
echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2022.017715

Article

Effectively Handling Network Congestion and Load Balancing in
Software-Defined Networking

Shabir Ahmad1, Faisal Jamil2, Abid Ali3, Ehtisham Khan4, Muhammad Ibrahim2

and Taeg Keun Whangbo1,*

1Department of I.T. Convergence Engineering, Gachon University, Sujeong-Gu, Seongnam-Si, 461-701,
Gyeonggi-Do, Korea

2Department of Computer Engineering, Jeju National University, Jeju-Si, 63243, Jeju, Korea
3University of Engineering and Technology, Taxila, 47080, Pakistan

4The University of Haripur, Haripur, 22620, Pakistan
*Corresponding Author: Taeg Keun Whangbo. Email: tkwhangbo@gachon.ac.kr

Received: 08 February 2021; Accepted: 24 May 2021

Abstract: The concept of Software-Defined Networking (SDN) evolves to
overcome the drawbacks of the traditional networks with Internet Protocol
(I.P.) packets sending and packets handling. The SDN structure is one of the
critical advantages of efficiently separating the data plane from the control
plane tomanage the network configurations and networkmanagement.When-
ever there aremultiple sending devices inside the SDNnetwork, the OpenFlow
switches are programmed to handle the limited number of requests for their
interface. When the recommendations are exceeded from the specific thresh-
old, the load on the switches also increases. This research article introduces
a new approach named LBoBS to handle load balancing by adding the load
balancing server to the SDN network. Besides, it is used to maximize SDN’s
reliability and efficiency. It also works in coordination with the controller to
effectively handle the load balancing policies. The load balancing server is
implemented to manage the switches load effectively. Results are evaluated on
the NS-3 simulator for packet delivery, bandwidth utilization, latency control,
and packet decision ratios on the OpenFlow switches. It has been found that
the proposed method improved SDN’s load balancing by 70% compared to
the previous state-of-the-art methods.

Keywords: SDN; control plane; load balancing; decision tree; CPU
utilization

1 Introduction

In recent years, multimedia technology has shown tremendous growth. This advancement has
enabled high-quality video streaming and other applications; however, they suffer from heavy
congestion and load on the network; thus, one specialized server must monitor the load balancing
in the network. This balancer acts as the bridge between the network and server. The load
balancer also monitors the server health based on the load balancing perspective not to configure

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2022.017715

1364 CMC, 2022, vol.70, no.1

and implement different networking protocols [1]. The use of learning technologies is currently
untilized in the network systems to make informed decisions about the load and its balancing
and find optimal routes. However, such applications do not scale well, and scaling becomes
cumbersome due to the non-convergence of optimization paths [2].

Moreover, the vast storage and high coupling between the logical structure and data transmis-
sion structure in the traditional network has become very complex in the conventional network
structure and device control and its management on different scenarios [3,4]. To improve network
performance and network control, the researchers at Stanford University U.K. presented the idea
of a highly manageable and controllable network infrastructure called SDN. Ahmed et al. [5]
state that SDN is an adaptable, cost-effective, effortless, and dynamic networking infrastructure
for converting the traditional closed network infrastructure into an open SDN infrastructure.
SDN’s fundamental aim is to provide the interface to develop the software that can control
and manage the network resources and traffic, along with possible modification in the traffic
flow and control [6]. It has three primary layers; Infrastructure layer, also called Data Plane,
Control Layer, also termed as Controller Plane; and Application layer, also known as Application
Plane. OpenFlow switches are used to regulate the flow of the network data according to rules
and protocol represented in a table called the flow table. The controller is considered the SDN
brain; it collects the higher layer applications/software information. It maintains a flow table
for allocation to OpenFlow switches through the OpenFlow protocol. The SDN controller also
acquires network topology information and then provides a broad and open network view to
the OpenFlow switches. Load balancer effectively distributes the network traffic to different paths
based on the network congestion criteria. SDN architecture’s primary goal is decoupling the data
plane and control plane to enhance networking functionality.

In addition to the decoupling of the control plane and data plane, SDN offers many benefits.
The virtualization of physical networks allows separation from the physical network. As a con-
sequence, the physical network does not affect the corresponding logical network. Additionally,
the open-source API in SDN allows a more customized and manageable network business. As
users interact with only the upper layer, the user application layer provides a user interface for
handling networks to meet their different needs. Finally, the separation of control plane and
forward data plane is crucial for customers to manage their network management, innovations
and flexibility. The centralized control provides the control and other administrative operations
over the network, such as upgrades, business configuration speed. The generic structure of SDN
is depicted in Fig. 1.

For load balancing and traffic engineering, centralized management is desired due to its faster
convergence to the optimization objective and higher network performance. Since SDN works at
the same network, the network switches can be managed and monitored by SDN central control.
However, in a peak situation when the traffic increases on switches than its threshold, certain
backup plans are required for graceful degradation. The increase in traffic is due to the number
of requests generated by switches and nodes. End-to-end packet delay from a host to another
host is upper bounded. Therefore, to tackle this challenge, we propose introducing a new module
named LBoBS to dynamically offload the overly-congested node and maintain balance over the
network.

The rest of the paper is generally organized as follows; Section 2 covers the related studies
on Load balancing problems in SDN. Section 3 presents the design of the proposed solution,
and Section 4 exhibits the simulation results. Finally, Section 5 concludes the paper and identifies
future directions for this work.

CMC, 2022, vol.70, no.1 1365

Figure 1: SDN architecture

2 Related Work

Various attempts have been made over the past few years to contribute towards load balancing
challenges in contemporary SDN networks. The Equal-Cost Multipath approach [7] distributes
the data load and flow to the hopes/switches without prior knowledge. William et al. [8] proposed
the Valiant Load Balance approach that distributes all the traffic to different paths by picking the
random next hope based on the random picking technique.

Handigol et al. [9], Wang et al. [10], and Wang et al. [11] proposed improved load balancing
strategies and claimed that the controller is the critical component to handle the load balancing
problem. The controller node monitors the response time from OpenFlow switches and updates
the flow table to apply the load balancing technique specified by each system to balance SDN
networks. However, one of the disadvantages of these strategies is they all are static in nature;
thus, no real-time monitoring of traffic is available inside these strategies. Li et al. [12] proposed a
novel load balancing technique based on a dynamic approach known as dynamic load balancing
(DLB). The idea behind the DLB is to apply the greedy approach to pick up the next hope/switch,
which transmits the minor data loads. DLB technique only decides the load on the next hope
without determining the load on a global approach. In the global view of the transmission, this
algorithm does not find the best path; hence, it does not achieve the system’s best load balance
effect.

Koushika et al. [13] proposed a new load balancing technique based on the Ant Colony
Optimization approach. This technique finds the best path and the best server combinations for
efficient path collection and optimization to collect the information from the network for link
usage and calculate the delays in the links. However, this approach is a simple method to apply the
network path information on a single criterion and thus does not scale well with future networks.
Guo et al. [14] proposed that the controller complete a series of Real-time Least loaded Server
selections (RLSs) for multiple domains to find the highly loaded table and direct the new flow to
the least loaded server. It is also used to compute a path leading to the target server. One of the

1366 CMC, 2022, vol.70, no.1

problems with this approach is whenever a new flow enters into a domain; the RLS makes the
forwarding decision for every new flow. However, this technique poses a problem such as a single
controller bottleneck, poor scalability, reliability, and responsiveness.

In a nutshell, load balancing in the SDN has been extensively carried out in the recent past
and different strategies are adapted to mitigate this hurdle. However, many strategies, despite
allocating the best decision path, do not offer resource optimization when a load is adequately
handled. SDN has been presented as an approach to bring high programmability to network
components by decomposing a network’s forwarding function into an efficient, fast path detection,
and a programmable slow path. The extensibility is introduced through the latter, enabling new
routing and forwarding approaches without replacing hardware components in the core network.

Load handling and balancing are significant issues in the SDN network, which causes net-
work latency and slower response time. At times, packets may lose their path by searching the
new switch for path forwarding and routing. Some approaches use SDN, virtualization [15–18],
and contemporary methods employed in the Internet of things networks [19–22]. Nevertheless,
a state-of-the-art load balancing mechanism is still considered at its infant stage for modern
SDN networks. This research proposed a new technique for efficient forwarding of packets after
facing their issues. We evaluate the parameters for performance, outlined in Tab. 1, mainly, Packet
Decision Time on Server, Path Detection, Throughput, Bandwidth, and caching issues

Table 1: Load balancing techniques and their relations

Ref. paper Methodology Pros Cons

Ali
et al. [23]

Variance based
load
synchronization

1. Better performance
2. No packet loss
3. Overcome the sync overhead
over controller

1. No evaluation of latency
values
2. No energy consumption is
evaluated

Jinke
et al. [24]

HybridFlow
Multicontroller
load balancing
approach

1. Reducing the Load on
multi-controller.
2. Through the Load on super
controller to others.

1. Complexity of calculations is
very high.
2. Algorithm overhead and its
the technique is not fit for
throughput.

Nkosi
et al. [25]

A dynamic load
balancing based
technique for
cloud center
(based on SDN
approach)

1. Improve throughput.
2. Load does not cause an
issue over an extended time.

1. Availability is low
2. Scalability is low

Yao
et al. [26]

SDN-based
dynamic load
balancing
technique between
multiple
mobilities

1. Improve the uplink and
downlink traffic disruption

1. Bottleneck
2. Load detection is not
evaluated.
3. Degree of load balancing is
not considered.
4. Throughput is not
considered.
5. Availability is low

(Continued)

CMC, 2022, vol.70, no.1 1367

Table 1: Continued

Ref. paper Methodology Pros Cons

Yong
et al. [27]

Lightweight load
balancing
technique

1. Improved throughput
2. High Efficiency.
3. More quick action when
network traffic is changed
dynamically.

1. Latency is not evaluated.
2. Complexity is High.
3. Energy consumption is not
considered.

Raza
et al. [28]

Load Balancing
based on Server
Response Time
(LBBSRT)

1. Efficiency is high
2. Response time is minimum.
3. Maximum Availability.
4. Low cost

1. Bottleneck.
2. Availability is low
3. Scalability is low
4. Energy saving is not
considered

Song
et al. [29]

Load Balancing
technique QoS
(QALB)

1. Total network load in
minimum.
2. Load balancing is improved.
3. Average OLR is reduced
4. QoS data rates are high

1. Scalability is low
2. Availability is low
3. Delay is high
4. Bottleneck

Zhong
et al. [30]

Two Tier
Dynamic load
balancing
approach

1. Wi-Fi re-association time is
improved.
2. Wi-Fi load balancing
improved approach

1. Bottleneck
2. Availability is low
3. Scalability is slow
4. QoS constraint not
supported.

Rangisetti
et al. [31]

Genetic-bases
load balancing
technique

1. Degree of Load balancing is
high
2. Better Performance

1. Bottleneck
2. Availability is low
3. Scalability is low
4. Overhead is now evaluated
5. Computational time is high

Lin
et al. [32]

Variance based
load
synchronization

1. Better performance
2. No packet loss
3. Overcome the sync overhead
over controller

1. No evaluation of latency
values
2. No energy consumption is
evaluated

Chou et al.
[33]

Load Balancing
based on load
informing strategy

1. Load Balancing Locally
2. Balance Load on each
controller
3. Overcome the sync overhead
over controller

1. No evaluation of fault
tolerance
2. Imbalanced loaded balancing
for external balancers.
3. No load balancing technique
in multiple heterogeneous loads
balancing frameworks.

Koushika
et al.
[34]

Dynamic Load
Balancing
technique

1. Worked on the load
balancer.
Flexibility.
2. Reduce network response.
Time.
3. Improve the overall
performance of the network
and reduce delay.
4. Can adopt before the
network failure or after a link
failure

1. Delay is the off-network
path finding.
2. Network delay method is
adopted
3. Scalability is low
5. Computational time is high

1368 CMC, 2022, vol.70, no.1

3 Proposed Model

The model of our proposed load balancer in SDN is shown in Fig. 2. SDN controller take
cares of the issues such as load balancing, security, topology, monitoring, loading, forwarding,
etc., across the network. The addition of a load balancer in the SDN network supports intelligent
decision-making where the Load Balancer controls every SDN switch’s load. In the proposed
technique, the proposed server is used to handle load balancing problems in the SDN. As the
SDN controller is one of the servers responsible for managing all the switches, real-time load
and path calculation control the load balancing problems. A controller is connected to the load
balancer and switches. So, the controller periodically connects and transmits the Load balancing
information to the load balancer regarding the load and distribution of incoming packets to
different nodes.

Load control is the primary responsibility of the Load Balancer. Whenever the controller
needs to process the load balancing scheme, the balancer returns the load balancing condition
based on the calculated load path. The load balancer is directly in contact with the switches. Due
to this, transmission overhead on a controller is reduced, and there is a direct connection between
the load balancer and open flow switches. Balancer on one end relates to a controller and on the
other end connects with the open flow switches.

Figure 2: Proposed system’s network architecture

Our proposed system model aims at efficient load balancing based on the SDN controller,
Load Balancer, and open flow switches. Every SDN open flow switch contains a flow table for
traffic flow information. This information is continuously updated with the consensus of load
balancer and SDN controller.

The working of the proposed model is depicted in Fig. 3

a) Suppose a new data flow arrives, the open flow switch receives the information and matches
the information with its internal flow information. If the information matches with the header of
the flow table, i.e., if information persists, the data is transmitted according to the action fields.

CMC, 2022, vol.70, no.1 1369

If data is not found in flow tables, the SDN switch will send the packet header information to
the load balancer and SDN controller.

b) Load balancer relates to the controller and open flow switches in direct connection. It takes
and forwards commands to both SDN network devices for efficient flow information design.

c) The SDN controller is responsible for deciding the best transmission path in collaboration
with the load balancer.

d) As the load balancer directly connects with the controller and switches, based on infor-
mation from the controller and open flow switches, the SDN controller chooses one least loaded
path; other paths that are not part of load balancing send this information to the controller.

e) The load balancer controller’s information creates new flow tables with updated path infor-
mation and least loaded path information and transmits this information to open-flow switches
for transmission.

f) Controller and load balancer collaborate periodic information based on the open flow
switch information.

g) Finally, the SDN controller creates a single path or multiple path information based on
load balancer information.

As shown in Fig. 3, the direct link between the load balancer and switches and load bal-
ancer and controller effectively reduces transmission between controller and Load balancer and
ultimately among switches and controller.

Figure 3: Control data/packets procedure plans

h) Suppose a new data flow arrives inside the SDN domain. The open flow switch receives
the information match the information with its internal flow information regarding SDN network
traffic. If the info matched the header information in the flow table and persisted in the flow table,
the data is transmitted according to the action fields. If data does not find in flow tables, the
SDN switch will send the packet header information to the load balancer and SDN controller.

1370 CMC, 2022, vol.70, no.1

i) Load balancer relates to the controller and open flow switches in direct connection. It takes
and forwards commands to both SDN network devices for efficient flow information design.

j) The SDN controller is responsible for deciding the best transmission path in collaboration
with the load balancer.

k) As load balancer directly connects with controller and switches, based on information from
the controller and open flow switches, the SDN controller chooses one least loaded path; other
paths that are not part of load balancing send this information to the controller.

l) The load balancer controller’s information creates new flow tables with updated path infor-
mation and least loaded path information and transmits this information to open-flow switches
for transmission.

m) Controller and load balancer collaborate periodic information based on the open-flow
switch information.

n) Finally, the SDN controller creates a single path or multiple path information based on
load balancer information.

o) In the proposed model, the direct link between load balancer and switches and load
balancer and controller effectively reduces transmission between controller and load balancer and
ultimately switches.

In Fig. 4, we have evaluated the flow model of our approach in which the load balancing is
considered at very high rates by using a load balancer for the effective mechanism.

Figure 4: Flow of proposed model

The flow model contains the required information like path detection, load balancing, and
path establishment. In this regard, we have evaluated the information and instruction flow model

CMC, 2022, vol.70, no.1 1371

diagram that shows an actual flow of instructions and data that passed from multiple filter and
decision functions for the effective rates of methodology, as shown in Fig. 5.

Figure 5: Data flow inside the proposed methodology

3.1 OpenFlow Switch and Controller Data Flow
The controller in SDN exchanges information with the SDN switch to forward the packets to

the destination node and afterward delivers all of the concerned packets to the correct destination.
The status information about each node’s load is exchanged, tracked the loaded node, and triggers
the algorithm to balance the load on the SDN network and forward packets-based information
based on the information in the SDN flow table controller. Fig. 6 explores all of the data. The
incomings packets in the SDN control and out port show the outgoing packets to the best and
suitable path.

3.2 OpenFlow Switch and Controller with Load Balancing Server
To overcome the load balancing strategies on the controller, we introduce a new load balanc-

ing server. This load balancer directs the load balancing and network congestion in coordination
with the SDN controller. The data packet rates may get high at some time so that switches and

1372 CMC, 2022, vol.70, no.1

controllers cannot control such a situation effectively, so that network congestion occurs in some
places in the network. Fig. 7 shows the load balancer’s coordination with the SDN controller to
be divided with an adequate load balancing scheme.

Figure 6: Controller and SDN switch information flow

Figure 7: Load balancing scheme with a good load balancer in the SDN

CMC, 2022, vol.70, no.1 1373

4 Results and Discussions

This section describes the solution scenario for information-centric networks-based SDN load
balancing and traffic congestion handling strategies. The simulation environment is set up for load
balancing and congestion handling. Once the simulations are performed, the results are compared
with existing methods. The basic parameters discussed are the packet decision time ratio, packet
delivery, and bandwidth utilization.

4.1 Simulation Environment
We have deployed the NS-3 simulation environment [35,36] with the existing strategies to

compare the results. The network environment is hosted on H.P. Elitebook 840 Pro with Intel Core
i5-5200 CPU, 8 G.B. of RAM, 1 Tb SATA Hard Drive, Linux Operating System. Furthermore,
we have deployed SDN Controller and Load Balancer Server and simulated traffic for a particular
number of hosts and SDN switches. We have taken multiple senders and multiple receivers with
several SDN switches and one SDN controller and load balancing server for balancing the load
of the network. The load balancing server directly connects with the controller and SDN switches
in our approach, so the load balancing load is divided.

Tab. 2 summarizes the symbols and notation used throughout this section. The notations,
along with their brief explanation, are listed below.

Table 2: Notations

Notation Explanation

Transmission path
Pk Packet of request
Ns Number of switches in the network

SSDNwitch SDN switch

L.B. Load balancer
CSDn SDN controller
Hinfo Header info∑n

1Li Links between nodes in SDN network

Finfo Flow information

FT Flow table

Npath New forward path

Algorithm 1 exhibits the pseudocode for load handling policy. Symbols and notations used
in it are already defined in Tab. 2. There should be no network congestion that will occur in this
case. In this simulation environment, we have set up all the nodes, switches, controllers, and load
balancers in the existing environment to produce the results. Connection setup can be made using
wired and wireless connections. Some of the sending/source devices send the packets’ devices, and
some are receiving devices for the connection environment.

The complete working mechanism is described in Fig. 5, where all nodes are illustrated with
relevant scenarios. We have compared achieved results with the relevant state of the art methods

1374 CMC, 2022, vol.70, no.1

shown in Tab. 3. The obtained results showed that our technique improved the load balancing
and handling SDN network congestion quite effectively.

Algorithm 1: Load handling policy
Input: New Node, data packets
Output: Forwards packets on an efficient path.
Procedure:

a. Start
b. req(New)

a → N
c. if (finf → match)

Hinfo→ FT
Pk → frwrd ()

else if (CSDN → req(New)
a && LB → req(New)

a)
CSDN ⇐ path
L.B. ⇐ path
path (CSDN , LB)

else if (path ⇐ Finf (Ftable))
Pk ⇐ transmit ()

end if
end if

else
Npath⇐ path

(
CSDn, LB, S

(SDN)

witch

)

Packet_frwrd ()
d. end if
e. end

Table 3: Results comparison methodologies

Methodology Parameter Citation

Clustering and W/O-Clustering Network latency [37]
Advanced nearest neighbor load
balancing (ANNLB)

Bandwidth utilization [38]

Packet decision time ratio Packet decision time ratio of a switch [39]
Graph-based SDN switch Packets delivery [40,41]
EPE Packets delivery ration [42,43]

4.2 Results
The results are compared with the existing techniques shown in Tab. 3. Each testing policy is

further evaluated with other methodologies for assessing its effectiveness. In the proposed method,
the network topology matters for selecting packets, and we have used the SDN picketing set
up for the effective results maintenance and results in a generation. We have applied the SDN
protocols for the simulation environment and tested them to perform several tests. At the start
of the simulation, we have forwarded fewer packets. Over time, we have increased the number of
packets, data delivery ratio, and several SDN switches and consistently recorded all of the results.
The best results are taken from the environment and compared with the strategies listed in Tab. 3.

CMC, 2022, vol.70, no.1 1375

4.2.1 Network Latency
Fig. 8a elucidates the network latency results in load balancing and SDN network congestion

handling parameters. The x-axis represents the switches, whereas the y-axis depicts the latency in
ms. Even for a massive number of switches of 25 or more, the recorded latency is 41000 ms for
the proposed solution, and on the same number of switches, the other methods perform worse
than the proposed method. Similarly, on increasing the number of switches to 150, the latency
of the proposed method is slightly increased to 45900 ms, but in W/S-Clustering and Clustering
techniques, the latency is more than 4650 ms. These results imply that the performance of the
proposed system is better than W/S-Clustering and Clustering techniques in terms of latency. Over
a keen look, it is found that the proposed technique reduces the network latency of load-balancing
by 3.54%.

Figure 8: Performance evaluation. (a) Network latency (b) Bandwidth utilization (c) Packet detec-
tion ratio for switch (d) Packet delivery

1376 CMC, 2022, vol.70, no.1

4.2.2 Bandwidth Utilization
Fig. 8b exhibits the bandwidth utilization of the proposed method in comparison with other

approaches to assess the performance of the proposed method. Results indicate the selection of
best and most free path for incoming requests based on load balancing policy. ANNLB performs
relatively similarly when the congestion is not high. However, for more congested routes, it tends
to lose its effectiveness. In the proposed method, the bandwidth utilization is on a higher side and
even achieve desirable results for highly congested paths. The proposed method not only chooses
the best path to reduce latency but also improves bandwidth utilization. This bandwidth utilization
increases the popular post-probability of congestion in the SDN network.

4.2.3 Packet Delivery Value
Fig. 8c shows the data packet flow entries inside the OpenFlow switch compared to the other

three techniques. With just the simulation’s start, we have set the level-0 for all of the entries. We
have duplicate flow entries in all methods in the first second. Every second, all flow entries increase
rapidly, but in the LBoBS technique, the increase is steady because the network packets are
distributed, and load is balanced accordingly. With every second, the growth increases with time;
thus, the increasing growth is slow compared to other techniques. After reaching the threshold
values, the load balancing techniques show better results than different approaches.

4.2.4 Packet Delivery Value
Fig. 8d portrays the performance results of the LBoBs in terms of the packet transmission

rate. From the graph, it is evident that it is more effectively deliver more packets compared to
its counterparts methods. LBoBS detects the congestion and load on the network early with the
load balancing server’s help and applies the load balancing algorithm to identify the packets’ new
path effectively. The proposed policy is thus steady for the regular transmission of packets due to
the high data rate. In comparison, other methods are not compatible due to the lower number of
packet delivery.

5 Conclusion

This article investigated load balancing in the SDN-based networks where multiple servers
are added, and numerous domains maintain them. Load balancing causes delay in the packet
delivery, and at times packets may lose their way due to heavy load on some of the paths. Early
path collision detection and decision on path analysis are the core contributions of this work.
Load balancing and network congestion handling are ideal methods to handle the network load
after implementing the load balancing server in coordination with the SDN controller and SDN
OpenFlow switches. The load balancer continuously monitors the load on the SDN network. It
directs the controller to change the packets’ path to an alternate route in an undesired congestion
situation until the load balancing issue resolves. It is an intelligent approach and is highly effective
due to numerous reasons. Simulation results showed that the proposed LBoBS contributes signif-
icantly to load balancing through the handling of latency, bandwidth utilization, detection time
ratio, and packet delivery ratio under different environments and scenarios. LBoBS also provides
network congestion handling capabilities. In the future, we can extend this work by providing
the load balancing and congestion over the ICN-based SDN, NDN-based SDN, and CCN-based
SDN approaches.

CMC, 2022, vol.70, no.1 1377

Funding Statement: This research was supported by a Grant (21RERP-B090228-08) from Residen-
tial Environment Research Program funded by Ministry of Land, Infrastructure and Transport of
Korean government.

Conflicts of Interest: The authors declare that they have no interest in reporting regarding the
present study.

References
[1] Q. Mao and S. Weikang, “A load balancing method based on SDN,” in Seventh Int. Conf. onMeasuring

Technology and Mechatronics Automation, Nanchang, China, vol. 43, pp. 18–21, 2015.
[2] V. Srivastava and S. Pandey, “Machine intelligence approach: To solve load balancing problem with

high quality of service performance for multi-controller-based Software Defined Network,” Sustainable
Computing: Informatics and Systems, vol. 30, no. 20, pp. 100511, 2021.

[3] X. C. Chui and Y. X. Bin, “Research on load balance method in SDN,” International Journal of Grid
and Distributed Computing, vol. 9, no. 1, pp. 25–36, 2016.

[4] N.O. Foundation, “Software-defined networking (SDN) definition,” 2020. [Online]. Available:
https://www.opennetworking.org/sdnresources/sdn-definition.

[5] A. Ahmed, T. A. Fong, A. Gani, U. Garba, S. Khan et al., “Distributed controller clustering in
software defined networks,” PLOS ONE, vol. 12, no. 4, pp. 174715–174734, 2017.

[6] J. Christopher, O. Lyndon, S. Karthik and S. Vishnu, “Emerging transport SDN architecture and use
cases,” IEEE Communications Magazine, vol. 54, no. 10, pp. 116–121, 2016.

[7] T. C. Wing and L. K. Yeung, “Traffic distribution over equal-cost-multi-paths,” in IEEE Int. Conf. on
Communications, Paris, France, vol. 2, pp. 1207–1211, 2004.

[8] D. William and B. Towles, Principles and Practices of Interconnection Networks, 2004. [Online]. Available:
https://www.elsevier.com/books/principles-and-practices-of-interconnection-networks/dally/978-0-12-2007
51-4.

[9] N. Handigol, S. Seetharaman, K. Flajslik, N. McKeown, R. Johariet et al., “Plug-n-serve: Load-
balancing web traffic using OpenFlow,” ACM Sigcomm Demo, vol. 4, pp. 6–7, 2009.

[10] R. Wang, D. Butnariu and J. Rexford, “OpenFlow-based server load balancing gone wild,” in Proc.
of the 11th USENIX Conf. on Hot Topics in Management of Internet, Cloud, and Enterprise Networks and
Services USENIX Association, Berkeley, CA, USA, vol. 6, pp. 12, 2011.

[11] Y. Hu, W. Wang, X. Gong, X. Que and X. Cheng, “BalanceFlow: Controller load balancing for
OpenFlow networks,” in 2nd Int. Conf. on Cloud Computing and Intelligent Systems, Singapore, vol. 21,
pp. 780–785, 2012.

[12] Y. Li and D. Pan, “OpenFlow based load balancing for fat-tree networks with multipath support,” in
Proc. 12th IEEE Int. Conf. on Communications, Budapest, Hungary, vol. 20, pp. 1–5, 2013.

[13] A. M. Koushika and S. T. Selvi, “Load balancing using software defined networking in cloud envi-
ronment,” in Int. Conf. on Recent Trends in Information Technology, Chennai, India, vol. 41, pp. 1–8,
2014.

[14] Z. Guo, M. Su, Y. Xu, Z. Duan, L. Wang et al., “Improving the performance of load balancing in
software-defined networks through load variance-based synchronization,” Computer Networks, vol. 68,
no. 4, pp. 95–109, 2014.

[15] J. Ali, G. M. Lee, B. H. Roh, D. K. Ryu and G. Park, “Software-defined networking approaches for
link failure recovery: A survey,” Sustainability, vol. 12, no. 10, pp. 4255, 2020.

[16] S. Ahmad, A. Khudoyberdiev and D. Kim, “Towards the task-level optimal orchestration mechanism
in multi-device multi-task architecture for mission-critical IoT applications,” IEEE Access, vol. 7, no.
1, pp. 140922–140935, 2019.

[17] S. Ahmad, S. Malik, I. Ullah, D. H. Park, K. Kim et al., “Towards the design of a formal verification
and evaluation tool of real-time tasks scheduling of IoT applications,” Sustainability, vol. 11, no. 1,
pp. 204–226, 2019.

https://www.opennetworking.org/sdnresources/sdn-definition
https://www.elsevier.com/books/principles-and-practices-of-interconnection-networks/dally/978-0-12-200751-4
https://www.elsevier.com/books/principles-and-practices-of-interconnection-networks/dally/978-0-12-200751-4

1378 CMC, 2022, vol.70, no.1

[18] J. Ali and B. H. Roh, “An effective hierarchical control plane for software-defined networks leveraging
TOPSIS for end-to-end QoS class-mapping,” IEEE Access, vol. 8, pp. 88990–89006, 2020.

[19] S. Ahmad, L. Hang and D. Kim, “Design and implementation of cloud-centric configuration repository
for DIY IoT applications,” Sensors, vol. 18, no. 2, pp. 474–494, 2018.

[20] S. Ahmad, I. Hussain, M. Fayaz and D. Kim, “A distributed approach towards improved dissemination
protocol for smooth handover in mediasense IoT platform,” Processes, vol. 6, no. 5, pp. 46–61, 2018.

[21] J. Ali and B. H. Roh, “Quality of service improvement with optimal software-defined networking
controller and control plane clustering,” Computers, Materials & Continua, vol. 67, no. 1, pp. 849–875,
2021.

[22] S. Ahmad and D. Kim, “A multi-device multi-tasks management and orchestration architecture for the
design of enterprise IoT applications,” FutureGenerationComputer Systems, vol. 106, pp. 482–500, 2020.

[23] J. Ali, B. H. Roh and S. Lee, “QoS improvement with an optimum controller selection for software-
defined networks,” PLOS ONE, vol. 14, no. 5, pp. e0217631, 2019.

[24] Y. Jinke, Y. Wang, K. Pei, S. Zhang and L. Jiacong, “A load balancing mechanism for multiple
SDN controllers based on load informing strategy,” in 2016 18th Asia-Pacific Network Operations and
Management Symp., Kanazawa, Japan, vol. 14, pp. 1–4, 2016.

[25] C. Nkosi, A. Mpho, A. Lysko, Albert and S. Dlamini, “Multipath load balancing for SDN data plane,”
in 2018 Int. Conf. on Intelligent and Innovative Computing Applications, Plaine Magnien, Mauritius, vol.
14, pp. 1–6, 2018.

[26] H. Yao, C. Qiu, C. Zhao and L. Shi, “A multicontroller load balancing approach in software-defined
wireless networks,” International Journal of Distributed Sensor Networks, vol. 11, no. 10, pp. 454159–
454167, 2015.

[27] W. Yong, T. Xiaoling, H. Qian and K. Yuwen, “A dynamic load balancing method of cloud-center
based on SDN,” China Communications, vol. 13, no. 2, pp. 130–137, 2016.

[28] S. M. Raza, D. Park, Y. Park, K. Lee and H. Choo, “Dynamic load balancing of local mobility
anchors in software defined networking based proxy mobile IPv6,” in Proc. of the 10th Int. Conf. on
Ubiquitous Information Management and Communication, Danang, Vietnam, vol. 24, pp. 106, 2016.

[29] P. Song, Y. Liu, T. Liu and D. Qian, “Flow stealer: Lightweight load balancing by stealing flows in
distributed SDN controllers,” Science China Information Sciences, vol. 60, no. 3, pp. 32202–32218, 2017.

[30] H. Zhong, Y. Fang and J. Cui, “LBBSRT: An efficient SDN load balancing scheme based on server
response time,” Future Generation Computer Systems, vol. 68, no. 1, pp. 183–190, 2017.

[31] A. K. Rangisetti and B. R. Tamma, “QoS aware load balance in software defined LTE networks,”
Computer Communications, vol. 97, no. 1, pp. 52–71, 2017.

[32] Y. D. Lin, C. C. Wang, Y. J. Lu, Y. C. Lai and H. C. Yang, “Two-tier dynamic load balancing in
SDN-enabled Wi-Fi networks,” Wireless Networks, vol. 24, no. 1, pp. 1–13, 2017.

[33] L. D. Chou, T. Y. Yang, Y. M. Hong, J. K. Hu and B. Jean, “A genetic-based load balancing algorithm
in openflow network,” in Advanced Technologies, Embedded andMultimedia for Human-centric Computing,
1st ed., vol. 1. Berlin, Germany: Springer, pp. 411–417, 2014.

[34] A. M. Koushika and S. T. Selvi, “Load balancing using software defined networking in cloud envi-
ronment,” in Int. Conf. on Recent Trends in Information Technology, Chennai, India, vol. 16, pp. 1–8,
2014.

[35] J. Ivey, H. Yang, C. Zhang and G. Riley, “Comparing a scalable SDN simulation framework built on
NS-3 and DCE with existing SDN simulators and emulators,” in Proc. of the 2016 ACM SIGSIM Conf.
on Principles of Advanced Discrete Simulation, Danang, Vietnam, vol. 17, pp. 153–164, 2016.

[36] N. N. Dao, J. Kim, M. Park and S. Cho, “Adaptive suspicious prevention for defending DoS attacks
in SDN-based convergent networks,” PLOS ONE, vol. 11, no. 8, pp. 160375–160399, 2016.

[37] S. Ahmad, S. Malik, I. Ullah, M. Fayaz, D. H. Park et al., “An adaptive approach based on
resource-awareness towards power-efficient real-time periodic task modeling on embedded IoT devices,”
Processes, vol. 6, no. 7, pp. 90–116, 2018.

CMC, 2022, vol.70, no.1 1379

[38] M. Hussain and N. Shah, “Automatic rule installation in case of policy change in software defined
networks,” Telecommunication Systems, vol. 68, no. 3, pp. 461–477, 2018.

[39] V. Srivastava, R. Pandey and S. J. S. C. I. Systems, “Machine intelligence approach: To solve load
balancing problem with high quality of service performance for multi-controller-based software defined
network,” Sustainable Computing: Informatics and Systems, vol. 30, no. 11, pp. 100511, 2021.

[40] A. Abdelaziz, “Distributed controller clustering in software defined networks,” PLOSONE, vol. 12, no.
4, pp. e0174715, 2017.

[41] C. Chen-Xiao and X. Ya-Bin, “Research on load balance method in SDN,” International Journal of
Grid and Distributed Computing, vol. 9, no. 1, pp. 25–36, 2016.

[42] N.-N. Dao, J. Kim, M. Park and S. Cho, “Adaptive suspicious prevention for defending DoS attacks
in SDN-based convergent networks,” PLOS ONE, vol. 11, no. 8, pp. e0160375, 2016.

[43] M. Hussain, N. Shah and A. Tahir, “Graph-based policy change detection and implementation in
SDN,” Electronics, vol. 8, no. 10, pp. 1136, 2019.

