PSNR, SSIM, and MSE efficiency than the other noise removal
techniques. The proposed architecture also provides transmission of these
denoised medical images through secured IoT architecture.

Keywords: Medical resonance imaging; convolutional neural network;
denoising; contrast enhancement; internet of things; rheumatoid arthritis

1 Introduction

In recent years, the global death rate has drastically increased due to medical conditions such
as cardiovascular diseases, sinusitis (sinus infection), rheumatoid arthritis (RA) [1], and hematoma,
etc. Identifying these diseases in the early stages aids in clinical diagnosis and reduction of the
mortality rate to a great extent. In the last few years, the detection of cardiovascular disease [2],
RA, and sinusitis has increased due to advances in imaging techniques such as magnetic resonance
imaging (MRI). MRI has become popular because of its nonradioactive and noninvasive nature,
precise high-resolution quality, and ability to diagnosis versatile diseases. MRI can be widely
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utilized in cardiac diagnosis due to its precise deformation detection in the myocardium and its
surrounding tissues [3]. Furthermore, it can be widely used in many applications such as the
detection of local myocardial strain and motion; angiography, arterial spin labelling; diagnosis of
heart attack; [4] and diagnosis of lung, breast, and colorectal cancer.

However, MRI is associated with several drawbacks that degrade its performance such as
limited spatial resolution, large encoding, huge image set, large power requirement, and high
temporal dimensions [5-7]. In the last decade, many researchers have attempted to limit these
drawbacks through MRI-related techniques such as compression sensing (CS), dictionary learning
with block matching, wavelet techniques. However, MR image recovery is not as efficient as
required because of the low-resolution quality of the image and the long time taken by many
existing techniques to eliminate noise and reconstruct MR image sets. The MRI speed is limited
due to physiological nerve stimulation, amplitude, and slew constraints.

CS is widely adopted and appreciated by many researchers due to its capability to reduce
data acquisition time during MRI [8-11], magnetic validation and sensitivity analysis using a
diffusion-weighted approach for the diagnosis of MR images. Reference [12] used low-rank matrix
approximation for processing dynamic MR images. A sequential dictionary learning algorithm was
used for functional MR images from correlated data to obtain the correlation between spatial
and temporal smoothness [13]. However, the aforementioned techniques have several issues such
as high nuclear relaxation time, normalization and optimization problems, realistic electromagnetic
issues, large power consumption during diagnosis [14], and most importantly, long processing time
leading to performance degradation of the system.

The low visual quality of the MR images provides inaccurate information and diagnosis for
the treatment. These images captured during the acquisition process are prone to electromagnetic
signals, reminisce the reflexes, are of irregular brightness and induce some artifacts. The artifacts
may be in-the form of noise, labels, and low contrast. In this article, we proposed a convolution
neural network (CNN) framework combined with a dictionary algorithm for removing noise,
maintaining the contrast, and preserving the details within an image.

To resolve the problems of contrast and noise in MR image, an efficient and speedy algorithm
that can easily handle large medical image processing is required. In recent years, the CNN
technique has emerged as the most promising technique for handling large image datasets due
to its robust feed-forward methods and easy training. It can reduce the drawbacks of contrast
and noise present in MR images and reconstruct the image. It can train large image datasets
faster and more precisely as it can perform parallel graphics processing unit (GPU) computing
using a compute unified device architecture (CUDA) programming framework. Therefore, these
special properties make the CNN architecture considerably different from those of other modern
techniques mentioned in the literature. The present study is aimed at solving speed and high-
quality reconstruction issues relating to medical images to maintain high performance. Speed
is important factor in medical imaging due to its bulky image sets and the need to transfer
these image sets to other stations. There is a chance of misbehaving reconstruction efficiency
with increasing processing speed. Therefore, high-quality reconstruction with high speed is a very
essential process in medical resonance imaging (especially MRI).

Therefore, in this paper, we present a sparse aware noise removal (SARN) technique that uses
CNN for reconstructing high-quality MR images. The SANR_CNN model reduces various noises
such as additive white gaussian (AWG), Rician, and speckle noise in MR images. A dictionary
learning algorithm, which is a subject-based patch extraction method, is integrated with sparse
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representation to denoise the MR images. It also increases accuracy (reduces error) and eliminates
computational complexity. Our SARN model, which is based on the CNN architecture, eliminates
sparse optimization and redundancy problems. It subdivides the input image into various patches
and passes it to the CNN architecture. Their difference is then fed to the training phase to
generate a dictionary and these generated dictionaries are used in the testing phase to generate a
high-quality image. In this way, our model eliminates various noises and outperforms all.

In India, 73 per cent of the population stays in rural areas and 80 per cent of trained
physicians stays in urban areas. Therefore, to bridge a gap between rural and urban areas, cloud-
based remote magnetic resonance imaging technologies and computer-aided diagnostics (CADs)
are served. This architecture provides access to physicians anywhere in the world to facilitate the
patients with proper diagnosis and security to medical images. This paper is organized in the
following sections which are as follows. In Section 2, we described our proposed methodology.
In Section 3, experimental results and evaluation are demonstrated and Section 4 concludes our

paper.

2 Literature Review

A few methods for contrast and noise estimation are available and studied thoroughly in the
literature. The fuzzy model proposed by authors in [15] was the practical method among noise
identifiers used in image processing. Linear and quadratic indices were used in this method for
measuring noise variance. An improved fuzzy histogram with bi-level equalization was proposed
by authors in [l16] for estimating quantitative parameters on gray images for preserving the
brightness and feature similarity index. A Gaussian mixture model proposed by authors in [15]
provided image reconstruction with partial discreteness. The robust principal component analysis
(RPCA) used for reconstructing MR images has many drawbacks. Thus, a nonconvex method that
solved problem of optimization on dynamic cardiac magnetic resonance data was proposed by
authors in [12].

Authors in [17] implemented the data acquisition process on MR images with a total variation
model. In this model, the idea of computing sensing and an iterative algorithm were used for tack-
ling the optimization problem. The sensing approach proposed by author in [18] was combined
with a low-dimensional model for exploiting the similarity and redundancy of MRI. Authors
in [19] measured the gradient difference between two similar images to restore a high-resolution
image with edge preservation. The similarity patches were deployed to estimate the intensity values.
A combination of backpropagation filters was used for increasing the reconstructed image quality.
Authors in [20] proposed a CNN-based automatic window to reduce the spatial resolution of
images; this window used a space depth inference process to increase the execution time. The
feature engineering process and tensor flow module were automatically imposed practically with a
series of CNN building blocks.

The feed-forward neural network for removal of Rician noise was implemented by author
in [21]. This model was imposed on a single-level noise with subintervals for training and
demonstrated mutual information. Sparse tensors with a reweighted factor and an improved Split
Bregman scheme were an efficient implementation by author in [22]. However, this model lacks
computational time compared with other models. In [23] author proposed a filter, Kolmogorov-
Smirnov based distance, for finding similar patches or pixels within an image. The cumulative
distribution function of different pixels was estimated and similarity was measured during the
acquisition process. Authors in [24] proposed a few nonlocal means (NLM) techniques that
provided higher efficiency and other denoising parameters. In this model, the three-dimensional
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(3D) NLM provided higher PSNR and SSIM values, but the adaptive multiresolution technique
provided higher accuracy for the contrast factor. A model developed by authors in [13] by using
partial separability and sparsity was utilized with highly under sampled space data. The image
contrast enhancement was improved using an artificial bee colony method proposed by author
in [25]. The transformation function combined with the method and extensive experiment were
used for improving visual quality.

The neural network and optimal bilateral filter used by authors in [18] denoised the image.
The obtained PSNR and RMSE values were considerably higher than some classifiers. The block
matching 3D method proposed by Hanchate and Joshi gave improved contrast and removed the
noise from PD and T1-weighted images in [26]. The block method which is based on a differential
filter implemented by authors in [27] for noise removal, estimated the intensity of block difference
of the images. Moreover, histograms were utilized for contrast improvement in the images. One
of the methods proposed by authors in [28] used the average intensity of each image applied on
fluid attenuation inversion recovery (FLAIR) images that were contaminated with white matter
hyperintensities (WMH). The CNN model enabled the extraction of some high-level features
from different images. This model proposed by author in [29] outperforms total variation (TV)
and block matching three dimensional (BM3D) methods as determined through a statistical test
conducted for assessment and calculation of the diffusion parameter.

The IoT based computing is used to solve or reduce the complexity of applications [30].
To compute low-resolution images, that involves multi-resolution processing compressed sensing
reconstruction algorithm was proposed. The patients’ data is stored in cloud with cryptographic
model and optimization approach [31]. The optimal key is chosen using hybrid swarm optimiza-
tion compared with diverse algorithms. The deep neural network used in [32] to synthesize data
that captures representations with multi-style data learning. This approach mitigates the cost and
time into IoT.

3 Methodology

We used a SARN technique with a CNN architecture to reconstruct high-quality MR images.
Our model consists of the following phases: dictionary creation phase, combining sparse coding
into the dictionary stage, and parametric reconstruction quality evaluation phase.

An input image is subdivided into various sparse layers in the dictionary creation stage. Every
image is divided into several different patches, which are then fed into our SANR_CNN model.
The output is used in the training stage to construct a dictionary. In the next stage, the sparse
aware denoising and reconstruction technique is adopted with dictionary learning methods and
the constructed dictionary is used in testing to eliminate noise. Thus, a high-quality medical MR
image is generated. In the last stage, the quality of the reconstructed image is evaluated based on
PSNR and SSIM. Our experimental results demonstrate the high resolution of the reconstructed
image.

An abundant amount of huge MR images is available in real-time that need to transferred
and reconstructed at other stations. However, modern techniques have certain limitations such
as high temporal dimensions, large power absorption, huge image dataset, and high slew-rate,
and low processing speed. Therefore, two techniques adopted in our model to evaluate high
reconstruction quality, maintain high processing speed, and eliminate noise were the SARN_CNN
and reconstruction technique in integration with dictionary learning method.
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3.1 Secure Transmission Module

IoT-enabled magnetic resonance imaging system architecture is illustrated in Fig. 1. This
provides medical facilities for rural people by transmitting MRI data to the cloud, which physi-
cians can then access remotely for diagnostic purposes. Fig. la, shows the workflow of CAD
module, after denoising the images can be stored and accessed by physicians provided with login
credentials. The communication modules directly connect to cloud service provider to exchange the
data with existing connection establishment like ethernet or Wi-Fi. The remote device or devices
connect through gateway protocol acting as intermediate between devices and cloud services.
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Figure 1: Proposed IoT architecture with pre-processing. (a) IoT communication module (b)
workflow of proposed CAD system with pre-processing step

The end-to-end encryption and decryption are performed with attribute-based encryption
(ABE). Attribute-based Encryption is an expanded Identity-based Encryption concept (IBE). ABE
is grounded on the Attribute Knowledge Community and Access Tree for encryption. ABE is a
cryptographic algorithm that only a user with sufficient attribute value for encrypted data can
decrypt this data. The Access Tree may be used to choose whether or not to allow access to
the data. In this paper cipher text-policy attribute-based encryption has four components such as
setup, encryption, decryption and keygen.

3.1.1 Setup Component
Setup(1”) outputs M (master key) and Pj (pubic key). The setup algorithm selects bilinear
group By and generator g. Then it randomly chooses two parameters «, 8, where P, = By, and

M = (/35 ga)‘

3.1.2 Encrypt Component
Encrypt outputs the cipher text (CT) corresponding a message given with public key and
access tree. The algorithm chooses each node of the tree with a polynomial ¢, starting from root
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node following top-down approach. Then cipher text is computed with CT = (T, C=M, (g, g%,
where C = h’.

3.1.3 Decrypt Component

Decrypt outputs the message M corresponding the cipher text CT. An attribute I = attrib (x),
where the node x is a leaf node. DT = (CT, x) = e(g, g)"*.

3.1.4 Keygen Component
Keygen outputs secret key (S;) with input a set of attributes S and a random number r, are

chosen for each attribute j Sy = (D= g@*"/#), where D = g'.
3.2 Noise Model and Distribution

The noise was represented and estimated using the intensity of each pixel by pixel. The noise
was represented using a probability distribution function (PDF) with the pixel intensity given in
Eq. (1).

M A+ M? AxM
Py (M) =—e —1I
o 20

where, A is the original pixel intensity and M is the present pixel intensity.

(1)

o2

10 = Bessel function of zeroth order.

¥ = Standard deviation of Gaussian noise.
Rayleigh distribution
<3 Rician distribution (2)

Gaussian distribution

In Eq. (2), the noise within the range of 1-3 is Rician noise, the noise above value is 3 leads
to Gaussian noise and the noise below the lowest value 1 corresponds to Rayleigh noise. The
Rician noise is usually represented by Eq. (3)

Y=Yre+jYm 3)

where, Ym and Yre are imaginary and actual values, respectively. The values are affected by &1
and £2, where &1 and £2 are Gaussian noise with mean 0 and standard deviation o.

Yre =1Icos6 &1 )

Ym = Isin6 + €2 (5)

where I, is the initial image, and © is the phase value. A noisy image is signified as a scale of
the raw image, represented by Eq. (6). The square of the magnitude is Rician noise calculated in
the image by Eq. (7).

Y| = \/ (IcosO + £1)? + (Isind + £2)? (6)

|Y? = (Icosh + £ 1) + (Isinf + £2)° (7)



CMC, 2021, vol.69, no.3 3133

3.3 Pre-Processing Using SANR_CNN

Neural Networks work on the learned image statistics. Many researchers have recently shown
their interest in neural networks, especially the CNN due to its high-quality reconstruction and
denoising capability. It can easily handle large processing and performs various tasks such as
traffic sign recognition, artificial neural networks, and medical image diagnosis, with the help of
its pure feed-forward methods and efficient training. The CNN mainly focuses on the analysis
of image data. The CNN architecture has a hierarchical structure and various hidden layers are
present, in, deep learning CNN techniques. A special CNN was adopted with sparse logistics
to denoise and create high-quality MR images by using dictionary learning methods. The CNN
architecture can denoise images based on prior knowledge and efficient training regardless of noise
type.

A medical image noise removal and reconstruction architecture is presented using model the
SANR_CNN model in Fig. 3. The input image was subdivided into various patches and then
passed to the SANR_CNN architecture, and the result was used in the training stage to create a
dictionary. This was further used in the testing stage to eliminate noise and added with the input
image, and a denoised reconstructed image was constructed. It consisted of two stages: a training
stage and a testing stage. The proposed model as shown in Fig. 2 has 17 hidden layers. It consists
of three kinds of layers; Conv, ReLU, and dilated network. The first and sixteenth layers are Conv
and ReLU. The second, fifth, ninth, and twelfth layers are dilated convolution. The final layer is
Conv with convolutional kernel of size 128 x 1 x 40 x 40 for first and final layer and 128 x 64
x 40 x 40 for other layers.
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Figure 2: Proposed CNN model with dilated layers

3.4 Training Phase

Training is the most essential stage that dictates the control flow for image data analysis.
Efficient training can always ensure high performance of any system. However, it is a large and
complex process that takes a large amount of time to train image data. Therefore, an efficient
technique is needed to train image data at an incredibly faster rate and very less processing
time. In training, samples are repeatedly drawn and parameter selection is an arbitrary process.
However, a better architecture is needed for effective performance. Hence, the study presented an
efficient SARN and reconstruction technique based on the CNN architecture to obtain a denoised
image.
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Figure 3: Noise removal and reconstruction architecture using SANR_CNN

In the study we used parallel GPU computing using the CUDA programming framework, to
train large medical images at a considerably faster rate. The parameters were estimated on basis of
the noise type and patches. More time was needed to train high-dimensional data. Regularization
can be achieved using pretraining and small normalization vectors are easier to change. Our
model was trained on greyscale medical images and can be trained on different noisy images to
provide a high-quality denoised image. For training in the model SANR_CNN model, we used
the difference between every layer to generate weights, and then, it is passed to the training phase.
The dictionary is then created, which helps in achieving quality denoising for the input image
with patches and reduces noise completely. In this way, we can compute effective training on
large datasets and our experimental outcomes verify our training efficiency by outperforming all
standard image denoising algorithms considering performance metrics such as PSNR, MSE, and
SSIM. The model was trained with 1200 knee magnetic resonance images with the size of 512 x
512 pixels. Tab. 1 describes the dataset used for proposed model. 480 images of T1-weighted, 590
images of T2-weighted, and 130 FLAIR images.

Table 1: Comparison of PSNR between SANR_CNN and other techniques

Techniques Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Summary
TNRD [37] 19.21 19.23  19.11 19.23 1926 19.09 19.27 19 £+ 0.30
BM3D [34] 2345 2581 2415 2468 2386 2394 2479 24 £+ 3.00
DnCNN [35] 29.92 3243  30.52  31.12 3271  31.01 3230 31 &+ 2.00
MP-DCNN [36] 17.51  20.72  18.53  18.51 19.56  20.76  20.85 19 £ 3.00

Proposed framework 40.59  41.72  40.17 4381 4292 41.23 41.58 41 £ 3.00
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3.5 Dictionary Learning

The Dictionary learning technique is presented to give support to the denoising technique to
obtain a denoised image. Let noise k be merged with the input image patch signal i in the Eq. (8),

Y=i+k, (8)

Here, patch-wise denoising is computed. Size of each patch is taken as m*m, where k more
often lies between 8 and 12. All the patches are individually denoised and a reconstructed image is
then constructed by integrating altogether inside a frame. Overlapped patches are being optimized
using the fusion process. Dictionary, D, whose size is considered as m2*n where, n > m2 on which
our dictionary is based.

In a dictionary learning process, feature element sets are being provided as an initialization
operation. A sparse linear reconstruction technique is used to denoise all noisy patches extracted
from an image. In Eq. (9), the AWG noisy error can be reduced as,

min|laflp s.t. [[De — Y|z <€, )

where, a pre-defined factor is provided as €, pseudo normalization /y, can be computed using || - ||,
and Y is a noisy image patch. Sparsity features are imposed using /y pseudo normalizing parame-
ters. However, the convex normalization problem cannot be completely sorted using the /; norm.
The factor € was chosen considering that the approximating norm error [|D, — Y||» can be
defined by its variance. Quality denoising can be achieved internally by using the sliding window
concept and the overlapping patches can be controlled by using the averaging scheme.

The dictionary learning scheme evaluates the high reconstruction quality image. Therefore, the
probable possibilities are as follows: (1) Use a designed dictionary, (2) a dictionary for noiseless
image dataset can be learned globally, and (3) a dictionary can be learned from a noisy image in
an adaptive manner.

We demonstrated that our dictionary learning algorithm gives better results. Best results
were observed when a noisy image was adaptively trained. In multiclass dictionaries, various
distinct sparse features, where interclass and incoherence dictionaries use image patches, can be
incorporated. Dictionary learning schemes can reduce the sparse optimization problem. Dictionary
learning performance can be increased using image patches in both algorithms. Dictionary learning
and patch classification methods process at lightning speed which utilizes only 15% of the training
time when denoising.

The sparse aware dictionary learning method does not require any heuristic information and
can adaptively learn sparse aware dictionaries. Here, the first dictionary was produced utilizing
the training phase. Later, the learned features (dictionaries) are utilized for good quality image
reconstruction.

3.6 Testing Phase

The testing efficiency was better than the training efficiency due to efficient denoising perfor-
mance and patch-wise classification. The patch difference could be reduced to avoid overfitting.



3136 CMC, 2021, vol.69, no.3

A similar dictionary which was created in the training phase to reduce noise, was provided in the
testing phase.

Ao (FUY =Y)2} = o ?) (Y —i)
1=1-+ —
F{(Y - Y)2}

; (10)

where, o depicts the noise level, and Eq. (10) defines mathematical representation of the denoised
image. It involves the computation of i and F{(Y — Y)?}. The computation of i are performed
effectively by filtering noisy images utilizing dictionary learning algorithms and considering a
patch size of m x k. The significant advantages of feature of utilizing dictionaries are its sparsity
error reduction ability and computational efficiency. The optimized PDF utilizing logarithm for
removing noise from the respective MRI image is provided in Eq. (11),

K
I o - / _A i
l(l—l—l) :l(l)+n |:§ Nr *wr(Nr*l(l))+62(Y—l(l))j| . (ll)

r=I1

where, N,  represents central pixel and * sign is convolution and 7 is used to evaluate step size.
Then, priori A is utilized for bringing good trade-off among likelihood. The final outcome of A
relies upon the noise level 0. The quality of reconstructed images can be evaluated on the basis
of PSNR, MSE, and SSIM.

4 Performance Evaluation

This section describes the various experiments that were conducted to get high-performance
efficiency on a similar dataset for MR images used in contrast to other modern techniques. Mul-
tiple experiments were conducted to denoise the MR images. The proposed denoising technique
reduced Gaussian and Rician errors for MR images. Experimental outcomes verified the high
reconstruction quality of various medical images using our proposed model. The experimental
outcomes outperformed conventional techniques in terms of PSNR, MSE, and SSIM. Our out-
comes demonstrated a substantially increased efficiency and reconstruction accuracy. Our model
needed very less execution time for the processing of large datasets. The proposed SANR_CNN
model was modeled and executed on Intel i3, 3.2 GHz with 12 GB RAM using a Windows oper-
ating system. The proposed SANR_CNN model was compared with the different noise removal
TNRD, BM3D, DnCNN and MP-DCNN. The proposed model has depth same as DnCNN
approach. The initial metrics are (i) alphal, alpha2, epsilon, and learning rate that are 0.9, 0.999,
1 * 1078, and 1 * 1073 respectively. (ii) The number of epochs is 180 and number of batches set
to 226. The learning rate of epochs are 1 * 1073 to 1 * 1073,

In the modern era, the need for noiseless high-quality medical images resulted in the immense
growth of MR images. Therefore, the demand for an effective technique that can accurately
reconstruct high-quality medical images in real-time after compression is huge. Hence, we have
presented a CNN model with the sparse representation technique SANR_CNN to ensure high-
quality denoised MR images. All the experiments were implemented for the MR images (T1-
weighted, T2-weighted and FLAIR). The SANR_CNN model was implemented using a MATLAB
library and the Python framework. The entire experiments were conducted under a parallel GPU
computing environment using a CUDA computing framework.
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(a) (b) (c) (d)

Figure 4: Outcome achieved using the proposed model. Figs. 4a and 4c are medical input images.
Similarly, Figs. 4b and 4d are outcomes of the proposed model. The first row represents T1-
weighted images, the second row represents FLAIR images and the remaining rows represent
T2-weighted images. (a) Input image. (b) Reconstructed image. (c) Input image. (d) Reconstructed
image
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The experiment was conducted in seven trials and a summary was collected. Fig. 4 discusses
the outcomes of the medical images. The first and third columns illustrate the input images, and
the second and fourth columns illustrate the outcome of the proposed model. The model has
experimented on a few MR images such as: T1-weighted MR images represented in the first row,
FLAIR MR images in the second row, and T2-weighted MR images represented in the remaining
rows. Tab. 1 describes the PSNR, where our proposed model provided an outcome of more than
40 dB for all trails. Tab. 2 provides information regarding the SSIM of the proposed model
and compared it with different methods. The proposed model exhibited an SSIM value of 0.87
4+ 0.08 which was best among other compared methods. Tab. 3 provides information regarding
the MSE, exhibiting that our model gave the least error compared with others. Tab. 4 discusses
the computational time required for the overall processing of the image. The proposed model
processed with an approximate time of 96 s.

Table 2: Comparison of SSIM between SANR_CNN and other techniques

Techniques Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Summary
TNRD [37] 0.64 0.68 0.63 0.68 0.69 0.63 0.65 0.65 + 0.05
BM3D [34] 0.59 0.54 0.58 0.60 0.56 0.58 0.59 0.57 £ 0.05
DnCNN [35] 0.78 0.79 0.74 0.76 0.73 0.76 0.77 0.75 £ 0.7
MP-DCNN [36] 0.67 0.63 0.64 0.66 0.69 0.62 0.65 0.65 + 0.05

Proposed framework 0.81 0.92 0.86 0.90 0.87 0.89 0.92 0.87 £ 0.08

Table 3: Comparison of MSE between SANR_CNN and other techniques

Techniques Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Summary

TNRD [33] 0.015 0.015 0.013 0.015 0.015 0.012 0.015 0.014 + 0.003
BM3D [34] 0.003  0.003 0.003 0.003 0.003 0.003 0.003 0.003 + 0.001
DnCNN [35] 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 £ 0.003

MP-DCNN [36] 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 £ 0.001
Proposed framework 0.005 0.003  0.004 0.006 0.006 0.005 0.005 *0.004 = 0.002

Table 4: Average computational time

Techniques TNRD [33] BM3D [34] DnCNN [35] MP-DCNN [36] Proposed method

Execution 160.54 123.17 195.43 109.48 *96.22
time (s)

The ease of understanding the illustration of experimental measures used efficiently in our
model are represented in Figs. 5-8. Fig. 5 illustrates the SSIM. The proposed model achieved
the measure of approximately 0.87, which is the best compared with the measures achieved by
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other methods. The other methods achieved an approximate average value of 0.65. Method 2 has
exhibited the lowest value of 0.57.
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Figure 5: Comparative analysis of SSIM of the proposed method and other techniques
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Figure 6: Comparative analysis of PSNR of the proposed method and other techniques

Fig. 6 illustrates PSNR value, which should always be more, so that noise can be eliminated.
Our proposed model achieved an average value of approximately 41 dB; thus, it can eliminate
the noise occurred during acquisition in the MR images. Methods 1 and 4 achieved the same
outcomes in terms of PSNR. Method 3 gained a higher PSNR value with 31 dB. Fig. 7 illustrates
the MSE of all the methods used for analytical comparison with the proposed model. The
MSE achieved by our model was approximately 0.004. Fewer errors were found in our model
during processing. Fig. § illustrates an approximate execution time of 96 s. The other comparative
methods demonstrated that Method 4 possessed the value nearest to that of the proposed model.
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5 Conclusion

MRI is a nonradioactive detection method extensively used to inspect biological structures
and arrangements of the human physique. However, MR medical image detection is a complex,
slow, and bulky procedure. Therefore, we implemented a SANR technique using the CNN archi-
tecture (SANR_CNN) for the fast high-quality reconstruction of MR medical images. In our
SANR_CNN model, we implemented a dictionary learning algorithm by producing a dictionary
while training for the efficient denoising of various types of noises. We used various parameters
to define the high quality of our reconstructed MR medical images, namely PSNR and SSIM.
The overall results demonstrated that the proposed SANR_CNN model performed considerably
much better than other noise removal techniques with respect to PSNR, MSE, and SSIM. Our
model produced high PSNR results of 414+3.0 dB, which is considerably higher than those
produced by any other algorithm. Additionally, it achieved MSE of 0.004 + 0.002, which is
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much lower than that achieved by other noise removal techniques. Similarly, the SSIM outcomes
0.87+0.08 obtained using our model SANR_CNN. These results demonstrate the superiority of
our proposed model over a few other techniques.

We would further improve the contrast parameter of reconstructed MRIs with a better hybrid
algorithm. In the future along with improvement in processing speed, range of transmission, and
carryout performance evaluation considering more diverse datasets and performance metrics.
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