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Abstract: Reliable vehicles are essential in vehicular networks for effective
communication. Since vehicles in the network are dynamic, even a short span
of misbehavior by a vehicle can disrupt the whole network which may lead
to catastrophic consequences. In this paper, a Trust-Based Distributed DoS
Misbehave Detection Approach (TBDDoSA-MD) is proposed to secure the
Software-Defined Vehicular Network (SDVN). A malicious vehicle in this
network performs DDoS misbehavior by attacking other vehicles in its neigh-
borhood. It uses the jamming technique by sending unnecessary signals in
the network, as a result, the network performance degrades. Attacked vehicles
in that network will no longer meet the service requests from other vehicles.
Therefore, in this paper, we proposed an approach to detect the DDoS mis-
behavior by using the trust values of the vehicles. Trust values are calculated
based on direct trust and recommendations (indirect trust). These trust values
help to decide whether a vehicle is legitimate or malicious. We simply discard
the messages frommalicious vehicles whereas the authenticity of the messages
from legitimate vehicles is checked further before taking any action based on
those messages. The performance of TBDDoSA-MD is evaluated in the Veins
hybrid simulator, which uses OMNeT++ and Simulation of Urban Mobility
(SUMO).We compared the performance of TBDDoSA-MDwith the recently
proposed Trust-Based Framework (TBF) scheme using the following perfor-
mance parameters such as detection accuracy, packet delivery ratio, detection
time, and energy consumption. Simulation results show that the proposed
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work has a high detection accuracy of more than 90% while keeping the
detection time as low as 30 s.

Keywords: Software-defined vehicular network; trust; evaluator node; denial
of service; misbehavior

1 Introduction

Vehicular Network (VN) is a kind of networking infrastructure where Vehicle-to-Vehicle
(V2V) and Vehicle-to-Infrastructure (V2I) communication takes place using wireless network [1].
Each vehicle in the network is treated as a network node and is equipped with sensing, processing,
forwarding, and wireless communication capabilities. Since each vehicle in the network system
performs the sensing, processing, and forwarding operation, the system is called an Intelligent
Transportation System (ITS) [2]. The main objective of the ITS is to provide safety and services
to people. Service requests in a network cannot be provided or fulfilled if the number of requests
exceeds the capability of the network. The malicious vehicles can jam the network by performing
Distributed Denial of Service (DDoS) attacks to their neighbor vehicles and Road Side Units
(RSUs). In a vehicular network V2V and V2I communication takes place using Dedicated Short
Range Communication (DSRC) [3].

Due to the dynamic nature of vehicles in the network, communication links between vehicles
establish for a very short span of time. Hence, a short span of misbehavior can disrupt the
entire network, and tracing the misbehavior causing vehicle is a challenging task. So, misbehavior
causing vehicles need to be detected as early as possible. There is also a high chance of uncertainty
in the network due to different road layouts, lane structure, vehicle driver behaviors, and density
of traffic. Vehicle density also varies in different geographical locations and timing. Locations
like market places, traffic and highway jams, the density of vehicles are more as compared to
other remote areas and also timing like an office hour and evening time, the density of vehicles
is normally more. During these periods and locations, vehicles are going to receive multiple pieces
of the same information from different nodes present in that area and also from different RSUs
directly or through multihop communication. This makes the network more vulnerable to one of
the catastrophic attacks, i.e., Distributed Denial of Service (DDoS) attack. Hence, this type of
attack needs to be detected to save the network from catastrophic consequences.

The contributions of the paper are stated as follows:

• In a vehicular network, DDoS attackers overwhelm packets in a particular network with
redundant packets or information; as a result, legitimate nodes become deprived of dif-
ferent network services due to the network congestion [4]. Further, dynamic topology
and decentralization of the VN make it difficult to detect malicious attackers. To over-
come these challenges, a Trust-Based Distributed DoS Misbehave Detection Approach
(TBDDoSA-MD) is proposed to secure the SDVN.

• The trust value is calculated for a vehicle based on the direct trust and recommendations
received from other surrounding vehicles. Before taking any action based on the information
received from any other vehicle, the trust value of that vehicle is calculated by an Evaluator
Node (EN). Based on the trust value, the EN decides a vehicle is malicious or genuine. If
the vehicle is malicious, the EN simply discards the packets received from that vehicle, else
the authenticity of packets is further checked by using the data trust model. SDN-based
vehicular network is used to carry out the simulation using Veins hybrid simulator.
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The rest of the paper is organized as follows. Related works based on misbehavior detection
are extensively studied in Section 2. Section 3 explains the network model, misbehavior model,
and the proposed misbehavior detection method. In Section 4, the detailed simulation is described
and its results are analyzed. The conclusion and future work are presented in Section 5.

2 Related Works

Many research works relating to DDoS detection in VN have been carried out by researchers.
Some of those works are discussed as follows. Kolandaisamy et al. [5] presented a Multivariant
Stream Analysis (MVSA) approach to detect DDoS attacks in VANET. The MVSA approach has
three stages for DDoS attack detection. Preprocessing stage is the first stage of detection where
packets received from different vehicles are used for classification. The multivariant stream weight
stage is the next stage where traffic types and multivariant stream factors are computed. The DoS
attack is detected using the computed stream weight. The last step is the DDoS mitigation stage
where vehicles use network traces and process the Payload, Hop Count, Time to Live (TTL),
and Packet Frequency at different time windows (for each stream class). These four features are
measured and computed to generate rule sets. By using computed stream weight, the method
classifies the packet into either genuine or malicious. The main drawback of the proposed work
is its computation overhead, which needs to be reduced to increase the efficiency of the system.
Poongodi et al. [6] have designed a system based on the reCAPTCHA controller to prevent the
DDoS attack in VANET. The reCAPTCHA controller helps to check automated DDoS attacks.
To analyze the deviation, an information theory-based metric is used in terms of entropy. Results
show that the reCAPTCHA based method has higher PDR and DR but lower EC and AL
than the AODV and Firecol techniques. The proposed work shows good results in terms of the
detection of DDoS attacks but does not mention prevention and post scenario of DDoS attack
detection. In [7], the authors have proposed a distributed and robust approach against DoS attack.
IP addresses are used by authors to check the identities of malicious vehicles. So, if a node
observes some similar ip addresses in the database, then those similar IP addresses are treated
as DoS attackers. The proposed method works well for detection in small-scale networks, but
detection in large-scale networks is a challenging one. Lahrouni et al. [8] presented a solution
to the DoS attack using different mathematical models. To check the effects of the DoS attack,
each parameter for the simulation was analyzed by the authors using the logistic regression
method. To avoid DoS attacks, authors in [9] have added a pre-authentication process before the
signature verification process. The pre-authentication process uses a one-way hash chain and a
group revoking scheme. By adding the pre-authentication process, the authors have successfully
reduced the network load, however, the proposed scheme can be applied to vehicles within the
network; not to the outside attackers. Vermal et. al [10] presented a defense method against User
Datagram Protocol (UDP) based flooding attacks. This UDP-based flooding is a DoS attack
where it creates fake identities. Adding IP spoofing in the DoS attack makes it more difficult
to detect in the network. Authors have further extended their work in [11], where they have
used Bloom-Filter based detection method, which helps to provide services to legitimate vehicles
and also used to detect and defend against IP address spoofing in DoS attacks. The proposed
method works well from the detection point of view, but values used during the simulation are
not practically feasible in a real-life scenario. In [12], authors have shown the impact of DDoS
attacks on the control plane of the Software-Defined Internet of Vehicles (SD-IoV) network.
Due to the flooding by packets in the network, drastic reduction of overall throughput and
increase of controller load is studied in this paper. This work focuses only on the control
plane and left the other important plane, i.e., the data plane of the SDN network completely.
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Gao et al. [13] developed a distributed network intrusion detection system for DDoS attack
detection in VANET. The two main components of the proposed detection system are the real-
time network traffic collection module and network traffic detection module. Detection is carried
out using two publicly available NSL-KDD and UNSW-NB15 data sets and results are compared
with other machine learning-based classifiers. The authors simulated their work on the publicly
available data sets and they have not designed any network model to prove the authenticity of
the work.

From the literature discussed above, it is observed that DDoS attack spreads very fast in
a network. Hence, vehicles that try to perform DDoS attacks need to be detected as early as
possible. To the best of our knowledge, very little work has been done to prevent a vehicle to
perform a DDoS attack on a network. In most of the research work, vehicles performing a DDoS
attack are detected. Hence, to prevent a vehicle to perform a DDoS attack, we have used node
trust and data trust modules and make a relationship between them. By using these modules, we
can easily detect as well as prevent DDoS attacks in a network.

3 Proposed Trust Based Misbehavior Detection Method

In this section, network and misbehavior models are described in detail. After discussing the
models, a trust-based distributed DoS misbehavior attack detection method is proposed to save
the network from the DDoS attack.

3.1 Network Model
In this work, we have used an SDVN network to detect DDoS attacks. The communication

in the designed SDVN based network is shown in Fig. 1. Based on functionality and operation,
the network is divided into three planes [14]. Those are application plane, control plane, and data
plane [15]. The northbound interface connects the application plane to the control plane and
the southbound interface connects the control plane with the data plane [16]. The network load
is reduced by decoupling the network plane into the control plane and the data plane, which
also brings the network intelligence into logically centralized [17]. This will overcome the ancient
decentralized behavior of vehicular network architecture. This centralization of the network makes
the network flexible, scalable, programmable, and adaptive to different environments [18]. The
southbound interface works based on the OpenFlow protocol. Due to the open flow structure, the
network traffic is centrally controlled by the control plane and the data plane is responsible for
forwarding data [19].

3.2 Misbehavior Model
Any behavior which is a deviation from the normal behavior of a vehicle in a network is

called misbehavior [20]. In our network model, a vehicle is allowed to generate 10 packets per
second (event information). So, if a vehicle generates more than 10 packets, we treat that as a
malicious node responsible for DoS attack in the network. By overloading the network resources
like network bandwidth, computational power, etc., different types of services could not be offered
to intended drivers or passengers. This is a severe problem in the network as unreachable life-
critical information to drivers at the right time may lead to major accidents. These accidents may
lead to the death of many people. There is also a probability that, a malicious node may target
RSU. The attacker may flood the RSU, so that it may not be available for communication with
legitimate nodes. A malicious vehicle can perform the DoS attack on its surrounding vehicles or
RSUs by attacking the network using network jamming operation by self or with the help of
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surrounding vehicles. A malicious vehicle intentionally sends a number of packets in the network
and consumes the network resources. This will lead to the non-availability of network resources
to the intended vehicles that may lead to a DoS attack. To overcome such situations, we proposed
a trust-based scheme to detect DDoS based misbehavior on the SDVN network.

3.3 Proposed Misbehavior Detection Method
The objective of the proposed misbehavior detection scheme is to identify the DDoS attackers,

determine the genuineness of events, and identifying false recommendations to avoid DDoS
attacks in the network. To carry out the work, we have used an SDN-based vehicular network.
Initially, a trust-based framework is designed which is shown in Fig. 2. In our framework, we
have taken certain parameters while calculating the node trust and data trust. In the used SDN-
based network, the trust is calculated by the EN. We have assumed that an EN has the power
to calculate the trustworthiness of surrounding nodes as well as TN. Based on those trusts, EN
decides whether to accept or reject any information from surrounding nodes or TN. So the trust
calculation and actions based on those trusts are done in the control Plane of the SDVN network.
In the data plane of the SDVN network, EN performs the SDN-based broadcasting based on the
updated trust. Hence, the data plane helps in the data forwarding in the network.

Figure 1: Communication in SDVN network

In the proposed trust framework, we have used the Node Trust and Data Trust modules
and established a relationship between them. To calculate the trust of the target agent, i.e.,
another vehicle, the evaluator node uses its own experience as well as needs to depend upon
the experience of neighbors of that agent. Hence, we have used sub modules like current direct
trust, previous direct trust, the similarity with neighbors, and their recommendation credibility
to calculate effective node trust (ENT). The data trust of an event is calculated based on the
observation of the event by the EN directly or through the intermediate nodes. For the above two
scenarios, updated data trust is calculated independently by the EN. The updated data trust is
used to determine the authenticity of the reported events. We established a relationship between
these two modules, i.e., updated effective node trust with that of the updated data trust. Before
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accepting any event information from any node, the node trust of the TN is evaluated first
by the EN. If the calculated node trust is less than a set threshold limit, then we discard the
event information received from the TN. In this paper, we have created some nodes having less
node trust and assumed that these nodes will try to disrupt the network by sending unnecessary
packets. Then, we try to detect such nodes; as a result, DoS attacks in the network can be
avoided. Another situation, where the event information sent by a node may be faulty. To reduce
the spreading of the wrong event information, we have calculated the updated data trust and
compared it with a threshold value. If the calculated value is less than the threshold, we simply
discard that event information. By doing so, we reduce overwhelming the network because of this
false event information. The detailed evaluation of trust parameters is discussed in the following
sections.

Figure 2: Designed SDN based trust framework

1) Node Trust:

This is the trust established by the EN on the sender using direct and indirect trust. Direct
trust is calculated by the EN using its own experience on the TN. Indirect trust is derived from
recommendations received from the surrounding vehicles of the TN about the TN. Hence, while
calculating the updated effective node trust of a TN, both direct and indirect trusts play vital
roles.
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i) Direct Trust:

This is calculated based on the direct current trust on the TN as well as using the previous
direct trust on the TN by the EN. We have taken the previous direct trust as a parameter
while calculating the updated direct trust to avoid the sudden behavioral changes of the TN. Let
DTn(EN, TN) represent the direct trust of the EN on the TN in the nth time instant. So, the
direct trust updating function is defined as follows:

DTn (EN,TN)= α ∗DTcurrent+ (1−α) ∗DTn−1 (EN,TN) (1)

Here, DTcurrent represents the most recent direct trust value and DTn−1 is the past trust value.
EN assigns the trust value to the TN based on the following function:

DTcurrent =
{
0, if EN is fully unsatisfied with TN behavior
1, if EN is fully satisfied with TN behavior

In Eq. (1), unsatisfied means, a TN sends unnecessary signals greater than a threshold value
according to the misbehavior model. The weight factor, i.e., α makes a balance between the
current direct trust and the past history. In our model, we have assigned α to 0.5. Hence, we give
equal importance to the current direct trust and the past history. Initially, we set the value of
direct trust, i.e., DT0(EN,TN) and α to 1. After a certain interval of time as a vehicle performs
well in the network, the trust rating of that vehicle increases gradually.

ii) Indirect Trust:

It is not always feasible that an EN will directly communicate with the TN. In that case, it
is necessary for the evaluator node to rely on the data received from intermediate vehicles about
the TN. Hence intermediate nodes are those nodes that are either at the intersection of the radio
range of both EN and TN or just left the radio range of TN recently and entered the radio range
of the EN as shown in Fig. 3. Fig. 3a shows the indirect communication between the EN and
the TN where the EN is a vehicle with less radio range. V2I communication is shown in Fig. 3b
where the EN is an RSU having a higher radio range than the vehicle.

Figure 3: Vehicular communications using intermediate nodes (a) V2V Indirect communication (b)
V2I Indirect communication
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If an EN has never interacted with any TN, then trust recommendations that it receives from
intermediate nodes become the only data that it has to rely on to evaluate the trustworthiness
of TN. In our trust model, we have calculated the indirect trust between EN and TN using
similarity and recommendation parameters. The similarity parameter shows to what extent the EN
and intermediate nodes are alike. After calculating the similarity, this similarity metric is used to
calculate the Recommendation Credibility (RC) of the information provided by intermediate nodes
to the evaluator. The similarity shows the degree of trust between the EN and intermediate nodes.
In this paper, we have used the cosine-based similarity [21]. Let N = [N1, N2, . . ., Nm] be the

set of intermediate nodes between the EN and TN as shown in Fig. 3. Let
(→
E1,

→
E2, . . . ,

→
Em

)
and(→

T1,
→
T2, . . . ,

→
Tm

)
represents the trust vectors of EN to intermediate nodes and intermediate nodes

to the EN respectively. Here, the trust vector represents the set of previous direct trust values after
any communication, according to Eq. (1). So, the similarity of EN with the intermediate node Ni
in the nth time instant is denoted as Simn(EN, Ni) is defined as follows:

Simn (EN,Ni)= cos
(→
Ei,

→
Ti

)
=

→
Ei ·

→
Ti∣∣∣∣→Ei

∣∣∣∣ ∗ →
|Ti|

(2)

After calculating the similarity between the EN and intermediate nodes, we use this similarity
metric to find the recommendation credibility of the information provided by the intermediate
nodes to the evaluator. Hence, the recommendation credibility is used to measure the level of
accuracy of recommendations that intermediate nodes provide to the evaluator. During trust
evaluation, it is assumed that nodes with higher feedback credibility are more trustworthy than
the lower credibility nodes and are given more weight than the low credibility nodes. Using this
credibility score, we have reduced the extra load in the network by accepting and forwarding the
data from high credibility nodes and discarding the data from low credibility nodes. Let RCn(EN,
Ni) represents the recommendation credibility of intermediate node Ni from EN’s point of view.

RCn (EN,Ni)=
{
1− ln(Simn(EN,Ni))

ln(θ)
, if Simn (EN,Ni) > θ

0, else
(3)

where θ represents the lowest allowed similarity value and set to 0.01. It is observed from
Eq. (3) that, the recommendation credibility is directly proportional to the logarithmic function
of similarity. Hence, intermediate nodes with higher similarity value with respect to the EN,
have higher recommendation credibility. After knowing the similarity and the recommendation
credibility value of intermediate nodes, the EN calculates the indirect trust of TN with the help
of intermediate nodes. Let ITn(EN, TN) represent the indirect trust of the evaluating node on the
target node in the nth time interval.

ITn (EN,TN)=
∑

Ni∈N RCn (EN,Ni) ∗DTn (Ni,TN)∑
Ni∈N RCn (EN,Ni)

(4)

From Eq. (4), it is observed that indirect trust depends upon the direct trust between inter-
mediate nodes and the TN, as well as the recommendation credibility between the evaluating
node and intermediate nodes. Hence, we can say that indirect trust is the weighted average of
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recommendations from intermediate nodes. After calculating the direct and indirect trust, these
trusts are used by the EN to obtain the updated effective node trust on the TN. Hence, the
effective node trust is calculated as follows:

Effective Node Trust (ENT)= β ∗DT (EN,TN)+ (1−β) ∗ IT (EN,TN) (5)

Then the updated effective node trust at nth time instant is calculated as follows:

Effective Node Trust (ENTn)= γ ∗ENTn (EN,TN)+ (1− γ ) ∗ENTn−1 (EN,TN) (6)

where β and γ are weight parameters between 0−1. For example, the sum of the weight param-
eters β and (1 −β) is 1. ENTn−1 is the past ENT value. This calculated ENT plays a vital role
in identifying attackers in the network. This updated ENT value of a node is compared with
that of the previously set Threshold Node Trust (TNT) value. We set the threshold value based
on the trust values of the majority of nodes. Let for a particular time, the majority of nodes
have trust values approximately 0.3, then the threshold is set to 0.3. But, this threshold can be
selected dynamically based on the current trusts of nodes. If the updated ENT is less than the set
threshold value, then the EN treats that node as a malicious otherwise legitimate one. If the EN
finds the node as malicious then it will take the decision to discard all messages from that node as
a result, congestion in the network can be reduced. The whole process is shown in Algorithm 1.

2) Data Trust:

Before accepting any data from surrounding vehicles, we check the authenticity of the data
using the data trust. In this paper, we simply discard data received from a malicious node.
However, sometimes to show as a genuine node, a malicious node may send legitimate information
which we have not discussed in this paper and left for our future study. In a network, a trusted
node normally sends legitimate data, however, to take advantage of a particular situation, it may
send false data. So to check whether the reported data is true or false, we calculate a trust metric
known as Data Trust (DT). An EN is going to calculate the DT by using the following two
methods. In the first method, an event occurred in the radio range of an EN, hence the EN
observed the event directly. In this situation, the Direct Event Trust (DET) is set to 1 as a result
the DT is set to 1 for that event. In the second method, the EN receives event information from
intermediate nodes. In this situation, the value of DET is 0. Hence, DT is equal to the Indirect
Event Trust (IET). The whole process is shown in Algorithm 2.

We calculate the IET based on the average trust values of surrounding nodes reporting or
not reporting events. Let N = [N1, N2, . . ., Nm] be the number of intermediate nodes reporting
at a particular time instant n. Out of N nodes, let p and q be the number of nodes whose
messages contain and have no information regarding the occurrence of events in the nth time
instant respectively. Hence, N is the summation of p and q. Let Tn(E) and Tn(E) be the average
trust of nodes reporting and not reporting events respectively, and are calculated as follows:

Tn (E)=
∑

i∈p ENTn (EN,Ni)

p
(7)

Tn (E)=
∑

j∈q ENTn
(
EN,Nj

)
q

(8)

To reduce the impact of a sudden change in the behavior of a node in the network, we use
the weighted mean trust of nodes reporting or not reporting events instead of node trusts directly.
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So the individual weight of nodes reporting and not reporting event with respect to the average
trust of nodes in the nth time interval are Wn(E,Ni) and Wn(E,Nj) respectively, where i ∈ p and
j ∈ q.

Wn (E,Ni)= ENTn (EN,Ni)

Tn (E)
(9)

Wn
(
E,Nj

)= ENTn
(
EN,Nj

)
Tn (E)

(10)

Now, weighted mean trust of nodes reporting and not reporting events in the nth time interval
are denoted as Twn(E) and Twn(E). The calculated weighted mean trust of nodes reporting and
not reporting an event decides the occurrence of an event based on the following rules, i.e., if
Twn(E) > Twn(E) and Twn(E) > minTrust, then the EN accepts the information regarding the
event and takes further necessary actions. Here the minTrust is selected based on the trust values
of the majority of nodes and is taken as 0.3.

Twn (E)=
∑p

i=1Wn (E,Ni) ∗ENTn (EN,Ni)

p
(11)

Twn (E)=
∑q

j=1Wn
(
E,Nj

) ∗ENTn (
EN,Nj

)
q

(12)

An EN after calculating the ENT and DT uses SDN based broadcasting algorithm to broad-
cast this message in the network (Algorithm 3). Before accepting any data from the surrounding
vehicle, the ENT of the sender vehicle is compared with that of the Threshold Node Trust
(TNT). If the calculated node trust is greater than the TNT, we receive the message from that
vehicle. After getting the message from that vehicle, the EN checks the genuineness of the event
information present in the message. If the calculated data trust is greater than the minimum event
trust value, then the message containing the event information is received by the EN. By checking
the node trust as well as event trust, we can easily restrict nodes to send unnecessary packets in
the network. After getting confirmation about the event, the EN broadcasts this message in the
network so that other nodes also get this event information and becomes alert for this. If either
of these conditions will not satisfy, then the EN simply discards this message as a result, the
network congestion gets reduced.

In this way, a DDoS attack can be prevented. To test the effectiveness of the proposed work,
we have simulated it using the Veins hybrid simulator, which is discussed in the next section.

Algorithm 1: Updated Effective Node Trust Algorithm
Input: Evaluator Node (EN), Target Node (TN), Intermediate Node (N), Threshold
Node Trust (TNT)
Output: Status of TN either as Honest or Malicious
1: if TN is in the communication range of EN then
2: Calculate DTn(EN, TN);
3: else
4: Calculate Simn(EN, Ni);

(Continued)
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5: Calculate RCn(EN, Ni);
6: Calculate ITn(EN, TN);
7: end if
8: Calculate ENT ;
9: Calculate ENTn;
10: if ENTn >= TNT then
11: TN = honest node;
12: Goto Algo. 2;
13: else
14: TN = malicious;
15: Discard data;
16: end if

Algorithm 2: Data Trust Algorithm
Input: Data Received by EN from Honest Nodes
Output: Received Data is True of False
1: if the EN observed any event directly then
2: DET = 1;
3: DT = DET ;
4: else
5: DET = 0;
6: DT = IET ;
7: for i =1 to p do //Calculation of IET
8: for j =1 to q do
9: Calculate Tn(E);
10: Calculate Tn(E);
11: Calculate Wn(E,Ni);
12: Calculate Wn(E,Nj);
13: Calculate Twn(E);
14: Calculate Twn(E);
15: if Twn(E) > Twn(E) and Twn(E) > minTrust then
16: Accept data regarding the event;
17: Goto Algo. 3;
18: else
19: Discard Data;
20: end if
21: end for
22: end for
23: end if

Algorithm 3: SDN Based Broadcasting
Input: (ENTn), (TNT), Twn(E), Twn(E), minTrust
Output: Broadcast decision
1: if ENTn >= TNT and Twn(E) > Twn(E) and Twn(E) > minTrust then

(Continued)
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2: Send Message;
3: else
4: Drop message;
5: end if

4 Simulation and Results

In this section, simulation setup and results are presented and compared with the recently
proposed TBF [22] scheme. As the TBF scheme also uses trust as a parameter for misbehavior
detection, we compare our scheme with the TBF scheme. We evaluate the performance of our
proposed work using the following parameters: Detection Accuracy (DA), Detection Time (DT),
Packet Delivery Ratio (PDR), and Energy Consumption (EC). DA reflects the percentage of
malicious nodes detected. DT is the time required to detect the DDoS attack in the network.
PDR gives information regarding the number of packets received by the receiver to the number
of packets sent by the sender and EC shows the energy consumption during data transmission in
a network.

4.1 Simulation Setup
To carry out the simulation, we have used the Veins hybrid simulator framework. This

simulator uses IEEE 802.11p standard for communication [23]. Since the framework is a hybrid
type, it uses OMNeT++ and Simulation of Urban Mobility (SUMO) as network and road traffic
simulators respectively. These simulators are integrated using a Traffic Control Interface (TraCI).
This interface provides the TCP connection between the network and road traffic simulator and
maintains real-time interaction between them [24]. We simulate our work in both Grid Map and
OpenStreetMap scenarios and compared the results with the TBF scheme. We simulate our work
in our network where bitrate is 6 Mbps, the packet generation rate is 10 packets/s, update interval
is 0.1 s, communication range of vehicle 300 m, communication range of RSU is 500 m, and
IEEE 802.11p sensitivity is −80 dBm.

We compare our work with that of TBF scheme under two cases. In the first case, we keep
increasing the percentage of the anomaly of vehicles in the network, but keeping the number
of vehicles constant. In the second case, we change the network size, keeping the percentage of
anomaly fixed, and compared the efficiency of both cases.

4.2 Results and Comparison
We perform the simulation and each simulation is an average of 20 runs with different random

seeds. Hence, each run is carried out with a unique initial node placement. Initially, we performed
the simulation by changing the percentage anomaly in the network while keeping the network size
fixed. Later, we kept the percentage of anomaly fixed and changed the network size. Simulation
results for both cases are shown in Figs. 4 and 5.

Case 1: Impact of Percentage of Anomaly on Performance Parameters:

We study the impact of the percentage anomaly on four performance parameters as men-
tioned earlier. Simulation is performed by creating 100 nodes in the network, out of which, we
make 80 percentage nodes malicious i.e., 80 nodes. Again, out of these 80 nodes, we vary the
percentage of anomaly between 20% to 100%. Based on this calculation, 20% and 100% anomaly
scenarios have 16 and 80 malicious nodes respectively. The impact of percentage anomaly on DA
is shown in Fig. 4a for both grid map and OpenStreetMap by using (G) and (O) notations. It is
observed from the figure that when the percentage of anomaly is 20%, DA of TBDDoSA-MD
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scheme in grid and OpenStreetMap scenarios are 95% and 90% respectively. DA of TBF scheme
in grid and OpenStreetMap scenarios at 20% anomaly are 90% and 85% respectively. It is also
observed from the figure that as the percentage of anomaly increases, the DA decreases in all
cases. However, it is observed that up to 70% of the anomaly, the grid map outperforms the
OpenStreetMap. But, as the percentage of anomaly increases further, the OpenStreetMap gives
better results than the grid scenario in TBDDoSA-MD due to the diversified network structure.
The same trend is also observed in Fig. 4b. As the percentage of anomaly increases, the number
of malicious nodes increases in the network as a result false event messages increase. This increase
in the false event messages in the network is the prime cause of the decrease in the DA and PDR
percentage. But, in TBDDoSA-MD, we take special care of the false event message propagation
by checking the node trust and the event trust in our SDVN network. The impact of percentage
anomaly on DT is shown in Fig. 4c for both grid map and OpenStreetMap scenarios. The figure
shows that when the percentage of anomaly is 20%, DT of TBDDoSA-MD and TBF schemes in
the grid and OpenStreetMap scenarios are 32, 38 s, and 30, 35 s respectively. It is also observed
that the detection time increases as the percentage of anomaly increases in all cases. At the initial
period, i.e., when the percentage of anomaly varies from 20% to 40%, TBF shows better results
than the TBDDoSA-MD under both scenarios. However, as the percentage of anomaly moves
from 60% to 100%, the detection time in TBF increases rapidly as compared to the TBDDoSA-
MD scheme. By comparing the grid scenario with the OpenStreetMap it is also observed that,
the DT in OpenStreetMap is always more than the grid due to the large network size and the
presence of physical objects. The impact of percentage anomaly on EC is shown in Fig. 4d for
both grid map and OpenStreetMap scenarios. It is observed from the figure that up to 40% of the
anomaly, both schemes under different scenarios consume nearly equal energy. However, as the
percentage of anomaly increases further, the EC varies in different cases. Hence, at 100% anomaly
the EC of TBDDoSA-MD and TBF in the grid and OpenStreetMap scenarios are 29.6, 33.34 j
and 32, 36.54 j respectively. During packet transmission in the network, some amount of energy
is consumed. So, more is the packet transmission, more is the energy consumption. Because of
the node trust and event information verification, TBDDoSA-MD consumed more energy in the
initial period, but as the percentage of anomaly increases, false messages reduce in our scheme.
As a result, energy consumption becomes lesser as compared to TBF scheme in our grid scenario.

Case 2: Impact of Network Size on Performance Parameters:

The impact of network size on performance parameters is examined. To carry out the
experiment, we keep the malicious node percentage to 80% and they are always malicious (i.e.,
percentage of anomaly is 100%). Based on this calculation, network size having 20 nodes has 16
nodes malicious and 4 are honest. We vary the network size from 20 nodes up to 200 nodes and
perform the simulation in both grid and OpenStreetMap scenarios. Simulation results are shown
in Fig. 5. Figs. 5a and 5b illustrate the impact of network size on DA and PDR. It is observed
from both figures that, the DA and PDR increase with the increase in network size in both grid
and OpenStreetMap scenarios. The impact of network size on DT is shown in Fig. 5c for both
grid map and OpenStreetMap scenarios. The figure shows that when the network size is small i.e.,
20, DT of TBDDoSA-MD and TBF schemes in the grid and

OpenStreetMap scenarios are 45, 48 s and 42, 47 s respectively. But, as the size of the network
increases to 200, the DT of TBDDoSA-MD and TBF schemes in the grid and OpenStreetMap
scenarios are 114, 126, and 122, 140 respectively. The presence of node trust and data trust helps
in the early detection of our network. It is also observed that the detection time increases as
the percentage of anomaly increases in all cases. The impact of network size on EC is shown in
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Fig. 5d for both grid map and OpenStreetMap scenarios. When the network size is small, both
the TBDDoSA-MD and TBF consume nearly equal energy in all scenarios. But, as the size of
the network increases, TBF consumes more energy than the TBDDoSA-MD scheme. Hence, it is
observed from results that, due to the centralized structure and the open flow nature of the used
SDVN network, TBDDoSA-MD performs better than the TBF scheme with the growth of the
network.

Figure 4: Impact of percentage of anomaly on four performance parameters in Grid and Open-
StreetMap (a) Anomaly vs. detection accuracy (b) Anomaly vs. packet delivery ratio (c) Anomaly
vs. detection time (d) Anomaly vs. energy consumption



CMC, 2021, vol.69, no.3 3527

Figure 5: Impact of network size on four performance parameters in Grid and OpenStreetMap
(a) Network size vs. detection accuracy (b) Network size vs. packet delivery ratio (c) Network size
vs. detection time (d) Network size vs. energy consumption

5 Conclusion and Future Work

In this work, a TBDDoSA-MD method is proposed to secure the SDVN from malicious
attackers performing DDoS attacks. In this approach, the trust values of vehicles are calculated
based on direct trust and recommendations (indirect trust). These trust values are used to check
a vehicle as malicious or legitimate. If a vehicle is found to be malicious, then the messages
from that vehicle are discarded in the network. For any action based on the messages from the
legitimate vehicle, the authenticity of the messages is checked by using the data trust. In addition
to this, the SDN concept is mainly used to reduce the network load by dividing the network plane
into the control plane and the data plane. The performance of TBDDoSA-MD is evaluated in
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the Veins hybrid simulator, which uses OMNeT++ and Simulation of Urban Mobility (SUMO).
We compared our results with the TBF scheme using the following performance parameters such
as detection accuracy, packet delivery ratio, detection time, and energy consumption. Simulation
results show that the proposed TBDDoSA-MD performs better as compared to the TBF scheme.
From the above results, it is inferred that the proposed method would be a better misbehavior
detection approach against the DDoS attack. Our work uses node trust and data trust to detect
the DDoS attack; however, we can also integrate machine learning algorithms for trust calculation.
In this work, we are discarding data from malicious vehicles irrespective of the validity of those
data. In future work, we are also going to use machine learning methods to check the genuineness
of data before discarding it.
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