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Abstract: The captured outdoor images and videos may appear blurred due to
haze, fog, and bad weather conditions. Water droplets or dust particles in the
atmosphere cause the light to scatter, resulting in very limited scene discerni-
bility and deterioration in the quality of the image captured. Currently, image
dehazing has gained much popularity because of its usability in a wide variety
of applications. Various algorithms have been proposed to solve this ill-posed
problem. These algorithms provide quite promising results in some cases, but
they include undesirable artifacts and noise in haze patches in adverse cases.
Some of these techniques take unrealistic processing time for high image reso-
lution. In this paper, to achieve real-time halo-free dehazing, fast and effective
single image dehazing we propose a simple but effective image restoration
technique using multiple patches. It will improve the shortcomings of DCP
and improve its speed and efficiency for high-resolution images. A coarse
transmission map is estimated by using the minimum of different size patches.
Then a cascaded fast guided filter is used to refine the transmission map.
We introduce an efficient scaling technique for transmission map estimation,
which gives an advantage of very low-performance degradation for a high-
resolution image. For performance evaluation, quantitative, qualitative and
computational time comparisons have been performed, which provide quiet
faithful results in speed, quality, and reliability of handling bright surfaces.
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1 Introduction

Haze is a collection of dust and smoke particles that are scattered in the air. Haze is an
atmospheric phenomenon that reduces outdoor scene prominence. From low-level image analysis
to high-level object recognition, most computer vision algorithms assume that the input image is
haze-free. Therefore, haze removal is a prerequisite for many practical applications.
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Most of computer vision and computer graphic application use image formation model [1–5]
to describe the hazy image:

I(x)= J(x).t(x)−A.(1− t(x)) (1)

where I(x) is hazy image, J(x) is scene radiance, A is airlight and t(x) is transmission or visibility
map of an image. In literature, properties of airlight are commonly assumed to be constant across
a scene [1–4,6], which is often assumed to be the brightest point of an image or sky. Transmission
value t(x) is a visibility of an object that reaches the camera, inversely proportional to the depth
of the scene d(x) and number airborne particles represents as β. Single image dehazing is always
been a under constraint problem and to solve this under constraint problem different assumption
were made by prior algorithms. These dehazing algorithms can mainly categorize into two key
points: i) additional information based transmission estimation e.g., multiple hazy images under
different weather conditions [7] or by using different polarization filter [8] or by using near infra-
red channel [9] or by given depth map of hazy image [10] and ii) single image dehazing, more
practical solution. In single image dehazing, most methods estimate depth map using different sta-
tistical and experimental assumptions [1–3,6,10–12]. These approaches can further be categorized
methods that need some user input [10–12] and automatic methods [1–3,6].

Recent works focus on single image dehazing methods. This is quite challenging problem with
fewer information and multiple assumptions. Some sate of art algorithms are discussed in this sec-
tion. Fattals [3] assume that target surface shading and transmission are partially uncorrelated and
by using the independent component analysis (ICA) transmission map was estimated. Fattal [6]
presented another dehazing algorithm that is based on images generic regularity in which image
pixels typically exhibit a one-dimensional RGB color space, this algorithm is known as color-lines.
Berman et al. [13] creates haze lines for each color cluster in RGB space.

Recently, some works has been done to improve the process of dehazing using machine
learning framework. Tang et al. [14] investigate and combine four types of haze-relevant features
in a Random Forest [15] based regression framework. They found that the dark-channel is the
most informative feature in learned regression model it confirms the observation of He et al. [2]
from a learning perspective, while other haze-relevant features also contribute significantly in a
complementary way. Zhu et al. [16] estimate depth map of a hazy image by presenting a linear
model for depth estimation, prior of color attenuation. Parameters are selected using supervised
learning. Basic observations of color attenuation prior are that the brightness and the satura-
tion of pixels in a hazy image vary sharply along with the change of the haze concentration
and the hazy regions are characterized by high brightness and low saturation. Cai et al. [17]
presented “DehazeNet” in which medium transmission is estimated using Convolutional Neural
Networks (CNN). Dehazing algorithms [7,8] were proposed that presents an energy function,
which is minimized or maximized to derive a numerical scheme. Nishino et al. [8] proposed a
Bayesian probabilistic dehazing algorithm for depth estimation and scene radiance from a single
foggy image using factorial Markov random field. Meng et al. [7] proposed an effective dehazing
algorithm by using the inherent boundary constraints.

State of the art dark channel prior (DCP) [2] is a generalization of dark-object subtraction
method [18]. DCP is a simple but effective image prior. Recent works [1,19–21] focus more
on improving the shortcoming of DCP to achieve real-time halo-free dehazing. Yu et al. [1]
proposed a block-to pixel interpolation method, which is a weighted voting method to generate
fine transmission map. Gibson and Nguyen [22] calculate the effectiveness of DCP by using use
minimum volume ellipsoid approximation and principal component analysis. Latter unlike DCP,
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they proposed dehazing algorithm [20] to calculate patch minimum for darkest pixel in each ellip-
soid. Further to speed up the haze removal process Median filter [23] was also suggested. Matlin
et al. [24] combined the dark-channel approach with nonparametric denoising. They suggested
that every image has noise due to sensor errors and dehazing process can amplify the sensor noise.

2 Dark Channel Prior

Dark channel prior was proposed on concept of dark pixels in haze free images and states
that mostly non-sky regions of haze free outdoor images has at least one color channel intensity
close to zero. Pixel minimum Ic of an image represent minimum value of each pixel across RGB
channels.

Ic(x)= min
c∈{r,g,b}

I (x) (2)

Imin(x)= min
y∈�(x)

(Ic(y)) (3)

Patch minimum of these non-sky regions they will tends to zero.

Jdark(x)= min
y∈�(x)

(Ic(y))→ 0 (4)

Normalizing A on both side of Eq. (1).

Imin(x)= Jdark(x)
∧
t(x)+ 1−∧

t(x) (5)

As per DCP, Jdark tends to zero, so direct attenuation term should be zero.

∧
t(x)= 1−ωImin(x) (6)

where ω is a constant term whose value should between0≤ω≤ 1. Purpose of this constant is to
avoid transmission to be zero and also to keep small amount of haze in image to keep its natural
look. For final dehaze image:

J(x)= I(x)−A
max(t(x),T)

+A (7)

To remove low intensity noise in transmission map a lower limit T of transmission is set,
whose value should betweenT ≤ t(x)≤ 1.

Dark Channel Prior Shortcomings: Dark channel prior DCP has still not been utilized to its
full potential. It has been observed that DCP have two main shortcomings.

(i) DCP assumes that transmission map
∼
t (x) remains constant across single patch. This

assumption remains practical at center of objects but when there is impulsive depth change
i.e., edge of an object, transmissions will be inaccurately estimate due to fact that depth
of any object is not constant around edges. This inaccurately estimated transmission map
creates halos around dark surfaces and refinement of transmission map is required which
is either less accurate [2,25] or time consuming [21,23].

(ii) DCP basic concept of dark channel Jdark assumes that in a haze free image there must be
dark pixel in every patch. This concept fails in case of large bright surfaces i.e., white wall
or snowy ground and over saturates these bright surfaces during dehazing.
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These shortcomings are due to inaccurate transmission map estimation. In DCP [2] transmis-
sion map is calculated using patch minimum Imin operator. Patch minimums can be estimated with
multiple patch sizes, from small to large with their own advantages and disadvantages. For large
size patch minimum, bright surface handling capabilities improves as their chances to find dark
pixel in larger window increases but also results in poor edge preserving properties i.e., if patch
minimum is computed at bright side object boundary and its minimum value is located at dark
side of object boundary their transmission value is inaccurately estimated lower than its actual
value. These results in inaccurate edge perversion properties and unwanted haloes near object
boundaries. Similarly for small size patch minimum, there are better edge perversion properties
but poor bright surface handling capabilities i.e., for large bright object larger than patch size with
no dark pixel its patch minimum results in very high value and considering this object as haze
and results in oversaturated dehaze image.

From these observations it can be concluded that performance of DCP method [2] is highly
affected by selected patch size. If larger patch size is selected bright surface handling capability
of DCP will be improved but it is not edge preserving causing haloes around object boundaries.
Similarly if smaller patch size is selected DCP will be edge preserving but has poor bright surface
handling capabilities, results in over saturated patches on large white objects.

In this paper, proposed novel framework for single image dehazing and to improve short-
coming of DCP efficiently by estimating transmission map with edge preserving and reduced
texture noise properties. As discussed, performance of DCP is highly affected by patch size so,
instead of using single patch minimum the proposed algorithm combines multiple sized patch
minimums to achieve properties of edge preserving and halo free dehazing. Smoothing and edge
preservation properties of fast guided filter were also used to improve the quality of dehazing
and to reduce texture noise. For high resolution images an efficient scaling technique is used, this
will significantly reduce processing time with no visual degradation and very small processing time
change.

The rest of this paper is organized as follows. Our proposed method is presented in Section 3.
The experimental results and analysis are shown in Section 4. Finally, the conclusions are given
in Section 5.

3 Proposed Algorithm

In this paper, proposed a fast and an effective technique of single image dehazing. Our main
focus is to handle DCP shortcomings gracefully and to improve performance for high resolution
images. By observing prior algorithms [1–3,6,14] generic dehazing algorithms can be divided
into three major step 1) Airlight estimation 2) transmission map estimation and refinement 3)
Image dehazing. Generic dehazing model can be seen in Fig. 1. Airlight A and Image dehazing
(using Eq. (7)) were accurately estimated by prior algorithm so, transmission map estimation and
refinement defines efficiency and performance of dehazing algorithm.

3.1 Airlight Estimation
Most of the haze removal algorithms assume that the atmospheric light is a constant 3D

vector in input hazy image that can be estimated by finding brightest point of an image. In
proposed technique, airlight is estimated by taking 0.1% brightest points in the dark channel of
an image then choose a point with maximum intensity [21]. The brightest point of an image, when
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used this method, can be brighter than air light. This can be easily identified as for it:

Ic(x)= min
c∈{r,g,b}

(
Ic(x)
Ac

)
≥ 1 (8)

This makes the transmission value negative for the surfaces that are brighter than A, so,

t(x)= (1− min
y∈�(x)

(Ic(y)))≤ 0 (9)

Figure 1: Flow diagrams of our proposed method Multiscale Image Dehazing

Similarly, transmission value can approach to zero for large bright surface where patch
minimum does not find any dark pixel or it can be negative if airlight A inaccurately estimated
and local pixel has greater value. This results in over dehazing cause dark round artifacts in sky
region. For such regions He et al. [2] sets minimum limit of transmission τ0 = 0:1.

t̃=max
(
1− min

y∈�(x)

(
min

c∈{r,g,b}
Ic(y)
Ac

)
, τ0

)
(10)

Setting minimum value of transmission τ0 is critical, if selected value is too low it fails to
remove unwanted dark round artifacts and if value is too high it will result in poor dehaze image.
To handle such large bright surface a simple but effective method using multiple patch size is
proposed that will reduce the contrast of bright region having values greater than airlight. Using
Eq. (1), the transmission can be derived.

t(x)= ||I(x)−A||
||J(x)−A|| (11)

3.2 Transmission Map Estimation
Transmission map estimation defines performance and efficiency of dehazing algorithm. The

multiscale patch minimum have better edge preserving properties and bright surface handling
capabilities as it can be observed in Fig. 2a with different patch sizes as shown in Fig. 3 twenty
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different patch sizes are generated and red marking at top right and at left bottom of an image
show inaccurately estimated bright surfaces by DCP.

Figure 2: Pixel minimum and transmission map estimation. (a) The hazy image as input and the
ground truth image. (b) The pixel minimum and patch minimum. (c) Coarse transmission map
by applying pixel minimum and patch minimum. (d) Refine transmission map of using minimum
and patch minimum

Multiscale patch minimum can be calculated as:

Multiscale= 1
N

N∑
n=1

min
y∈�n(x)

(
min

c∈{r,g,b}
Ic(y)
Ac

)
(12)

where, N represents the total number of patch minimums and �n represents patch size. For
multiscale transmission map, the following formulation can followed as:

tMulti (x)= 1− 1
N

N∑
n=1

min
y∈�n(x)

(
min

c∈{r,g,b}
Ic(y)
Ac

)
� (13)

This will estimate coarse transmission map, which needs to be refined for better edge preser-
vation and less textural noise properties. We use cascaded fast guided filter for edge perversion
and textual noise removal.

3.3 Fast Guided Filter
In proposed algorithm cascaded fast guided filter is used for refinement of coarse transmission

map. Firstly it will remove textural noise from coarse transmission map. Secondly the guided filter
improves edge perversion properties of estimated transmission map. These textural noise causes
halo like artifacts in dehaze image. This issue is addressed in proposed algorithm and smoothing
property of fast guided is used to remove extra textural noise. Fig. 4 shows coarse and refines
transmission after smoothing and edge preservation properties of fast guided filter.
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Figure 3: Patch Minimums with different patch sizes

Figure 4: Coarse and refine transmission map. Left to right: Coarse transmission map, refine
transmission map (smoothing and edge preservation)

3.4 Image Dehazing
It has been observed that deficiencies in coarse transmission map estimation propagates to

refine transmission map and then to dehaze image. In proposed algorithm, we improve transmis-
sion map estimation technique and refinement process to achieve optimum transmission map. For
Image dehazing rewriting, the formulation is designed as:

J(x)= I(x)−A
max(t(x), T)

+A (14)
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To remove low intensity noise in transmission map set a lower limit T of transmission, value
should between T ≤ t(x)≤ 1.

4 Experimental Results

Airlight of hazy image can accurately estimate by using one of these [2,26,27] methods. In
experimental comparison constant airlight A is assume for all dehazing algorithms and mentioned
at bottom of image. As discussed, performance of dehazing algorithms can estimate by its ability
to accurately estimate refine transmission map. Proposed algorithm is compared with baseline
DCP [2] and with recent state of art algorithms for diverse and fair results. Results of these
algorithms are either taken form author webpage or generated using published source code.
The results of Berman et al. [13], Wang et al. [28], Fattal et al. [6], Gibson et al. [29], Kim
et al. [30], Nishino et al. [8], Tarel et al. [27] and He et al. [2] are taken from their respective
webpages and results of Zhu et al. [16], Lai et al. [31], Yu et al. [1], Meng et al. [7] and He
et al. [21] are generated using published source code on author recommended parameters settings.
For qualitative comparison standard hazy images are selected from prior dehazing algorithms.
Quantitative comparison use standard Middlebury stereo vision [32–35] dataset. The performance
of proposed algorithm is also compared using 360p, 480p, 720p, 1080p and 1440p datasets.

4.1 Qualitative Analysis
Qualitative analysis is visual comparison of dehaze images in term of its visual pleasing, color

saturation, visibility and sharpness. Visual analysis of a dehazed image depends on its viewing
angle, monitor setting, ambient light and colour preferences of an observer. Hazy images with
different scene depths are selected to perceive the performance of proposed algorithm in different
conditions. In Figs. 5 and 6, hazy images with distant scene depth are selected to compare their
visibility in resultant dehaze images. Proposed algorithm is visually compared with [1,6–8,13,16,
17,21]. These algorithms are compared in terms of visibility, clarity of distant object details and
colour/contrast saturation.

Fig. 5 shows hazy image of Manhattan city and resultant dehaze images. He et al. [2] shows
good colour saturation and clarity but some oversaturated colours can be seen in red marked and
sky region. Meng et al. [7] shows unwanted haze and reduced colour saturation especially at red
marked region. Fattal et al. [6] shows almost similar results to DCP with better color saturation
at sky region. Yu et al. [1], Zhu et al. [16] and Cai et al. [17] shows better color saturation
with unwanted haze across resultant image. Berman et al. [13] shows no unwanted haze but over
saturated colors can be seen across dehaze image. Proposed algorithms show better results in
term of no unwanted haze, no haloes around dark regions and better colour saturation (can be
observed in red marked region).

Almost same results can be seen in Fig. 6. It has been observed that Fattals [6] and He
et al. [2] algorithms tend to oversaturate some distant hazy objects. Therefore, these regions are
marked in red color in Figs. 5 and 6. The comparison of red marked areas can easily show that
proposed algorithm can handle depth discontinuities relatively better in terms of clarity, vivid
colors and color saturation as compared to [1,6–8,13,16,17,21].

In Figs 7–9 hazy images with relatively close scene depth are selected to observe their visibil-
ity, sharpness, haloes and unwanted haze in resultant images. Such images are difficult to dehaze
and challenging due to their sharp depth changes as most dehazing algorithms depend on some
kind of neighbourhood interpolation scheme [1,6,7,16,26,30]. For these images proposed algorithm
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is visually compared with [1,6,7,16,21,28,29]. These algorithms are compared in terms of visibility,
edge sharpness, unwanted haloes and colour/contrast saturation.

Figure 5: Manhattan image 1 dehazing, A = [0.85, 0.95, 0.99]

Hazy image in Fig. 7 is a good test to observe unwanted haloes, sharpness and color satura-
tion of dehazed image. He et al. [2] shows no unwanted haloes but has over saturated colors on
tree leaves and small unwanted haze can be seen across the image. Meng et al. [7] shows good
color saturation but has less sharpness on tree leaves and small unwanted haze can be observed
across the image. Wang et al. [28] shows no unwanted haze but less sharpness on tree leaves and
oversaturated unnatural colors can be observed across the image. Fattal et al. [6] shows good color
saturation and sharpness but oversaturated colors on tree leaves and haloes around dark regions
can be seen at ground region. Yu et al. [1] shows good color saturation but less sharpness and
haloes around dark regions can be seen at ground region. Zhu et al. [16] show unwanted haze,
strong unwanted haloes and less sharp edges. The proposed algorithm show better results in term
of colour saturation, sharpness (can be seen on tree leaves) and no unwanted haloes around dark
objects (can be observed in garden region) of dehazed image.
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Figure 6: Snow mountain image dehazing, A = [0.67, 0.67, 0.66]

Figure 7: House image dehazing, A = [0.90, 0.97, 0.98]

Hazy image in Fig. 8 is a good test to observe sharpness and unwanted haze. He et al. [2]
shows good colour saturation, good visibility and no unwanted haloes but it shows has less
sharpness on tree leaves can be seen in red marked region. Gibson et al. [29] shows good color
saturation but unwanted haze for distant trees and less sharpness on tree leaves can be observed.
Fattal et al. [6] shows good color saturation and sharpness but unwanted haze for distant trees
can be observed. Yu et al. [1] shows good visibility, sharpness and very little unwanted haze. In
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comparison proposed algorithms show better results in term of sharpness (can be observed on
tree leaves) and least amount of unwanted haze (can be observed at distant trees).

Figure 8: Forrest trees image dehazing, A = [0.82, 0.84, 0.86]

Almost same results can be seen in Fig. 9. By observing each dehaze image very closely and
comparing each algorithm. Dehaze images of He et al. [2], Yu et al. [1] and proposed algorithm
are selected for further analysis and it has been observed dehaze images of Yu et al. [1] and He
et al. [2] tend to loose edge sharpness and oversaturate distant hazy objects, these regions are
marked in red and yellow color in Figs. 7–9. By comparison these marked regions, it is easily
observed proposed algorithm can gracefully handle depth discontinuities, shows better clarity, with
more vivid colors and better color saturation as compared to [1,2,6,7,21,28,29,31]

Figure 9: Temple image dehazing, A = [0.73, 0.80, 0.92]
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4.2 Quantitative Analysis
In image processing, quantitative analysis are assumed to be more realistic and accurate

approach. Unlike qualitative analysis it do not depend on observer viewing angle, monitor setting,
ambient light and colour preferences. A quantitative analysis depends on calculated and statistical
results. In this paper, proposed algorithm is quantitative compare with [1,7,13,16,17,21] on a set
artificially hazy images using mean square error (MSE) and structure similarity index (SSIM).
Dehaze images of each algorithm is compared to their ground truth image to accurately calculate
the performance of each dehazing algorithm, as shown in Figs. 10 and 11.

For comparison, ground truth images of Middlebury stereo vision dataset [32–34] and their
respective depth maps are used to generate artificial hazy images. A set of five hazy images is
generated using Eqs. (1) and (2) assuming β =0.66. The proposed algorithm is compared with
[1,7,13,16,17,26]. Hazy images along with their ground truth and resultant dehaze images are
shown in Fig. 12 and DCP shortcoming region are marked in red colour for comparison. Struc-
ture similarity index (SSIM) and mean square error (MSE) of dehaze images by each algorithm
can be seen in Tab. 1.

Figure 10: Playroom - Image synthetic dehazing

The comparison of the marked regions depicts that the proposed algorithm handles DCP
shortcoming (bright surfaces) most gracefully than all reference algorithms. These results are also
statistically proven in Tab. 1 by comparing SSIM and MSE of proposed algorithm with prior
dehazing algorithms.
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Figure 11: Cap - Image synthetic dehazing

Figure 12: Umbrella - Image synthetic dehazing
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Table 1: Quantitative Analysis of dehazed images by SSIM and MSE

Images Teddy Umbrella Playtable Cycle Cap

SSIM MSE SSIM MSE SSIM MSE SSIM MSE SSIM MSE

Zhu et al. [16] 0.9619 0.0057 0.9589 0.0051 0.9307 0.0136 0.9674 0.0072 0.8978 0.0155
Yu et al. [1] 0.9031 0.0175 0.8958 0.0115 0.7834 0.0538 0.9288 0.0203 0.8431 0.0375
Cai et al. [17] 0.8578 0.0281 0.9566 0.0107 0.7464 0.0697 0.9053 0.0269 0.7432 0.0507
Bermam et al. [13] 0.8090 0.0365 0.7856 0.0185 0.7074 0.0199 0.8849 0.0109 0.9179 0.0091
Meng et al. [7] 0.9150 0.0157 0.6459 0.0692 0.8818 0.0198 0.6994 0.0524 0.9088 0.0158
He et al. [21] 0.9024 0.0223 0.5549 0.0904 0.8256 0.0259 0.7761 0.0445 0.8545 0.0245
Proposed 0.9887 0.0018 0.9826 0.0021 0.9348 0.0090 0.9734 0.0041 0.9653 0.0057

4.3 Performance Analysis
Performance analysis is computational speed comparison of different algorithms for same

problem. For performance analysis, proposed algorithm is compared with reference dehazing
algorithms [1,7,13,16,17,26]. Dataset of 360p (360 x 640), 480p (480 x 854), 720p (720 x 1280),
1080p (1080 x 1920) and 1440p (1440 x 2560) images are used for comparison of each algorithm.
Computational time of references algorithms are increasing with resolution image but proposed
algorithm use an efficient scaling technique during transmission map estimation which gives an
advantage of very low degradation in performance with increasing image resolution. Both scaling
and without scaling results of proposed algorithm is shown in Tab. 2 to show high performance
improvement of proposed algorithm by adding this efficient scaling technique.

Table 2: Performance Analysis of dehazed images

Image Resolution 360 × 640 480 × 854 720 × 1280 1080 × 1920 1440 × 2560

360p 480p 720p 1080p 1440p

Zhu et al. [13] 0.7857 s 1.3149 s 2.7674 s 5.9170 11.0851
Yu et al. [1] 0.2151 s 0.3566 s 0.7339 s 1.6312 3.0944
Cai et al. [14] 1.8463 s 3.3943 s 7.6252 s 16.6764 30.9035
Bermam et al. [10] 1.1560 s 1.9719 s 4.6408 s 11.1310 23.4284
Meng et al. [16] 0.9147 s 1.7818 s 3.2381 s 7.0648 13.1138
He et al. [20] 4.6260 s 8.1994 s 18.1538 s 41.6063 74.2915
Proposed
Algorithm
(Without Scaling)

0.3425 s 0.0.5836 1.2464 s 2.9333 s 5.2276

Proposed
Algorithm
(With Scaling)

0.3425 s 0.3495 s 0.3595 s 0.3920 s 0.4386

Proposed algorithm sample down every haze image to constant 360p (360 x 640) resolution to
estimates its transmission map. This gives an advantage of almost constant computational speed
for increasing image resolution. Similarly, Yu et al. [1] uses a minimum filter to sample down hazy
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image then use block to pixel interpolation scheme for transmission map refinement which quiet
fast technique for low resolution images but for high resolution images size of down sampled
image is also increases and performance is also degrade massive due to evolution of nine Gaussian
terms per pixels.

The results are generated in Matlab® 2017 running on 2.2 GHz Intel i7 processor and sum-
marized in Tab. 2. These results show proposed algorithm significantly improves computational
time for both low and high resolution images and is about 11x–280x more faster than guided
filter DCP [21]. about 2x–42x more faster than Colour attenuation [16], about 0x–13x more faster
than Block-to-pixel-interpolation [1].

5 Conclusion

An innovative method for image dehazing is implemented that encourages an efficient and
halo free image dehazing. By overviewing of different dehazing techniques it is shown that despite
remarkable improvements, these algorithms lack in performance in adverse circumstances.Being
state of art algorithm Dark channel prior (DCP) is still not utilized to its full potential, which
creates room of improvement. We propose an efficient single image dehazing algorithm with
improved bright-surface handling capabilities. Proposed algorithm outperforms reference algo-
rithms in terms of speed, quality and handling bright surfaces. Results are compared with
reference algorithm through qualitative, quantitative and computational time.
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