
echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2022.017787

Article

Dynamic Routing Optimization Algorithm for Software Defined Networking

Nancy Abbas El-Hefnawy1,*, Osama Abdel Raouf2 and Heba Askr3

1Department of Information Systems, Tanta University, Tanta, 31511, Egypt
2Department of Operations Research and Decision Support, Menoufia University, Shepen Alkom, Egypt

3Department of Information Systems, University of Sadat City, AlSadat City, 048, Egypt
*Corresponding Author: Nancy Abbas El-Hefnawy. Email: nancyabbas_1@ics.tanta.edu.eg

Received: 11 February 2021; Accepted: 23 March 2021

Abstract:Time and space complexity is themost critical problemof the current
routing optimization algorithms for Software Defined Networking (SDN).
To overcome this complexity, researchers use meta-heuristic techniques inside
the routing optimization algorithms in the OpenFlow (OF) based large scale
SDNs. This paper proposes a hybrid meta-heuristic algorithm to optimize
the dynamic routing problem for the large scale SDNs. Due to the dynamic
nature of SDNs, the proposed algorithmuses amutationoperator to overcome
the memory-based problem of the ant colony algorithm. Besides, it uses the
box-covering method and the k-means clustering method to divide the SDN
network to overcome the problem of time and space complexity. The results of
the proposed algorithm compared with the results of other similar algorithms
and it shows that the proposed algorithm can handle the dynamic network
changing, reduce the network congestion, the delay and running times and the
packet loss rates.

Keywords: Dynamic routing optimization; Openflow; software defined
networking

1 Introduction

Distributed routing algorithms are used in traditional networks and this cause problems in
controlling and management of the network. SDN outperforms the traditional network archi-
tecture management in terms of cost. SDN separates the network control plane layer from the
forwarding/data plane layer. SDN controllers have a full image of the network topology and make
forwarding decisions based on flow tables using the OF protocol. SDNs controller have full image
and control of the network topology and which improves the performance of routing processes [1].

Time and space complexity is the most critical problem of the current SDN routing opti-
mization algorithms. These algorithms use Dijkstra algorithm in exploring the shortest path. The
complexity of the Dijkstra algorithm is that the number of nodes and edges of the network affect
the efficiency of the algorithm [2]. To overcome this complexity, researchers use meta-heuristic
techniques inside the routing optimization algorithms in OF-based large scale SDNs. [3].

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2022.017787


1350 CMC, 2022, vol.70, no.1

Ant Colony Optimization (ACO) is the most famous meta-heuristic technique that outper-
forms other traditional routing techniques beside the ACO methodologies have the potential to
conduct the flow-based routing strategy as same as SDNs [4].

This paper proposes a hybrid meta-heuristic algorithm to optimize the dynamic routing
problem for the large scale SDNs. it is called Hybrid Ant Colony Optimization (HACO) algorithm
HACO uses two different methods for dividing the network into small subnets to overcome the
problem of time and space complexity. These methods are box-covering and k-means clustering
methods. Also, HACO uses a mutation operator to discover new areas in the search space and
improve the solution.

The structure of this paper as follows. Section 2 presents the goal of the research. Section 3
covers the related work efforts. Section 4 gives an overview of the SDN. Section 5 presents
an overview of the network routing problem. Section 6 presents an overview of Ant Colony
Optimization. Section 7 presents the proposed algorithm. Section 8 presents the performance
evaluation of the proposed algorithm. Finally, the conclusion of the paper is presented in
Section 9.

2 Research Objective

The main goal of this paper is to overcome the problem of time and space complexity of the
dynamic routing problem inside SDNs using the proposed HACO algorithm.

3 Related Works

Dijkstra algorithm is one of the most famous shortest path algorithms applied in network
routing. But the complexity of the Dijkstra algorithm affects the efficiency of the routing process.
Literature [2] proposed a box-covering-based routing (BCR) algorithm for large scale SDNs trying
to minimize the time and space complexity of the Dijkstra algorithm by reducing the number
of nodes and edges in the network. In the BCR algorithm, Firstly, the whole network is divided
into several subnets and each subnet is covered by a box of size (l). Secondly, each subnet is
treated as a new node, and the shortest path between these new nodes is calculated by the Dijkstra
algorithm. Thirdly, the shortest path between nodes inside each subnet is calculated also by the
Dijkstra algorithm. Finally, the shortest path between subnets and the shortest paths inside those
corresponding subnets are linked together and the path from the source node to the target node
is found.

Although the BCR algorithm in [2] reduces the network size and it still uses the Dijkstra
algorithm in the routing process. This encourages researchers to use meta-heuristic techniques
inside the routing optimization algorithms in the OpenFlow (OF) based large scale SDNs.

4 SDN Architecture

The SDN architecture is divided into three planes. At the very bottom is the data plane which
comprises of hardware such as network switches. Above the data plane is the network control
plane. The centralized controller could be as simple as a server machine attached to the network
running on controller software [5]. Residing above the control plane is the application plane. This
plane comprises of individual applications which could be network monitoring utilities, voice over
IP applications which has a particular set of requirements such as delay. Communication between
the application and the control plane is by means of northbound application programming
interface (API) such as the restful protocols. While the controller communicates with the data



CMC, 2022, vol.70, no.1 1351

plane devices such as network switches using the southbound application programming interface
commonly using the open flow protocol. This architecture is presented in Fig. 1.

Figure 1: SDN architecture

OpenFlow is the core of the forwarding plane of network devices in SDNs [6]. An OpenFlow
Switch consists of one or more flow tables and a group table, which perform packet lookups and
forwarding, and an OpenFlow channel to an external controller. The switch communicates with
the controller and the controller manages the switch via the OpenFlow protocol [7]. Using the
OpenFlow protocol, the controller can add, update, and delete flow entries in flow tables. Each
flow table in the switch contains a set of flow entries; each flow entry consists of match fields,
counters, and a set of instructions to apply to matching packets [8]. The processing of packets
always starts at the first flow table. Then proceed with the highest-priority matching flow table
and of the instructions of that flow entry is executed. Otherwise, the packet is dropped. The OF
switch is illustrated in Fig. 2.

5 Network Routing

Network routing is the process of selecting a path across one or more networks. Metrics
are cost values used by routers to determine the best path to a destination network. The most
common metric values are hop, bandwidth, delay, reliability, load, and cost [9]. SDN routing
example is shown in Fig. 3. The SDN controller has full image and management over the SDN
network [10].

Routing algorithms are responsible for selecting the best path for the communication [11].
Open Shortest Path First (OSPF) allows routers to dynamically update information about network
topology. Dijkstra’s algorithm uses Shortest Path First (SPF) algorithm [12]. It finds the path the
shortest path between that node and every other node [13].



1352 CMC, 2022, vol.70, no.1

Figure 2: OpenFlow switch components

Figure 3: OpenFlow routing structure of SDN

6 Ant Colony Optimization (ACO)

ACO is a meta-heuristic algorithm where ants searching for food and depositing pheromone
on the route. The quantity of pheromone on the route affects the behavior of ants; the path with
the largest quantity of pheromone represents the shortest path [3].

ACO starts with generating m random ants and evaluates the fitness of each ant according
to an objective function then updates the pheromone concentration of every possible trail using
Eq. (1).

τij (t)= ρτij (t− 1)+Δτij (1)



CMC, 2022, vol.70, no.1 1353

where i and j are nodes, t is a particular iteration; τij (t) is the revised pheromone concentration
related to the link �ij at iteration t, τij (t− 1) is the pheromone concentration at the previous
iteration (t− 1); Δτij is the pheromone concentration change; and ρ is the pheromone evapora-
tion(decay) coefficient with value ranging from 0 to 1 to avoid too strong influence of the old
pheromone so that premature solution stagnation is incurred. The decay value equals the average
of the windows’ size of the network. Δτij is the sum of the contributions of all ants related to
�ij at iteration t and can be calculated using Eq. (2).

Δτij =
m∑
k=1

Δτ kij , (2)

where m is the number of ants and Δτ kij is the pheromone concentrate laid on link �ij by ant k.

Δτ kij can be calculated by Eq. (3) with R being the pheromone reward factor and fitnessk being

the value of the objective function for ant k.

Δτ kij =
m∑
k=1

R

fitnessk
if �ij is chosen by ant k (3)

Once the pheromone is updated, each ant must update its route respecting the pheromone
concentration and also some heuristic preference consistent with the subsequent probability by
Eq. (4).

pij (k, t)=
τij (t)α × η

β
ij∑m

�ij
τα
ij × η

β
ij

, (4)

where pij (k, t) is the probability that link �ij is chosen by ant k at iteration t; τij (t) is the
pheromone concentration related to link �ij at iteration t; ηij is the heuristic factor for preferring
among available links and is an indicator of how good it’s for ant k to pick link �ij; α and β

are exponent parameters that specify the impact of trail and attractiveness, respectively, and take
values greater than 0.

7 Optimization of Dynamic Routing in SDN Using ACO

The deployment phases of the SDN environment are presented in this section followed by
presenting the proposed algorithm.

SDN Deployment Phases:

Fig. 4 is illustrated SDN deployment phases as follow:

Phase (1) SDN Simulation: SDN is simulated by Mininet with VMware Workstation in the
Ryu controller.

Phase (2) Network discovery and network dividing: SDN controller features a full image of
the topology and it dynamically updates the topology after every data flow (Packet In). HACO
divides the network using either the BCR or the k-means clustering algorithm. Both algorithms
are introduced as follow:

Box-Covering algorithm (BCR) in [2] divides the network into boxes or subnets. A box size is
given in terms of the network distance, which corresponds to the number of edges on the shortest



1354 CMC, 2022, vol.70, no.1

path between two nodes. The idea of the BCR algorithm is illustrated in Fig. 5. To find the
shortest path from node 1 to node 25, the network is split into six boxes. Each box is considered
as one node and the dimension of the network is prominently decreased. If there is an edge
between two nodes in two different boxes, then these two boxes are connected. The shortest path
between node 1(box 1) and node 5 is found using the proposed HACO rather than using the
Dijkstra. Then, the shortest path in each box is calculated then the shortest paths are linked
together to get the globally shortest path (the red lines) from node 1 to node 25.

Figure 4: SDN deployment phases

Figure 5: An example to illustrate the Box-Covering algorithm



CMC, 2022, vol.70, no.1 1355

K-means clustering is a type of unsupervised learning. The goal of this algorithm is to find
groups in the data, with the number of groups represented by the variable K. The algorithm works
iteratively to assign each data point to one of K groups based on the features that are provided.
For large scale networking, K-Means is computationally faster than hierarchical clustering [14]
and considers the best partitioning clustering algorithm according to the time complexity [15]. The
goal of the algorithm is to partition the n nodes into k sets (clusters) Si where, i = 1, 2. . . k so
that the within-cluster sum of squares is minimized, defined as Eq. (5) [16].

k∑
j=1

n∑
i=1

(∣∣∣xji − cj
∣∣∣
)2

, (5)

where, term
(∣∣∣xji− cj

∣∣∣
)
provides the distance between a node and the cluster’s centroid. Traditional

k-Means algorithm selects initial centroids randomly and the result of clustering highly depends
on selection of initial centroids and the algorithm may find a suboptimal solution when the centres
are chosen badly [17]. The Pseudo code of k-means algorithm is shown in Fig. 6. Some methods
for selecting the initial centroids includes Forgy’s Approach, MacQueen Method, Simple Cluster
Seeking method, Kaufman Approach, and k-means++ method. This research used the k-means++
as an algorithm for choosing the initial values for the k-means clustering algorithm because it is
successfully overcome some of the problems associated with the other methods [18].

BEGIN

1. Select k points as initial centroids.
2. Assign all points to the closest centroid.
3. Re-compute the centroids of each cluster as an 

average of the sum of squares for all nodes 
within the cluster.

4. Repeat steps 2 and 3 until the centroids do not 
change (become stable).

END

Figure 6: Pseudo code of k-means algorithm

Phase (3) The Suggested Algorithm Implementation: Here the routing process is executed by
the proposed algorithm.

Phase (4) Forwarding: This phase responsible for forwarding the data through the path given
form phase (3). If no matching happens, the controller is informed to take new action (drop the
packet or install it in the pipeline tables).

The Proposed Algorithm:

HACO optimizes the routing in large scale SDN using four parallel optimization steps.

In the first step, the SDN network is divided into boxes using BCR or k-means. This
optimizes the search space and the packet time of exploring the best path.

In the second step, assuming a zero-memory system within the network initiated for the
first time. A broadcast is a way to explore all network nodes; this is often like ants’ first time
randomly distributed on all the available paths. An ant within the HACO algorithm decides the
path to follow based on the pheromone trails on the path but, instead of covering the path where
the pheromone trail is stronger just like the natural ant would do, it explores the path where



1356 CMC, 2022, vol.70, no.1

the pheromone intensity does not exceed a predefined threshold. This avoids the congestion and
maximizes the network throughput.

In the third step, the packet matching time spent in each router is optimized by creating a
new matching table within the OF pipeline with entries of the discovered best paths and giving
the matching table the priority so that decreasing the time spent in the packet matching process
and minimize both the total delay time and the packet loss rate. The probability of choosing a
node is consistent with the roulette wheel statistical distribution [19] as given by Eq. (6):

pij (t)=
τij (t) ηj (t)∑successors_of _i

k=1 τik (t) ηk (t)
, (6)

where τij (t) is the concentration of pheromone between node i and node j for the (t)th iteration,
ηj (t) is the value of the heuristic information in node j and supposed to equal 0.01, τik (t) is the
concentration of pheromone between node i and node k where k is a value increasing from 1 to
the number of successors of node i, ηk (t) is its current value of the heuristic function.

The local pheromone level on all the paths discovered is decreased by an amount called the
pheromone decay or the evaporation rate ρ and therefore the global pheromone level on the best
path is updated and increased by α using Eq. (7):

τij (t)= τij (t− 1)+α, (7)

In the fourth step, HACO uses a mutation operation to discover new paths. Mutation
operation is mainly derived from the Genetic Algorithm (GA) but it can be applied to other
meta-heuristic algorithms to increase the probability of exploring a better solution in the search
space and improve the routing optimization process [20]. The mutation operation randomly selects
a path from the paths that have generated in step (3) and mutates this path by a mutation
probability in Eq. (8):

pm = mutaion_parameter
number_of _generated_paths

, (8)

where pm is the probability of mutation. For example, if the number_of _generated_paths = 20
paths and the mutaion_parameter= 2, this means that 2 paths from 20 will be mutated. Pseudo
code of HACO is described in Fig. 7.

8 Performance Evaluation

The platform for implementing the proposed HACO algorithm on large-scale SDNs involves
the following software tools and programming language: Ubuntu16.04, Mininet 2.2, Ryu 3.6,
VMware Workstation Pro, the size l of each box is 1, clustering parameter k is 3, Iperf software
was used in the SDN network flow, flow rate 2 Mb/s, bandwidth 5 Mb/s and Python 2.7.9. The
hardware environment includes a PC that has an Intel i7 as a CPU, 8 GB memory, and 1 GB
hard disk.

This platform is used to create SDN, and then the performance of the HACO algorithm is
measured as follows:

• Measuring the performance of HACO under dynamic changing of the topology.
• Testing the HACO using k-means network delay and packet loss at different centroids.
• Testing the proposed HACO total network delay and packet loss rates at different network

sizes.



CMC, 2022, vol.70, no.1 1357

BEGIN
Initialize

Divide SDN network into subnets using Box-Covering or k-
means

While stopping criteria is not satisfied do
Position all ants in a starting node
Repeat
For each ant do
Choose the next node using Eq. 6

Apply local pheromone update using Eq. 1
End for
Add discovered paths to the new table in the OF-

pipeline
Until every ant has built a path

Implement mutation using Eq. 8
Update the new table with the discovered paths by the 
mutation process

Choose the best path from the new table
Apply global pheromone update using Eq. 7

End While
END

Figure 7: Pseudo code of the proposed HACO

• Comparing the performance of HACO against other routing algorithms in SDN and
literature relevant algorithms consistent with the running time.

• Comparing the performance of HACO against other routing algorithms in SDN and
literature relevant algorithms consistent with the delay time.

Measuring the performance of the HACO under dynamic changing of the network topology:

At a predefined time-instance, a network device is added, and the network is reconfigured,
and therefore the best paths are updated consistent with the least hop count and congestion [15].

Testing the HACO using k-means network delay and packet loss at different centroids:

For different network sizes, the k-means++ method is generating the initial centroids, then the
HACO using k-means is implemented at different centroids to choose the best centroids which
achieve the minimum network delay and packet loss rates. Figs. 8 and 9 presents plots of the
centroid’s movement against the network delay and packet loss in case of network size is 100
nodes. It is observed that the best centroid value which achieves the minimum network delay and
packet loss is 3.

Figure 8: Centroid movement against the network delay



1358 CMC, 2022, vol.70, no.1

Figure 9: Centroid movement against packet loss rate (%)

Testing the proposed HACO total network delay and packet loss rates at different network sizes:

HACO is executed at different network sizes as shown in Tab. 1.

Table 1: Network size against total delay and packet loss

Network size Total delay using
box-covering (ms)

Total delay using
k-means (ms)

Packet loss rate using
box-covering (%)

Packet loss rate
using k-means (%)

10 19.2 27.2 0.002 0.003
50 90.2 105.3 0.003 0.004
100 220.1 251.2 0.005 0.006
500 403.4 469.4 0.008 0.009
750 489.4 567.1 0.010 0.201
1000 667.3 813.6 0.100 0.365
2000 876.1 1165.8 0.231 0.582
5000 1004.2 1398.4 0.398 0.895

Fig. 10 shows that the entire delay by box-covering or k-means is proportional to the net-
work size but not in a linear behavior. This because of the stochastic nature of meta-heuristic
algorithms. the entire delay by box-covering and k-means is approximately equal until 100 nodes.
With the rapid growth of the numbers of nodes from 500 to 5000, the entire delay by k-means
is worse than the entire delay using box-covering.

Fig. 11 shows acceptable packet loss rates by either box-covering or k-means which is smaller
than the benchmark of 1% at 10 Mb/s dedicated for voice and video streaming. The packet loss
rates by box-covering and k-means are approximately equal to 500 nodes. With the rapid growth
of the numbers of nodes from 750 to 5000, the packet loss rate using k-means is worse than the
packet loss rate using box-covering.

Comparing the performance of HACO against other routing algorithms in SDN and literature
relevant algorithms according to the running time:

HACO is implemented at different network sizes against the running time and compared with
both Dijkstra and BCR algorithm in [2] as indicated in Tab. 2.

Fig. 12 indicates that the running time of Dijkstra, BCR, HACO using box-covering and
HACO using k-means algorithms is approximately equal to 500 nodes. With the rapid growth



CMC, 2022, vol.70, no.1 1359

of the numbers of nodes from 750 to 5000, the advantage of HACO using box-covering and
mutation algorithm becomes increasingly obvious.

Figure 10: Network size against total delay

Figure 11: Network size against packet loss rate

Table 2: Performance of HACO against other routing algorithms (Network size against running
time)

Running time (ms)

Network size HACO using
box-covering

HACO Using
k-means

Dijkstra Alg. BCR Alg. in [2]

10 0.00001 0.00098 0.00113 0.00998
50 0.00009 0.00812 0.03098 0.03899
100 0.00021 0.08001 0.09302 0.08042
500 0.04302 1.97674 3.36523 2.34667
750 1.13456 3.8534 8.72980 4.69111
1000 2.46721 4.6542 17.7252 7.32198
2000 17.5231 25.7634 92.1916 32.1823
5000 131.4875 171.872 815.167 204.111



1360 CMC, 2022, vol.70, no.1

Figure 12: Performance of HACO against other routing algorithms (network size against running
time)

Comparing the performance of HACO against other routing algorithms in SDN and literature
relevant algorithms according to the delay time:

HACO is implemented at different network sizes against the total delay time and compared
with Dijkstra and BCR algorithm in [2] as indicated in Tab. 3. The comparison is made for only
10, 50 and 100 nodes because these are the only network sizes used as the benchmark sizes for
the literature relevant algorithms.

Table 3: Performance of HACO against other routing algorithms (network size against delay time)

Delay time (ms)

Network size HACO using box-covering HACO using k-means Dijkstra Alg. BCR Alg. in [2]

10 19.2 27.2 50.4 100.1
50 90.2 105.3 130.6 129.7
100 220.1 251.2 535.4 300.4

The results shown in Fig. 13 are analysed as follow:

When the number of nodes is 10, the delay time by BCR algorithm is the worst and the
delay time by HACO using box-covering is the best one. When the number of nodes is 50, the
two delay times by BCR and Dijkstra are approximately the same but the delay time by HACO
using box-covering is still the best one. When the number of nodes reaches 100, the delay time
by Dijkstra algorithm becomes the worst and the delay time by HACO using box-covering is
still the best one, consequently the proposed HACO using box-covering outperforms the other
algorithms.



CMC, 2022, vol.70, no.1 1361

Figure 13: Performance of HACO against other routing algorithms (network size against delay
time)

9 Conclusion and Points for Discussion

This paper suggested Hybrid Ant Colony Optimization (HACO) algorithm for optimizing the
routing problem inside SDNs.

HACO using box-covering optimized the time and space complexity and the mutation gives a
far better divergence and a far better chance for HACO for exploring less congested paths. A new
table within the OF pipeline is created which contains all the explored paths. This optimizes the
packet matching time and both the network delay and running times and maximizing the network
throughput.

By comparing with other routing algorithms, the results show that HACO using box-covering
outperforms all other algorithms and achieves a significant reduction of the network delay, packet
loss rates, and running times.

It is recommended to use either HACO using box-covering or HACO using k-means when
the network size is less than 50 nodes and to use HACO using box-covering when the network
size exceeds 50 nodes.

As a future point for research, the proposed HACO may be improved by optimizing the initial
centroids or the box-size values.

Funding Statement: The authors received specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
[1] A. Abdulaziz and S. Yahya, “Improved extended dijkstra’s algorithm for software defined networks,”

International Journal of Applied Information Systems, vol. 1, no. 2, pp. 249–868, 2017.
[2] L. Zhang and Y. Hu, “A box-covering-based routing algorithm for large-scale SDNs,” Journal of IEEE

Access, vol. 5, no. 2, pp. 314–327, 2017.
[3] L. Lingxia and L. Feng, “Evolutionary algorithms in software defined networks,” Journal of ZTE

Communications, vol. 15, no. 3, pp. 20–36, 2017.



1362 CMC, 2022, vol.70, no.1

[4] B. Assefa and O. Ozkasap, “State-of-the-art energy efficiency approaches in software defined network-
ing,” in Proc. SoftNetworking, Barcelona, Spain, pp. 555–567, 2015.

[5] E. Duran and G. Caraus, “On software defined networks for particle accelerators,” Ph.D. dissertation,
Lund University, Scandinavia, Northen Europe, 2018.

[6] W. Braun and M. Menth, “Software-defined networking using openflow: Protocols, applications and
architectural design choices,” Journal of Future Internet, vol. 5, no. 3, pp. 302–336, 2014.

[7] M. Maugendre, “Development of a performance measurement tool for SDN,” M.Sc. dissertation, UPC
University, Barcelona, Spain, 2015.

[8] C. Black and T. Culver, OpenflowSwitch Specification. USA: Open Networking Foundation, pp. 89–136,
2015. [Online]. Available: https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.

[9] J. Kurose and K. Ross, Computer Networking: A Top-Down Approach, 7th ed., USA: Pearson, 2017.
[Online]. Available: https://www.pearson.com/us/higher-education/program/Kurose-Computer-Networking
-A-Top-Down-Approach-7th-Edition/PGM1101673.html?tab=features.

[10] M. Alnaser, “A method of multipath routing in SDN networks,” in Advances in Computer Science and
Engineering. vol. 17. Allahabad, India: Publishing House, pp. 11–17, 2018.

[11] P. Asher, “Comprehensive analysis of dynamic routing protocols in computer networks,” International
Journal of Computer Science and Information Technologies, vol. 6, pp. 4450–4455, 2015.

[12] A. Karim and M. Khan, “Behaviour of routing protocols for medium to large scale networks,”
Australian Journal of Basic and Applied Sciences, vol. 5, no. 3, pp. 1605–1613, 2011.

[13] N. Gupta and K. Mangla, “Applying Dijkstra’s algorithmin routing process,” International Journal of
New Technology and Research, vol. 2, no. 5, pp. 122–124, 2016.

[14] O. Abdel Raouf and H. Askr, “ACOSDN–Ant colony optimization algorithm for dynamic routing in
software defined networking,” in Proc. ICCES, Cairo, Egypt, pp. 141–148, 2019.

[15] D. Xu and Y. Tian, AComprehensive Survey of ClusteringAlgorithms. vol. 2. Berlin Heidelberg: Springer-
Verlag, pp. 165–193, 2015.

[16] A. Baswade and P. Nalwade, “Selection of initial centroids for k-Means algorithm,” International
Journal of Computer Science and Mobile Computing, vol. 2, no. 7, pp. 161–164, 2013.

[17] R. Alvida and I. Ikhwan, “Using k-means++ algorithm for researchers clustering,” in Proc. AIP, USA,
pp. 20052, 2017.

[18] D. Sonagara and S. Badheka, “Comparison of basic clustering algorithms,” International Journal of
Computer Science and Mobile Computing, vol. 3, no. 2, pp. 58–61, 2014.

[19] Z. Liang and Z. Zhu, “Orderly roulette selection based ant colony algorithm for hierarchical multi-label
protein function prediction,” Journal of Mathematical Problems in Engineering, vol. 2017, no. 1, pp. 1–15,
2017.

[20] H. Xu and F. Duan, “A Hybrid ant colony optimization for dynamic multi-depot vehicle routing
problem,” Journal of Discrete Dynamics in Nature and Society, vol. 2018, no. 1, pp. 1–10, 2018.

https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1
https://www.pearson.com/us/higher-education/program/Kurose-Computer-Networking-A-Top-Down-Approach-7th-Edition/PGM1101673.html?tab=features
https://www.pearson.com/us/higher-education/program/Kurose-Computer-Networking-A-Top-Down-Approach-7th-Edition/PGM1101673.html?tab=features

