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Abstract: Osteosarcoma is one of the most widespread causes of bone can-
cer globally and has a high mortality rate. Early diagnosis may increase the
chances of treatment and survival however the process is time-consuming
(reliability and complexity involved to extract the hand-crafted features) and
largely depends on pathologists’ experience. Convolutional Neural Network
(CNN-—an end-to-end model) is known to be an alternative to overcome the
aforesaid problems. Therefore, this work proposes a compact CNN architec-
ture that has been rigorously explored on a Small Osteosarcoma histology
Image Dataaseet (a high-class imbalanced dataset). Though, during training,
class-imbalanced data can negatively affect the performance of CNN. There-
fore, an oversampling technique has been proposed to overcome the aforesaid
issue and improve generalization performance. In this process, a hierarchical
CNN model is designed, in which the former model is non-regularized (due
to dense architecture) and the later one is regularized, specifically designed for
small histopathology images. Moreover, the regularized model is integrated
with CNN’s basic architecture to reduce overfitting. Experimental results
demonstrate that oversampling might be an effective way to address the imbal-
anced class problem during training. The training and testing accuracies of the
non-regularized CNN model are 98% & 78% with an imbalanced dataset and
96% & 81% with a balanced dataset, respectively. The regularized CNN model
training and testing accuracies are 84% & 75% for an imbalanced dataset and
87% & 86% for a balanced dataset.

Keywords: Convolutional neural network; histopathological image classification;
osteosarcoma; computer-aided diagnosis

1 Introduction

Cancer is a life-threatening disease that develops when the cell division becomes uncontrollable
and abnormal cells invade into adjacent tissues, affecting the control mechanism. Osteosarcoma
is the most prevalent kind of malignant bone cancer which occurs in the metaphysis of long
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bones on lower limbs. The key symptoms of Osteosarcoma are; redness and warmness, moderate
localized bone pain, which leads to severe pain (affects joint functions and body movement).
Starting from a moderate to a worst-case scenario, it may spread near the lungs, may affect other
bones and soft tissues. Therefore, early-stage diagnoses (laboratory tests such as different blood
tests, diagnosed by a pathologist, biopsy, etc.) lead to successful treatment.

The biopsy test is considered as the most reliable test which identifies the cells as concerous
or not, if the former, then at what stage, grade, or type by conducting the microscopic inspection
of hematoxylin and Eosin (H&E) stained slides of tissues. However, the microscopic inspection
is a poised and challenging procedure because of a high histologic mutability level within the
tumor. Therefore, to avoid the conflicts of pathologists’ views, minimize diagnosing time and
inspect various treatment options, automatic evaluation, and inspection of H&E slides can be very
helpful. With technological advancements, H&S slides are scanned to histopathological images
which are being used for many machine learning models. Traditional machine learning models
do not perform well due to many reasons, for instance, hassle to extract the quality hand
crafferd featuers (i.e., linear or non-linear), the choice of classifier, etc. Thus, Convolutional Neural
Network (CNN) can be considered as an alternative approach labeled as end-to-end model, i.e.,
feature extraction and classification.

More specifically, CNN can detect cancer cells, segmentation of cancerous regions, and clas-
sification them as a tumor or non-tumor in histopathology images. However, these models are
quite sensitive to the class imbalance issues. This is because the samples do not have uniform
distribution within classes and some classes referred to as majority classes significantly contain
a higher number of samples, while minority classes have fewer samples [1,2]. There are also
other numerous real-world applications along with histopathological images where data from
related classes have lack equal availability, for instance, Diagnosis of Diseases [3], Remote Sensing
and Hyperspectral Imaging [4], Network Intrusion Detection [5], Telecommunication [6], Natural
Disaster [7], Chemical Engineering [§], and Fraud Detection [9].

The imbalanced class distribution (ICD) forces CNN architectures to be biased towards the
majority class; thus, the characteristics of the minority classes are learned inadequately, leading to
misclassification and becomes more difficult to predict. The majority of class samples and their
proper classification are more important to the classifier. ICD affects both convergences during the
training phase and the generalization of a model on the test set. Many class balancing techniques
have been developed to mitigate this issue, mainly categorized into three groups [10], i.e., Data
Level, Algorithmic Level and Cost-Sensitive.

(1) Data level techniques add a pre-processing step where the data distribution is rebalanced
to decrease the effect of the skewed class distribution in the learning process [11].

(2) Algorithm-level approaches create or modify the algorithms that exist to consider the
significance of positive examples [12].

(3) Cost-sensitive methods combine both algorithm and data level approaches to incorporate
different misclassification costs for each class in the learning phase.

Another challenge that CNN faces for those histopathological image datasets where lack of
variability exists among inter classes and lack of similarities within intra-class. One example of
such a dataset is the Osteosarcoma histopathology images dataset [13]. Histopathological datasets
have high variability among inter classes and lack of variability within the intra-class. In complex
datasets, for the classification of images into appropriate class, CNN falls into confusion.
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In this research, the aforementioned challenges of histopathological image datasets have
been addressed by conducting experiments on small imbalanced and balanced Osteosarcoma
histopathology image datasets. The imbalanced classes of datasets have been balanced through
oversampling. Two CNN models Non-Regularized and Regularized CNN, have been designed
to classify imbalanced and balanced histopathological image datasets. The regularized CNN
model’s purpose is to reduce overfitting and enhance CNN’s distinguishing ability for complex
datasets. In a nutshell, the following contribution has been made in this work as compared to the
state-of-the-art works.

e Address the imbalanced class’s distribution problem in histopathology images using Over-
sampling technique.

e Designed a compact architecture consists of two CNN models, i.e., Non-regularized and
regularized CNN model primarily for classification of small histopathology images dataset
into various classes.

e Integrate the regularization techniques with CNN’s basic architecture in order to reduce
overfitting.

e Compare the results of non-regularized and regularized CNN architecture with imbalanced
and balanced histopathology image datasets.

2 Related Work

Intensive work has been done to detect cancerous regions, classify cancerous and non-
cancerous cells in histopathology images of different diseases, etc. The tumor is one of the
most frightful cancers, so early identification of tumors and their type is essential for saving
lives. In [14], a new dataset of histology images from the hospital in Singapore was designed.
A well-known CNN, Google Inception V3, was pre-trained on a subset of Image-net, modified to
perform two for classification. Firstly, for classifying histology slides into the normal or high-grade
glioma. Secondly, for classifying the same slides into the normal, low-grade glioma, and high-
grade glioma. The work [15] has proposed two steps-based CNN-based architecture for automatic
tumor extraction and tumor type classification. In the first phase, the tumor is segmented from
MRI scans using the proposed 3D CNN architecture, while in the second phase segmented tumor
is classified into its four classes T1, T2, TICE, and Flair, by utilizing pre-trained VGG-19 CNN.
Publically available BraTS datasets 2015, 2017, and 2018 of MRI scans are used for this purpose.

For identifying viable, non-viable, and non-tumor regions in histology slides of Osteosar-
coma [16] proposed multi-level thresholding with shape segmentation. In [17], a CNN architecture
assembling AlexNet and LeNet consists of 3 convolutional layers, three sub-sampling layers, and
two fully connected layers for classifying the Osteosarcoma pathology dataset into a tumor and
non-tumor classes were designed. The proposed system achieved 84% accuracy. In [18], a deep
CNN model with a Siamese network (DS-Net) has been designed to classify Osteosarcoma images.
The proposed DS-Net comprises an Auxiliary Supervision Network (ASN) and a classification
network (CN). The authors claimed the experimental results of the DS-Net as an average accuracy
of 95.1%. VGG-19 and Inception V3 are utilized as pre-trained models on a publicly available
Osteosarcoma dataset for binary and multi-class classification [19].

By comparing the results of VGG-19 and Inception V3, VGG-19 achieved high accuracy
of 96%. In paper [20], a new method of oversampling for several class images is proposed by
designing enough images of minority classes through 3D modeling software. Reference [21] pre-
sented a deep learning-based classification model for mesenchymal stromal cells and Osteosarcoma
cells. In another work [22], the authors also utilized a deep learning model to detect and classify
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Osteosarcoma cells. Reference [23] proposed a CNN-based model to improve the efficiency and
accuracy of Osteosarcoma tumor classification. In [24], a method that combined pixel-based and
object-based techniques used tumor properties like nuclei cluster, density, and circularity for the
classification of tumor regions as viable and non-viable. Various deep learning-based models [25]
have been presented to classify and detect Osteosarcoma histopathology images; in this work, we
presented a CNN-based model for the classification of Osteosarcoma histopathology images using
both balanced and imbalanced images dataset.

Viable Tumor

Figure 1: Example images of three classes of osteosarcoma histology image dataset

3 Dataset

Osteosarcoma Histology Image Dataset has been used in this research. The dataset can be
downloaded from the website of Cancer Imaging Archive (TCIA) [26]. The dataset was collected
from the four patients between 1995 and 2015 by a clinical scientist team at the University of
Texas Southwestern Medical Center at Children’s Medical Center, Dallas. The dataset is publically
available on the TCIA website for research purposes. The dataset comprises 1144 Hematoxylin and
Eosin stained histology images of Osteosarcoma having an image size of 1024 x 1024 pixels. The
dataset consists of three classes of histology images: 1. Non-Tumor (NT), 2. Non-Viable Tumor
(NVT), 3. Viable Tumor (VT). The majority class of the dataset is Non-Tumor that contains 536
images of normal tissues of bone, blood vessels, and cartilage. Non-Viable Tumor and Viable
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Tumor are minority classes of a dataset with 263 and 345 images, respectively. NVT class contains
images of death or the stage of recovery tissues having a relatively light color. VT is a region in
histology images where Nuclei are densely accumulated together in dark color. Fig. 1 shows some
example images of all three classes. Tab. 1 explains the detail of the imbalanced distribution of
histology images within the dataset.

Table 1: Imbalanced class distribution (ICD) of osteosarcoma histology images

Class type Images Percentage (%)
Non-Tumor (NT) 536 47
Non-Viable Tumor (NVT) 263 23
Viable-Tumor (VT) 345 30

4 Methodology

In this work, we present a CNN-based automated Osteosarcoma histology image classification
mechanism. The proposed mechanism consists of four modules, i.e., Dataset Collection Module,
Imbalanced Classes Balancing Module, Classification of Histology Images Module, and CNN
Models Evaluation Module. The details of the proposed mechanism are illustrated in Fig. 2.

In Dataset Collection Module, the histology images of the Osteosarcoma dataset are arranged
into three classes of NT, NVT, and VT. The second module, i.e., the Imbalanced Classes Balancing
Module, is divided into four steps. In the first step, after collecting histology images dataset with
imbalanced classes, the dataset is precisely observed, and the number of images of each class
is recorded; the dataset is divided into two groups: majority class and minority classes. In the
second step, the Oversampling technique has been applied to minority classes to equalize the
number of images in all classes. The required number of histology images for each minority class
has been formed through photo creator and editor software utilizing different functions for class
balancing. A histology images dataset is designed with balanced classes by adding artificial images
into minority classes in the third step. Finally, the balanced dataset is divided randomly into
training and testing with an 80% and 20% ratio.

In the third module, i.e., Classification of Histology Images Module, imbalanced datasets of
Osteosarcoma are used to train and test the non-regularized and regularized CNN models. In
the non-regularized CNN model, the images are directly processed without applying any image
pre-processing techniques. In contrast, in regularized CNN, data augmentation is first applied as
an image pre-processing step by utilizing Keras Data Generator for increasing variety in training
and testing datasets. At the end of the module, images are classified into one of three classes. In
the last module, after the execution of the models, accuracy and loss matrices are recorded, and
then the plots are drawn for all four cases, i.e., non-regularized CNN for the imbalanced dataset,
non-regularized CNN for a balanced dataset, regularized CNN for an imbalanced dataset and
regularized CNN for a balanced dataset. Finally, a comparison is performed for the best and the
worst-case using the histology images dataset.
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Figure 2: Proposed model with four modules: dataset composing module, imbalanced classes
balancing module, classification of histology images module, and CNN models evaluation module

4.1 Oversampling for Balancing ICD

Osteosarcoma images dataset contain imbalanced class distribution. In ICD, CNN models
are mostly biased towards the majority class, and images of minority classes usually do not
predict accurately. For accurate classification and prediction of minority class images, equaling
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the number of images in all classes can be immensely beneficial. There exist two main ways, i.e.,
data level and class level, for balancing the data samples in classes. Data levels are pre-processed
techniques directly applied to unequal data samples of classes to balance the number of data
samples of the dataset. At the data level, two popular and effective techniques are oversampling
and under-sampling. In oversampling, data samples are added in minority classes to meet the
majority class level. In under-sampling, data samples are eliminated from majority classes to make
all classes equal. The algorithmic level techniques are mostly employed to design a new algorithm
or improve existing algorithms’ performance to tackle the dataset’s imbalanced data distribution.
Cost-sensitive methods and one cost learning are famous Algorithmic level solutions. In cost-
sensitive methods, higher misclassification cost is assigned to the minority examples. One-class
learning techniques address the imbalanced class problem by transforming the training mechanism
and attain better accuracy for the minority classes. Instead of differentiating examples of one class
from the others, these techniques learn a model by utilizing mainly or only a single class example.

For accurate classification of small histology images dataset, the Oversampling technique
has been utilized for balancing all classes. If the majority class contains the number of images
represent by MajCl and minority classes contain, MinCly, MinCl,, MinCls, ..., MinCl,, number
of images, then mathematically, the relation of majority and minority classes are represented as;

MajCl > MinCly && MinCl, && MinCly && MinCly && ... MinCl, (1)

In Oversampling, new synthetic images are added in minority classes to equalize samples in all
classes. In minority class 1 dy = MajCl — MinCl;, in class 2 dy = MajCl — MinCl,, in class 3 d3 =
MajCl — MinClsy and in class n, d, = MajCl — MinCl, images are included, then after applying
oversampling, the mathematical relationships among majority and minority classes becomes as;

MajCl = MinCly = MinCl, = MinCls ... MinCl, 2)

In the Osteosarcoma histology images dataset, the difference of images between NT and NVT
is 101 and between NT and VT is 156. So, 101 NVT and 156 VT images are needed to be
synthesized for balancing the classes. Due to technological advancement, several photo editors
and 3D image Creator software are available with various features and functions that can be
used to generate quite realistic images. In this work, Photo Editor Software has been utilized for
generating the required number of histology images from the original images for balancing the
data in all classes. First, the original images are randomly selected from the minority classes. The
rotating function is applied to the selected image, and the image is rotated at 180 degrees. After
rotation, a contrast feature is utilized, and then the 3D effect is applied to the image to capture
an image with different perspectives. The resulting images are saved with a size of 1,024 x 1,024
pixels. Finally, the newly generated images are mixed with the original NVT and VT classes to
form balanced class datasets. Some synthesize images from NVT and VT are shown in Fig. 3.
The bar chart representation of actual and balanced classes is shown in Fig. 4.

4.2 Convolutional Neural Network Architectures

In this work, two CNN models, i.e., non-regularized CNN and regularized CNN, have been
designed to accurately classify histology images, particularly when the dataset is small. The goal
is to investigate the effects of CNN models with the absence and presence of regularization
techniques when facing the challenge of overfitting during the classification of histology images
of a small dataset. Both CNN models share similarities in terms of architecture; the differences
exist on a technical basis as regularized CNN model is combined with three regularization layers.
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Both CNN model consists of Convolutional section and Dense Section. The convolutional section
comprises four convolutional layers and pooling layers, while the Dense Section comprises two
dense layers. Both sections are concatenated through flatten layer. The architectural design and
functionality are explained as follows.

Viable Tumor

Figure 3: Example osteosarcoma histology synthesized images

0 II II II

Non-Tumor Non-Viable Tumor Viable-Tumor

® Imbalanced Images wBalinced images

£ £ 2 2 1

-
2

Figure 4: Detail of osteosarcoma image dataset with balanced distribution

There are two main components in convolution layers, i.e., size of filter and number of filters.
Filters are utilized for extracting features by convolving a filter (F) of size f x f to an input
image (I) of the size I x I. In the designed approach, all four convolution layers filter size is
fixed to 3 x 3. The number of filters defined output is called features map. All four convolutional
layers define various feature maps; here, the number of feature maps are 32, 64, 128, and 256
for successive convolution layers shown in Fig. 5. The distance between two successive kernel
positions is called stride (s); each convolution layer stride is set to 1. To avoid shrinking the feature
map and producing the same size as the input matrix, zero paddings is combined across the input
matrix’s borders. Various feature maps are calculated by repeating the process and by utilizing
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filters of different sizes and values. The result is summed up to obtain a single output value in the
corresponding position of the output tensor called Feature Map of size (w x /). The convolution
operation for one pixel for the feature map (FM) is mathematically calculated [27,28].
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Figure 5: Architecture of non-regularized and regularized CNN models
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Mathematically output size of FM with padding P is calculated as [29].

FM (w, Iy — [ﬁﬂ} [MH] @)

S

In Eq. (4) w and £ is Width and Height of Feature Map, i,, and i is w and / of Input Tensor,
f 1is filter size, and s is stride. The output is then passed through a nonlinear activation function,
Rectified Linear Unit (ReLU). ReLU outputs zero if the input value is negative; otherwise outputs
the input directly. Mathematically the ReLU function is described by max function [29,30].

J(x) =max(0, x) )

Both CNN models have four pooling layers with 2 x 2 patch sizes; it has been applied for the
down-sampling of feature maps. In the designed approach, max pooling is utilized for extracting
the largest value in each patch from the input feature maps [31], and all the other values are
discarded. The function results in down-sampled maps that highlight the most prominent features
in the image patch. The max-pooling operation is estimated as [31];

Pm,j = max;(:l (hm ><n+k,j) (6)



3374 CMC, 2021, vol.69, no.3

In Eq. (6), Py, ; 1s the output of the pooling layer of the m™ feature map and ;j”* pooling layer
band, n represents a sub-sampling feature, r is polling size, and / is feature map. Convolution and
pooling layers work together; the first convolution layer takes the input image as an array of sizes
(256, 256, and 3) and applies convolution operation with 3 x 3 filter sizes to produce 32 feature
maps. The pooling layer takes 32 feature maps from the convolution layers for down-sampling
the image size (128, 128). The second convolution layer receives 32 inputs, and after convolution
operation, the inputs map into 64. Then pooling layer reduces the size of feature maps from 128
to 64 along with important features. The third layer receives 64 inputs, and after convolution
operation, the inputs map is sized up to 128 feature maps. Then pooling layer again reduces the
size from 64 to 32 along with important features and outputs 180 feature maps, which is input
for the fourth convolution layer; after convolution operation, the inputs map to 256 feature maps.
The pooling layer reduces the size of feature maps from 32 to 16. The fourth pooling layer results
in output as (16, 16, and 256). Fig. 5 shows the architecture of non-regularized and regularized
CNN models, and Tab. 2 displays functions of all layers of the CNN model.

Table 2: Detail description of CNN layers

Layer Filter size (f)  Depth (d)  Input shape (IS)  Output shape (OS)
Conv layer 1 3x3 32 256 x 256 256 x 256
Pooling layer 1 2 x2 32 256 x 256 128 x 128
Conv layer 2 3x3 64 128 x 128 128 x 128
Pooling layer 2 2 x2 64 128 x 128 64 x 64
Conv layer 3 3x3 128 64 x 64 64 x 64
Pooling layer 3 2 x 2 128 64 x 64 32 x 32
Conv layer 4 3x3 128 32 x 32 32 x 32
Pooling layer 4 2 x 2 128 32 x 32 16 x 16
Flatten layer 128 16 x 16 32768
Fully connected layer 1 512 32768 512

Fully connected layer 2 3 512 3

Flatten layer then converts (16, 16) output shape to a single 32,768 nodes passed to fully
connected layers. Two dense layers have been utilized in the design of the CNN model. The first
dense layer contains 512 and the second dense layer contains three nodes. ReLLU has been defined
as an activation function in the first dense layer, while in the second, the softmax is applied as an
activation function for categorical classification. Mathematically the softmax is represented as [32];

X

e
f(x) = ZJ]-{ex-/

(Softmax) (7)

In Eq. (7) x; are the elements of the input vectors that may be real, positive, or negative
values. ¢% are the exponential function applied to each element x; of the input vector results

positive value. Zl-‘ €Y is the normalization term, maps all the output values of the function to the
range (0, 1) constituting a valid probability distribution.
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The first dense layer connects each flattened node (32,768 nodes) from flatter layers to 512
nodes and calculates a high number of 16,777,728 parameters as it creates maximum parameters.
The second dense layer classifies images by utilizing the categorical function ‘softmax’ into one
of three classes and calculates 1559 parameters with 512 nodes of the previous layer and three
targeted nodes.

Regularized CNN consists of two convolution layers, two L2 regularized convolution layers,
four pooling layers, two dense layers, and one dropout layer. The general architecture of regular-
ized CNN model is shown in Fig. 5. This model is designed to combat the overfitting problem.
We performed three regularization techniques and integrated them with a non-regularized CNN
model to make it regularized. The utilized regularization techniques are data augmentation, L2
Regularization, and dropout Layer. In data augmentation, images are artificially inflated the
original training dataset by using label preserving transformations to add more invariant examples.

In this work, Keras Data Generator has been applied for data augmentation. L2 Regulariza-
tion is a common way to mitigate overfitting by putting constraints on a network’s complexity
by forcing its weights to take only small values, making the distribution of weight values more
regular. L2 Regularization technique forces the weight to reduce but never makes them zero. In
Regularized CNN model, L2 Regularization has been used in the second and third convolution
layers to reduce overfitting and complexity of the model and produce an accurate histology image
classification.

5 Experimental Results and Discussion

This research work has been implemented using the Python programming language with
Google Colab. The Neural Network library ‘Keras’ is utilized to design, compile, and evaluate
the proposed CNN models. The models have experimented with different learning rate values,
batch size, epochs, and steps per epoch for achieving the maximum classification accuracy. Finally,
the models are evaluated with fixing epoch to 45, batch size to 100, learning rate to 0.001, and
steps per epoch to 20. ‘Adam’ and categorical cross-entropy are used as Optimizer and Loss
function, respectively. Regularized CNN model, data augmentation technique, and non-regularized
CNN model have experimented with for classification of histology images of Imbalanced and
Balanced dataset. After the execution of models, accuracy and loss matrices are recorded for each
experiment, and then the comparison is performed to find the best and worst cases. The detail
of all experiments is shown in Tab. 3. The detailed description of experiments is described in
sub-sections.

Table 3: Experiments details performed using Osteosarcoma histology image dataset

Dataset type CNN model type Training Testing Overfitting
accuracy (%)  accuracy (%)  difference (%)

Imbalanced histology images Non-regularized CNN 98 78 20

Imbalanced histology images Regularized CNN 84 75 9

Balanced histology images Non-regularized CNN 96 81 15

Balanced histology images Regularized CNN 87 86 1
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5.1 Classification of Small Imbalanced Histology Dataset Using Non-Regularized CNN Model

The first experiment is performed for a small Imbalanced complex Osteosarcoma dataset. The
imbalanced dataset is trained and tested using a Non-Regularized CNN. In this experiment, huge
overfitting was observed with a 20% and 11.52% difference of training and testing accuracy for
the Osteosarcoma dataset. The training accuracy is 98%, and the testing accuracy is 78% achieved
for the Osteosarcoma dataset. The accuracy and loss plots of the first experiment are shown in
Fig. 6.
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Figure 6: Training and testing accuracy plot on the left side and loss error plot on the right side
show high overfitting for imbalanced Osteosarcoma images dataset by using non-regularized CNN
model

5.2 Classification of Small Balanced Histology Dataset Using Non-Regularized CNN Model

The second experiment is performed to reduce overfitting and improve testing accuracy. The
balanced datasets of Osteosarcoma are created by adding artificial histology images synthesized in
photo editor software for equalizing images. In this experiment, overfitting is still observed 15%
for the Osteosarcoma dataset, but as the balanced dataset is used, 5% of the overfitting value has
been reduced. Non-Regularized CNN along with Osteosarcoma balanced dataset achieved 96%
and 81% training and testing accuracy. The accuracy and loss plots of the second experiment are
shown in Fig. 7.

5.3 Classification of Small Imbalanced Histology Dataset Using Regularized CNN Model

In the first and second experiments, overfitting is observed for the small histology images
dataset classification with non-regularized CNN. The design of 11 layers CNN model is modified
by adding regularization techniques. In this experiment, classification was performed for images
of Imbalanced histology datasets using regularized CNN and data augmentation technique. Thus,
experiments show that overfitting is decreased and reached 9% for the complex histology dataset,
while the accuracy and loss plot is shown in Fig. &.

5.4 Classification of Small Balanced Histology Dataset Using Regularized CNN Model

Finally, the experimentation has been performed for a balanced histology images dataset using
regularized CNN model. The regularized CNN model achieves the best results for a balanced
dataset, and the overfitting value decreased to 1% for the complex Osteosarcoma dataset. Testing
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accuracy achieved high numbers up to 86%, better than all experiments. The accuracy and loss
plot is shown in Fig. 9. If the results are compared with previous ones, it can be observed that
overfitting has been significantly reduced.
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Figure 7: Training and testing accuracy plot on the left side and loss error plot on the right side
show high overfitting for balanced osteosarcoma images dataset by using non-regularized CNN
model
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Figure 8: Training and testing accuracy plot on left side and loss error plot on the right side
show overfitting reduction with a combination of imbalanced osteosarcoma image dataset with
regularized CNN model

5.5 Comparison Results

We compare the results of the above four discussed scenarios; it can be concluded that the
non-regularized CNN model does not achieve good/suitable for small histology images dataset
because simple CNN fails to obtain generalization and suffers from overfitting problems. Similarly,
an imbalanced dataset with unequal classes fails to achieve a better result. Fig. 10 shows that
the comparison results of all four complex Osteosarcoma’s testing accuracy; it can be seen that
the regularized CNN model for a balanced dataset achieved high accuracy. Same as in Fig. 11,
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comparison results of testing loss error for all four experiments of Osteosarcoma Dataset has
been plotted; the Figure shows that regularized CNN classifies histology images with less error
rate for balanced dataset.

Traning and Test Accuracuy Plot of Balanced Histology Traning and Test Accuracuy Plot of Balanced Histology

Images Dataset without Overfitting Reduction Techniques Images Dataset without Overfitting Reduction Techniques
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Figure 9: Training and testing accuracy plot on the left side and loss error plot on the right side
shows the best result. With balanced osteosarcoma images and regularized CNN model, overfitting
is almost negligible
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Figure 10: Comparison results of testing accuracy for all four osteosarcoma dataset experiments
show that regularized CNN gains high testing accuracy for histology image classification with a
balanced dataset

We also show the comparison results of overfitting for all four experiments in Fig. 12. It can
be seen that the overfitting results of a non-regularized CNN model with an imbalanced dataset
are high. In contrast, the value of overfitting is minimum with a balanced dataset. The regularized
CNN model with an imbalanced dataset shows the lowest overfitting value nearly equals 1%. In
Fig. 12 IDS, an Imbalanced Dataset, while BDS indicates Balanced Dataset, NRCNN represents
non-regularized CNN and RCNN shows regularized CNN model.
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Figure 11: Comparison results of testing loss error for all four osteosarcoma dataset experiments
show that regularized CNN classifies histology images with less error rate for a balanced dataset
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Figure 12: Comparison results for overfitting reduction in all four experiments

6 Conclusion

In this research work, a compact CNN model for the classification of small imbalanced
and balanced Osteosarcoma histology images dataset is proposed. As classification and prediction
of a small dataset with CNN architecture are difficult, particularly in microscopy images where
similarity within classes strongly exists, it is extremely challenging. Therefore, in this work, firstly,
we performed balancing of histology images dataset with oversampling technique. Then two CNN
models named non-regularized and regularized are designed. The regularized model is integrated
with CNN’s basic architecture to reduce overfitting. The results demonstrate that oversampling
effectively addresses the class imbalanced problem during training—furthermore, comparison of
non-regularized and regularized CNN architecture are performed with imbalanced and balanced
histopathology image datasets. The non-regularized CNN model achieves 98% & 78% and 96%
& 81% training and testing accuracy with an Imbalanced and balanced histology image dataset.
While the regularized CNN model achieved 84% & 75% and 87% & 86% training and testing
accuracy with Imbalanced and balanced histology image dataset, respectively. The overfitting
values have been reduced from 20% to 1%.
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