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Abstract: The exponential increase in new coronavirus disease 2019
(COVID-19) cases and deaths has made COVID-19 the leading cause of
death in many countries. Thus, in this study, we propose an efficient technique
for the automatic detection of COVID-19 and pneumonia based on X-ray
images. A stacked denoising convolutional autoencoder (SDCA) model was
proposed to classify X-ray images into three classes: normal, pneumonia,
and COVID-19. The SDCA model was used to obtain a good representation
of the input data and extract the relevant features from noisy images. The
proposed model’s architecture mainly composed of eight autoencoders, which
were fed to two dense layers and SoftMax classifiers. The proposed model
was evaluated with 6356 images from the datasets from different sources. The
experiments and evaluation of the proposed model were applied to an 80/20
training/validation split and for five cross-validation data splitting, respec-
tively. The metrics used for the SDCA model were the classification accuracy,
precision, sensitivity, and specificity for both schemes. Our results demon-
strated the superiority of the proposed model in classifying X-ray images with
high accuracy of 96.8%. Therefore, this model can help physicians accelerate
COVID-19 diagnosis.

Keywords: Stacked autoencoder; augmentation; multiclassification; COVID-19;
convolutional neural network

1 Introduction

The coronavirus disease 2019 (COVID-19) pandemic has severely disrupted various industries,
sectors, and occupations. According to the World Health Organization (WHO), the number of
new cases exponentially increases globally. The daily average number of new confirmed cases
last February 2021 was recorded to be more than 300000, posing a significant challenge for the
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healthcare sector. WHO reported that health services had been partially or entirely disrupted in
many countries, wherein all the efforts were channeled toward the fight against COVID-19.

Different studies [1,2] have found that chest computed tomography (CCT) outperforms
the reverse transcription-polymerase chain reaction (RT-PCR) of nose and throat samples for
COVID-19 diagnosis. CCT demonstrates a higher sensitivity at 98% in diagnosing COVID-19
compared to RT-PCR at 71% [3]. Therefore, CCT may be a primary tool for physicians to
diagnose and assess suspected patients with COVID-19. CCT scan can be especially useful when
RT-PCR results are delayed by many days or the number of infected persons is increasing rapidly.
Also, with its low cost and speed, chest X-rays (CXR) are identified as an effective procedure for
diagnosing suspected COVID-19 patients. However, X-ray imaging tests pose critical challenges to
radiologists and specialists because the water-containing white spots in the lung images can often
lead to the misdiagnosis of COVID-19 for pneumonia or other pulmonary diseases.

Due to the continuous increase in the number of confirmed COVID-19 cases, researchers
are working to apply artificial intelligence (AI), machine learning (ML), and deep learning (DL)
techniques to fight the pandemic. In addition, numerous studies have been conducted on the
diagnosis of COVID-19 using CXR and CCT [4–11].

Therefore, this study proposes the use of a deep learning model based on a stacked denoising
convolutional autoencoder (SDCA) to detect COVID-19 from X-ray images automatically. In this
model, the stacked autoencoder (AE) reconstructs the original inputs from the noisy images. The
SDCA is then divided into three steps. First, the SDCA extracts the relevant features to represent
the X-ray image data. Second, the feature matrix is used as an input of the fully connected layers
to minimize the loss function. Third, the system is evaluated based on the test data. The dataset
used for the evaluation was collected from different sources, and a preprocessed operation was
then applied to it.

The rest of this paper is organized as follows. Section 2 presents a review of recent works
related to algorithms applied for COVID-19 detection. Section 3 describes the proposed model and
the dataset collection. Section 4 presents the experimental results and discussion. Finally, Section 5
provides conclusion for this paper.

2 Related Works

The section reviews the contributions for diagnoses of COVID-19 using radiological images
and CCT scans. On the other hand, different deep learning networks have been used to diagnose
COVID-19 using various public databases. Popular deep learning models such as a current neural
network (RNN), convolutional neural network (CNN), deep belief network, autoencoder (AE),
generative adversarial network, and combined CNN-RNN have been widely used to diagnose
COVID-19 automatically.

Diagnosing COVID-19 via a deep learning model (Fig. 1) is based on the classification and
segmentation systems. The classification system aims to identify patients with COVID-19 by using
different processes, including feature extraction, feature selection, and preprocessing stages. On
the other hand, the segmentation system has been mainly applied to segment the CCT scans
and CXR images of the infected patients. In addition, it can be used to divide images into
significant zones in medicine. The AI techniques, specifically deep learning techniques, can handle
this process more effectively than manual segmentation, which can be time-consuming. Among
the most crucial segmentation methods, U-Net [12] and fuzzy clustering methods [13,14] have
produced empirical results with high performance. The input of deep learning models is patients’
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images and their corresponding segments that have been manually labeled by the doctors. Thus,
training is performed to segment the input images accurately.

Figure 1: Deep learning models for COVID-19 diagnosis [15].

Many DL algorithms with varying modalities, datasets, preprocessing algorithms, machine
learning techniques, and performance criteria have been explored for COVID-19 diagnosis
(Tab. 1).

Table 1: DL algorithms for COVID-19 diagnosis

Reference Dataset Modalities Number of
classes

Preprocessing Deep learning
algorithms

Performance
criteria

[16] COVIDGR-1.0, CXR and CCT 3 Segmentation, data
augmentation, and
data transformation

COVID-SDNet Accuracy:
97.72% ±
0.95%

[17] Chest imaging 2020;
SIRM COVID-19

CXR 3 Data augmentation ELM classifier 94.07%

[18] ADMIRE CXR and CCT 2 A software tool
based on
postprocessing

A software tool
based on machine
learning
postprocessing

92.3%

[19] Kaggle CXR images CXR 2 – CNN 100%
[20] C19-CRX-M,

COVIDx
CXR and CCT 2 Augmentation EfficientNet-C19

B
100%

[21] COVIDx X-ray images 4 Data augmentation,
normalizing, and
rescaling

ResNet-50 96.23%

[22] Different datasets X-ray images
and CT-Scan

2 Resizing and
cropping

AlexNet 98%

[23] Cohens GitHub X-ray images 2 Rescaling VGG19 and
DenseNet201

90%

[24] Different datasets X-ray images 2 Data augmentation
and rescaling

ResNet-18 96%

[25] COVIDx X-ray images Data augmentation COVID-Net 93.3%
[26] Guangzhou Women

and Children’s
Medical Center

X-ray images 3 Augmentation CNN 96.4%

[27] Different datasets X-ray images 4 Rescaling ResNet-50 98%

In one study, the authors proposed the COVID smart data-based network (COVID-SDNet)
algorithm for diagnosing COVID-19 using the CXR image COVIDGR-1.0 dataset. Different
preprocessing techniques, including segmentation, data augmentation, and data transformation,
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were used to eliminate irrelevant information from the original images [16]. In another study,
ResNet-50 was used to extract features from a dataset collected from different publicly available
repositories. A deep learning-based extreme-learning machine (ELM) classifier was employed to
distinguish the patient with COVID-19 from the uninfected patients [17]. Meanwhile, Martini
et al. [18] compared the interpretation of the conventional radiography CXR with machine
learning-enhanced CXR-mlCXR for COVID-19 diagnosis. They found that the sensitivity for
COVID-19/pneumonia diagnosis was improved based on the mlCXR image interpretation. While
one study applied the convolutional neural network model for COVID-19 diagnosis based on
the CXR images collected from the Kaggle dataset [19], another study demonstrated that deep
learning models failed to classify the CXR images taken from smartphones [20]. Therefore, it is
essential to check the sources of images before inputting the images into deep learning models.

DL algorithms have been applied to COVID-19 diagnosis with varying degrees of success. For
example, one study proposed the COVID-ResNet model on the COVIDx dataset and achieved
a 96.23% detection accuracy in all the classes [21]. Another team diagnosed COVID-19 based
on the AlexNet model. They collected the images from various sources and were able to achieve
a 98% detection accuracy on two main classes [22]. Meanwhile, a team applied VGG-19 and
DenseNet201 models to identify health status against the COVID-19. As a result, they achieved
a 90% accuracy for the binary classification of X-ray images [23]. Moreover, a team developed
a new deep learning model for anomaly detection. First, they collected chest X-ray images from
GitHub and other images from the ChestX-ray14 dataset. With binary classification, their model
can detect 96% of the COVID-19 cases [24]. Lastly, a group of researchers developed a new deep
CNN called COVID-Net to detect COVID-19 disease from CXR images and the COVIDx dataset.
In addition, their model could predict COVID cases with critical factors [25].

3 Methods and Materials

3.1 The Proposed Model
In this work, the proposed SDCA model with multiple layers was used to label each image

as either COVID-19, pneumonia, or normal. We propose a customized loss function to improve
the reconstruction of the original images. SDCA, which is a stochastic extension of the classic
autoencoder (AE) [28], is used to reduce the dimensions and learn latent features; it can also be
used as a generative model to generate fake samples.

SDCA tries to learn the identity function where the output is reproduced from the input.
Generally, the AE is built by two parts of encoders, which project input data onto a space with
low dimension.

Let x ∈Rm×n be a distorted image and y ∈Rm×n be the corresponding normal image without
any noise. The image distortion can be defined as [29]:

x= δ(x) (1)

where δ : Rm×n → Rm×n depicts a random distortion of the normal image. The encoder tries to
compress the image into a smaller representation, also known as a latent space or bottleneck layer.
The encoder is defined as:

h (xi)= f (Wxi+ b) (2)

where xi is the input of noisy image data, W is the matrix of the weight of CNN, b is the bias
of the CNN, and f is the activation function. The parameter (W, b) of the encoder is used to
reconstruct the original data via the encoder’s inverse function.
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Based on this bottleneck, the AE tries to rebuild the original image using the decoder
function:

ŷ(xi)= f
(
W ′h (xi)+ b′

)
(3)

where W ′ is the weight matrix, b′ is the bias, and ŷ(xi) is the approximation of the original image
yi. All parameters are optimized over the input data x (x1, x2, . . . , xn) and y(y1, y2, . . . , xn,).

The training of the autoencoder is to compute the distance between the compressed and
decompressed representation of the data. Different metrics can be used to compute the loss
between the input and output cross-entropy or mean square error functions of the SDCA. The
loss function applied to approximate the input data is defined as the sum of the loss of each
layer, as defined in Eq. (4).

θ = argmin
θ

N∑
i=1

∥∥yi− ŷ (xi)
∥∥ (4)

where N is the number of layers in the SDCA.

The sparsity regularized reconstruction loss function, L1, is defined as follows to prevent the
overfitting problem:

L1
(
x, y,W , b,W ′,b′

) = 1
N

N∑
i=1

1
2

∥∥yi− ŷ (xi)
∥∥2
2+βKL

(
ρ̂ || ρ)+ λ

2

(
‖W‖2F + ∥∥W ′∥∥2

F

)
(5)

where β represents the sparsity term and λ is the weight decay term coefficient.

The relative entropy Kullback–Leibler divergence [30] is a measure of how the target activa-
tion, ρ, and the average activation of the hidden layer, ρ̂, are different from each other.

L
(
ρ̂ || ρ) =

|ρ̂|∑
j=1

ρlog
ρ

p̂j
+ (1−ρ) log

1−ρ

1− p̂j
(6)

p̂= 1
N

N∑
i

h(xi) (7)

According to Erhan et al. [31], we remove the sparsity regularization from the expression of
the loss when the pre-trained weights are used to regulate the network. Consequently, the entire
loss function of LSDCA will be minimized based on the gradient descent optimization of the
algorithm [32].

LSDCA
(
x, y,W , b,W ′, b′

) = 1
N

N∑
i=1

1
2

∥∥yi− ŷ (xi)
∥∥2
2+

λ

2

16∑
l=1

‖Wl‖2F (8)

In this section, the hyperparameter tuning of the proposed model will be introduced. The
proposed model consists of three main parts. Technically, CNN [33] algorithm is considered as
one of the best and most robust algorithms that can extract the relevant features from the input
data at different levels without any human supervision. Due to its architectural structure and
layers, CNN is reliable for image processing tasks. CNN structure consists of a combination of the
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convolutional layers, non-linear processing units, and subsampling layers. In particular, this stage is
focused on obtaining deep features with discriminative representation capability. The convolutional
matrix C can be computed based on a filter matrix B and image matrix A as follows:

C [i, j]= (A ∗B) (i, j)=
∑
i

∑
j

A[i+m, j+ n] ·B[m, n] (9)

where matrix A represents the input matrix, B refers to a 2D filter matrix with size (m, n), and C
denotes the feature map. Therefore, each element of C is computed from the sum of the element-
wise multiplication of A and B.

The proposed model is designed based on the stack of layers. The architecture of the encoding
stage mainly includes a set of kernels, batch normalization, 2D Max-pooling, and up sampling
operation. In addition, the size of the filters varies between the layers. The SDCA is composed of
16 convolutional layers, 14 patch normalization layers, 2 Max-pooling layers, and 1 fully connected
layer composed of 2 dense layers and 1 SoftMax layer. The encoder architecture comprises 2
embedded bloc 1, followed by 2 embedded bloc 2 (Figs. 2 and 3, respectively). Bloc 1 is designed
as a stack of convolution, batch normalization, and Max-pooling, whereas Bloc 2 is designed as
bloc1 without the Max-pooling layer.

Figure 2: The embedded bloc1

Figure 3: The embedded bloc 2

Indeed, different architectures have been proposed during the expansion of convolutional
neural networks. In many cases, adding more layers often yield better data compression [34]. The
detailed descriptions of operations used are described in the following subsections (Fig. 4).

3.2 Image Preprocessing
Rifai et al. [35] demonstrated that adding some noise to an image input led to a significant

improvement in generalizing the input data. In addition, this technique can be considered a kind
of augmentation of the dataset. In this experiment, all the images in the database were resized
to 32 × 32 × 1 to obtain a consistent dimension for all the input images. Another essential
preprocess stage is intensity normalization, which converts the intensity values of all images from
[0, 255] to the standard normal distribution to the intensity range of [0, 1].



CMC, 2021, vol.69, no.3 3265

Figure 4: The proposed architecture of SDCA

3.3 Data Augmentation
Imbalanced data can have a critical impact on the training process and detection capability

of the deep learning network; therefore, it is considered a limitation for classification. Besides,
oversampling technique (SMOTE) [36], random under-sampling, random oversampling, synthetic
oversampling: SMOTE, the Adaptive Synthetic Sampling Method (ADASYN) [37] has been iden-
tified as one of the techniques that can solve the problem of unbalanced data. For example, new
training examples from existing training data are added to the classes with fewer samples using
the augmentation procedure to reduce the problem of imbalanced data. Usually, this method is
used only on the training dataset, and not on the validation and test datasets. This technique
is based on several transforms, such as shifts, flips, zooms, and rotation, that can be applied to
an image. In this study, the following operations have been applied to the input images: random
rotation of ±10%, zoom range of ±10%, horizontal flipping of ±10%, and, finally, the vertical
flipping shift of 10%.

3.4 Evaluation Metrics
In this study, several metrics, accuracy, precision, recall, and F1 are used to evaluate the

proposed model. The metrics are calculated, respectively, as:

Accuracy= TP+TN
TP+FP+FN +TN

(10)

Recall= TP
TP+FN

(11)

Precision= TP
TP+FP

(12)
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F1= 2TP
2TP+FP+FN

(13)

where TP, FN, FP, and TN represent the number of true positives, false negatives, false positives,
and true negatives, respectively.

3.5 Datasets
The SDCA was applied to a dataset containing 6356 images to verify the effectiveness of the

proposed model. The dataset was collected from diverse sources of images of normal, pneumonia,
and COVID-19 cases. First, 5856 X-ray images were collected from the Kaggle repository [38],
including 4273 pneumonia and 1583 normal. Then, 125 images were collected from Ozturk
et al. [39] and augmented to obtain 500 images. The number of X-ray images of each class was
calculated (Tab. 2).

Table 2: Dataset description

Labels Normal Pneumonia COVID-19 Total

Total 1583 4273 500 6356

4 Experimental Results

In this study, Python was used for the experiment. A Windows-based computer system with
an Intel (R) Core (TM) i7-7700 HQ 2.8 GHz processor and 16 GB RAM was used. The proposed
architecture was implemented using the Keras package with TensorFlow on Nvidia GeForce GtX
1050 Ti GPU with 4 GB RAM. The SDCA was evaluated using an 80% training and 20% test
set, combined with a fivefold cross-validation method. The accuracy, precision, recall, F1-score,
and confusion matrix were computed for each experiment. For all the experiments the average
of error is taken from 30 executed runs for all the used methods. All the parameters are chosen
based on literature used value.

In the first experiment, 1589 images of the dataset were used for the test stage. As mentioned
above, the appropriate dataset of noisy X-ray images was developed by applying the Gaussian
noise. The initial value of the Gaussian is selected as μ,σ = 0.30 to regulate the level of noise
in the images. The proposed SDCA model was trained to have better performance by using 16
layers in the encoder-decoder, followed by three connected layers that were used to increase the
prediction performance. In the experiments, the chosen image size was fixed to 32 × 32 with
batch 64. The proposed deep learning-based SDCA model achieved the reconstruction of the
original X-ray images within 50 epochs. Fig. 5 presents the training and validation loss during the
reconstruction of the original input. Fig. 6 shows the feature map of the convolutional layer.

Figs. 7 and 8 depict the noised image used as input of the SDCA model and restored images
after the training, respectively. Fig. 9 represents the original image without noise. The SDCA
model succeeded in removing the noises with a loss of 0.003, but some contract improvements
are needed for more visibility.

Then, the performance metrics of the proposed model between two splitting ratios were
analyzed. The results of the metric performance by data splitting (80%, 20%) were reported
(Tab. 3).
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Figure 5: Training and validation loss of features extraction map

Figure 6: Features map at block 6
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Figure 7: Test images with noise

Figure 8: Reconstruction of the noisy test images

Figure 9: Original image without noise

Table 3: Performance metrics of the proposed model on the splitting method of 80% and 20%

Precision (%) Recall (%) F1-score (%) Number of samples

COVID-19 100 99 100 125
Normal 93 92 93 417
Pneumonia 97 97 97 1047
Average 97 96 97
Accuracy 96.8

Also, the precision, recall, and F1-score values for the three cases were visualized (Fig. 10).
All the used metrics with the number of samples for each test class were summarized (Tab. 3).
For the COVID-19 cases, the proposed SDCA deep learning model has reportedly achieved 100%
precision, 99% recall, and 100% F1-score. For the pneumonia cases, the model accomplished 97%
for all the metrics. For the normal cases, the model achieved slightly lower scores than the other
cases, i.e., 93% precision, 92% recall, and 93% F1-score. The average accuracy that the proposed
model achieved was 96.8%. The test results of the confusion matrix (Fig. 11) demonstrated that
the proposed model accurately detected COVID-19 and pneumonia images. Among the 1589
images of the test dataset, only 62 images were misclassified. Among the 125 COVID-19 images,
only 1 image was misclassified. Lastly, the validation accuracy and loss (Fig. 12) were displayed.

The metric performance results of the proposed SDCA by using fivefold cross-validation were
shown in Tab. 4.

From Fig. 13, notably, the proposed model successfully detected COVID-19. In Fold 1, only 5
images were misclassified among the 90 COVID-19 samples. In addition, only 2 images among the
79 images were misclassified. In Fold 3, all the images were correctly classified. Meanwhile, only
three and two images were misclassified in Folds 4 and 5, respectively. The average accuracy was
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96.80% and 95.75% in the 80%, 20% data splitting and fivefold cross-validation, respectively. The
accuracy of the proposed SDCA in this study was compared to that of other models (Tab. 5).
The precision, F1-score, and recall scores for the five folds are shown in Fig. 14.

0.85

0.9

0.95

1

1.05

Precision Recall F1 score

Covid19 Normal Pneumonia

Figure 10: Results of SDCA on train test split

Figure 11: Confusion matrix by 80%, 20% data splitting

Figure 12: The loss function of the SDCA model
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Table 4: Performance metrics by five folds of data splitting

Folds Accuracy
(%)

Precision
(%)

Recall
(%)

F1-score
(%)

Number of
COVID-19

Number of
normal

Number of
pneumonia

Fold 1 96 96 96 96 90 301 881
Fold 2 95 95 95 95 97 316 858
Fold 3 95 95 95 95 99 338 834
Fold 4 96 96 96 96 98 299 874
Fold 5 96 96 96 99 116 329 826
Average 95.75 95.75 95.75 95.75

Fold 1 Fold 2 Fold 3

Fold 4 Fold 5

Figure 13: Five folds confusion matrix for multiclassification tasks

5 Discussion

This work was evaluated based on a public dataset of X-ray images to detect diseases.
Based on deep learning, the proposed model succeeded in differentiating the CXR radiographs
of COVID-19, pneumonia, and healthy patients with high accuracy, sensitivity, and specificity.
The SDCA model achieved the extraction of the relevant features based on noisy images and
the augmentation approach. The model’s validation was based on 6356 X-ray images divided
into training and test data splitting and fivefold cross-validations, respectively. Although the data
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were imbalanced, the results derived from the proposed model were impressive. The experiment
results on CXR images demonstrated that the features extracted by stacked denoising autoencoder
architecture and trained by the feed-forward neural network classifier achieved an accuracy of
96.8%. Therefore, physicians can use this framework to accelerate the diagnosis of COVID-19 and
improve their decisions regarding misclassified X-ray images by radiologists.

Table 5: The comparison of the performance of different models

References Architecture Accuracy of (COVID-19)

[4] Xception + ResNet-50V2 91.4
[5] AOCT-Net 95.2
[6] VGG19 93.5
[7] Xception 89.5
[8] ResNet-50 + SVM 95.4
[9] GoogLeNet 80.6
[10] DenseNet 88.9
[11] Inception ResNetV2 92.2
[25] Tailored CNN 92.3
Proposed SDCA 96.80

0.85

0.9

0.95

1

1.05

   precision Recall F1-score

    Covid19       Normal    Pneumonia

Figure 14: Fold 5 results

Clinical diagnosis based on computed tomography images faces many challenges as the num-
ber of people with COVID-19 pneumonia is huge, and in contrast there is a shortage of highly
experienced radiologists to continuously distinguish between CT images of pneumonia and images
of the emerging COVID-19 virus.

The large amount of CT scans is also one of the factors affecting the quality of CT images
during the data storage and transmission process.

As it is mentioned that diagnosis of COVID-19 is a challenging task. In this paper, the SDCA
has been applied to X-ray images of two types of pulmonary diseases, including COVID-19. It is
found that the results COVID-19 is very much similar to the results of pneumonia disease. For
this reason, it is better to have an experienced radiologist to continuously distinguish X-ray images
of pneumonia to COVID-19 pneumonia.

Although the high performance of the proposed model for the COVID-19 pneumonia diag-
nosis, there are nonetheless certain limitation and these issues should be additionally considered
in future works.
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First of all, the experimentations of this works just used only the chest X-ray images for the
diagnosis of the COVID-19 cases, however clinical data and laboratory tests are considered of the
pillars a correct diagnosis. Second, the strategy for getting a X-ray images additionally influence
on its quality.
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