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Abstract: The internet of things (IoT) has a wide variety of applications,
which in turn raises many challenging issues. IoT technology enables devices to
closely monitor their environment, providing context-aware intelligence based
on the real-time data collected by their sensor nodes. The IoT not only controls
these devices but also monitors their user’s behaviour. One of the major issues
related to IoT is the need for an energy-efficient communication protocol
which uses the heterogeneity and diversity of the objects connected through
the internet. Minimizing energy consumption is a requirement for energy-
constrained nodes and outsourced nodes. The IoT nodes deployed in different
geographical regions typically have different energy levels. This paper focuses
on creating an energy-efficient protocol for IoTwhich can deal with the cluster-
ing of nodes and the cluster head selection process. An energy thresholdmodel
is developed to select the appropriate cluster heads and also to ensure uniform
distribution of energy to those heads and member nodes. The proposed model
envisages an IoT network with three different types of nodes, described here as
advanced, intermediate and normal nodes. Normal nodes are first-level nodes,
which have the lowest energy use; intermediate nodes are second-level nodes,
which have a medium energy requirement; and the advanced class are third-
level nodes with the highest energy use. The simulation results demonstrate
that the proposed algorithm outperforms other existing algorithms. In tests,
it shows a 26% improvement in network lifetime compared with existing
algorithms.

Keywords: Internet of things; communication; energy; threshold; heterogeneous
network

1 Introduction

In recent years, the utilization of smart devices in day-to-day life has increased rapidly. The
‘internet of things’ (IoT) enables objects such as mobile phones, radio frequency identification
(RFID) tags, computers, sensors and other devices around us to communicate with each other
[1–4]. IoT technology enables these devices to closely monitor the environment and provides
context-aware intelligence based on the real-time data collected by their sensor nodes.
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The IoT not only controls the objects but also monitors their user’s behaviour. The utilization
of IoT is increasing rapidly in many applications such as environment monitoring, health moni-
toring, smart home models and others [5–8]. Hence, enhancing the performance of real-time data
collection and transmission is a challenging task.

The main issues facing IoT sensor nodes are categorized as follows. The first is reliability.
The lower layers of the network cannot assure the high reliability of the IoT; this needs to be
addressed via the network layer-routing protocol. One of the solutions is to retransmit data pack-
ets, but this also increases the overhead on the transmission time and so affects performance [9].
The second challenge is how to improve the overall real-time performance of the IoT network.
The final issue is to ensure that any routing protocol can provide a high degree of robustness,
with each node in the network active and available for transmission [10]. The sensor nodes have
limited battery power and computation capacity, so the protocol has to minimize the number of
cluster heads [11–13].

These issues all need to be considered for designing new routing protocols. For the IoT,
sensing the real-time environment is another challenge. The sensor nodes in the IoT may be in
remote locations. Fig. 1 shows the different sensor nodes which may be deployed in different envi-
ronments. These sensors continuously monitor their surroundings and may have limited flexibility
to recharge their batteries. Many researchers have therefore worked on improving the performance
of these nodes by decreasing their energy consumption. Certain algorithms have also been devised
to help minimize transmission delays and energy usage [14,15].

Figure 1: Sensor node deployment across the IoT network
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Clustering is a method considered by many researchers to minimize energy consumption
across an IoT network. As the term suggests, nodes are grouped into clusters. Each cluster elects
a cluster head to collect the data from other member nodes and to forward the data to a sink
node. Therefore, the cluster head plays a prominent role in managing the amount of energy used.

Existing clustering algorithms are not yet sufficient to minimize the energy use of large-scale
IoT networks. Fig. 2 shows a proposed heterogeneous network where all the nodes have unequal
energy levels at the time of initialization. Sets of nodes with the lowest energy use are referred
to here as ‘normal’ nodes. Those with the highest energy requirements are labelled ‘advanced’,
while the energy use of the ‘intermediate’ nodes lies somewhere in between. The drawback of
a homogenous network is that all nodes are initiated with the same energy level and so some
typically die within a short space of time. The proposed heterogeneous network provides a better
performance compared with the homogeneous network.

Figure 2: Proposed heterogeneous IoT network

In this paper, we focus on developing an algorithm for minimizing the energy consumption
of the nodes and improving the lifetime of the network [16]. The rest of the paper is organised
as follows. Section 2 deals with existing routing protocols used by IoT communication networks,
as described in the literature. Section 3 explains the energy model for the proposed IoT network.
Section 4 describes the energy threshold model for the network. Section 5 analyses the simulated
environment. Finally, Section 6 concludes the research work.

2 Literature Survey

For the past decade, researchers have concentrated on developing a real-time routing mech-
anism for data transferred across the IoT. Most discussion has focused on energy efficiency in
data transmission. In [17], the authors developed the LEACH protocol, where the cluster head is
selected randomly. Therefore, each sensor node in the network has the opportunity to be selected
as cluster head in every 1/p epochs. In further rounds, a random number is generated which
lies in the range of 0 to 1 [18]. A node which has an energy level less than the threshold will
act as a cluster head [19]. The next cluster head is selected from the set of non-cluster head
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nodes. After the cluster is formed, the cluster head transmits the ADV message to the member
nodes. The nodes forward this data to the cluster head within the allocated time-division multiple
access (TDMA) slot. The major drawback of the LEACH protocol is that it cannot be applied
to large-scale sensing environments.

In a heterogeneous network, some advanced nodes have extra energy requirements compared
with normal nodes [20]. The stable election process (SEP) algorithm is used to elect the cluster
heads based on the weighted probabilities. It has the advantage of better performance and greater
stability compared with the LEACH protocol. In [21], the authors propose a zoned stable election
process (Z-SEP) algorithm, which is a hybrid model.

The Z-SEP contains three zones: 0, 1 and 2. In Zone 0, the nodes are distributed randomly.
In Zones 1 and 2, the advanced nodes with high energy use are distributed equally and randomly.
Two types of communication are used by the Z-SEP to transmit data to the base station. In the
first, sensor nodes directly transmit the data to the base station. In the second, the sensor nodes
send the data to the cluster head, which in turn forward the data to the base station. In each
round, the cluster head is selected based on the threshold value.

3 Energy Model for IoT Network

In an IoT network, energy balancing and energy efficiency need to be considered as crucial
parameters when designing the routing protocol. This paper concentrates on the development of
a routing algorithm for minimizing the energy consumption of a network, thereby improving
the lifetime of the nodes. To minimize energy dissipation, we considered the heterogeneity of a
network on three different levels, based on the nodes’ initial energy. All the nodes in the network
are in statis. The normal nodes are the first level nodes which have lowest energy, the intermediate
nodes are the second level nodes with medium energy and the advanced nodes are the third level
nodes with highest energy.

Let the initial energy of normal nodes be represented by ϑ0, the energy of the advanced nodes
be represented with ϑ0(1 +X) and the energy of the intermediate nodes be represented with ϑ0(1
+Y), Eqs. (1)–(3) representing the total energy of the normal, intermediate and advanced nodes.

ϑNn= kϑ0(1−x− y) (1)

ϑIn= kyϑ0(1+Y ) (2)

ϑAn= kxϑ0(1+X) (3)

Here, the energies of the normal node are represented with ϑNn, for intermediate nodes it
is ϑIn, and for advanced nodes it is ϑAn. The advanced nodes in the network are represented as
x and their energy level is X . The intermediate nodes in the network are represented as y and
their energy level is given as Y = X /2. k represents the size of the nodes in each type. The total
network energy consumption is given as

ϑtot= kϑ0(1−x− y)+ kyϑ0(1+Y )+ kxϑ0(1+X)

= kϑ0(1+xX + yY )
(4)
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Here, we consider the SEP and LEACH protocol models for cluster head selection. For each
type of node, the threshold value is calculated based on their probabilities of selecting the cluster
head. Let S1, S2 and S3 be the set of nodes belonging to each type and not selected as the cluster
head of nodes to be selected as cluster head are given as follows.

For Nn:

PNn= P
1+xX + yY

(5)

TKNn =

⎧⎪⎨
⎪⎩

PNn
1−PNn(u mod 1/PNn)

; if kNn ∈ S1

0; otherwise

(6)

For In:

PIn= P(1+Y )

1+xX + yY
(7)

TKIn =

⎧⎪⎨
⎪⎩

PIn
1−PIn(u mod 1/PIn)

; if kIn ∈ S2

0; otherwise

(8)

For An:

PAn= P(1+X)

1+xX + yY
(9)

TKAn =

⎧⎪⎨
⎪⎩

PAn
1−PAn(u mod 1/PAn)

; if kAn ∈ S3

0; otherwise

(10)

From Eqs. (5), (7) and (9), we can calculate the average probability of selecting the cluster
heads per one iteration is given as

k(1−x− y)PNn+ kxPAn+ kyPIn= kP (11)

From Eq. (11), the value obtained for average probability of selecting cluster heads is
equivalent to the value of the LEACH protocol in a heterogeneous environment.

The heterogeneous IoT network communication model is given in Fig. 3. A free space model
or multipath fading model is used to calculate the energy dissipation in the heterogeneous network.
Eqs. (12) and (13) shows the communication model where the sensor node consumes the energy
for transmitting ‘n’ bits per packet.

ϑTr(n,d)= ϑTr_ele(n)+ϑTr_amp(n,d) (12)
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ϑTr(n,d)=
{

ϑele× n+ϑfs× n× d2, d ≤ d0

ϑele× n+ϑmp× n× d4, d > d0
(13)

ϑfs and ϑmp denotes the parameters of the amplifier for transmitting the packets in free
channel and multi path fading channel. ϑele denotes the amount of energy consumed by the senor
node to transmit the packet. The amount of energy to receive the packet is given as follows.

ϑRc(n)= ϑRc_ele(n)+ nϑele (14)

The energy threshold value is computed for cluster head selection by estimating the energy
consumption in each round. The proposed model computes the energy dissipation threshold value
for all types of nodes to improve the network lifetime.

Figure 3: Communication model for IoT sensor nodes

4 Proposed Algorithm

As soon as the cluster head is elected, the nodes link to the cluster head based on the ADV
message in the cluster. Once for each round, the cluster head and the nodes in the cluster will
change. Nodes of any type which are near the sink node dissipate less energy than others for
packet transmission. The clusters which are nearest to the sink node will continue with the same
member nodes and cluster heads, without changing them in the next rounds.

The proposed algorithm deals with the threshold value for energy dissipation for all type of
nodes in an IoT network. This threshold value will be the deciding factor for whether the cluster
head and member nodes in each cluster continue to the next round. The cluster head residual
energy is calculated after each round. If the residual energy value is less than the threshold value,
then the network initiates the formation of new cluster along with a new cluster head election
process. The proposed mechanism reduces the amount of energy dissipated for advertising the
routing information and also for new cluster head formation.

The energy consumed by the cluster head and the sensor node will never be equal. The cluster
head has some additional responsibilities such as data collection, aggregation and forwarding.
Therefore, the cluster head will require more energy compared with the other sensor nodes.
Hence, the proposed model allocates the high amplification energy to the cluster head and, in the
next round, if the cluster head is changed to a normal node, the proposed model assigns low
amplification energy to that particular node.

Let q be the total number of sensor nodes in the IoT network and u represent the percentage
of clusters in the network. C represents the count of cluster head replacement. ϑnTr represents
the size of the packet to be transmitted and ϑnRc represents the size of the packet to be received.
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The energy spent for forming new cluster and cluster head replacement is given as ϑC in
Eq. (15).

ϑC = {ϑnTrϑTr+ϑnRcϑRc(qu− 1)}CQ (15)

where Q = qu denotes the cluster size, ϑTr represents the energy consumed for transmitting eight
bits of data. ϑRc represents the energy consumed for receiving eight bits of data.

The cluster energy utilization is calculated by computing the supplied initial energy to all
types of nodes (i.e., normal nodes, intermediate nodes and advanced nodes) within the cluster. ϑZ
represents the energy utilization of the cluster, which is given as

ϑZ(Nn)= ϑ0× qu (16)

ϑZ(In)= ϑ0(1−Y )× qu (17)

ϑZ(An)= ϑ0(1−X)× qu (18)

For a single round, the energy utilization of each cluster α is computed based on the node
energy level in both conditions: one is the node acting as sensor node and another one is the
node acting as cluster head.

ϑC(α)= {(Qα − 1)ϑnTrϑTr×ϑnRcϑRc}+ {(Qα − 1)ϑnTrϑTr+ (Qα − 1)ϑnRcϑRc} (19)

The energy consumed by the sensor node to transmit the packets to the cluster head is
represented with qϑTr. The energy consumed for data aggregation at the cluster head side is given
as q(Q− 1)ϑRc. The energy consumed for data forwarding by the cluster head to the sink node is
given as q(Q− 1)ϑTr. The nodes move into a sleep state when there is no transmission or reception
of data packets.

To calculate the energy threshold value for replacement of the cluster head, the number of
rounds needs to be considered. µ calculates the total rounds for the normal, intermediate and
advanced nodes as follows:

μ(Nn)= ϑC

ϑZ(Nn)
× 100 (20)

μ(In)= ϑC

ϑZ(In)
× 100 (21)

μ(An)= ϑC

ϑZ(An)
× 100 (22)

The estimated energy threshold value for cluster head selection is obtained from Eqs. (19)–
(22), which is given as

ϑTHV (Nn)=μ(Nn)(ϑnTr+ϑnRc)ϑTr (23)

ϑTHV (In)=μ(In)(ϑnTr+ϑnRc)ϑTr (24)

ϑTHV (An)=μ(An)(ϑnTr+ϑnRc)ϑTr (25)
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ϑTHV (An), ϑTHV (In) and ϑTHV (Nn) represent the estimated threshold values for the advanced,
intermediate and normal nodes. The proposed energy threshold model is for replacing the cluster
head, which minimizes the energy utilization and maximizes the node lifetime. Algorithm 1 (below)
shows the energy threshold model for IoT (ETM-IoT), which aims to improve the network
performance.

Algorithm 1: ETM-IoT
Input:
G → Represents the sensor node
Si → Represents the set of non-cluster head nodes
ϑTHV → Represents the energy threshold value for cluster head selection
W → Represents the cluster head counter
ϑres →Represents the existing cluster head residual energy
Begin
1. for u in 1 to max do
2. W = 0;
3. Compute the probabilities for Nn, In and An using the Eqs. (5), (7) and (9);
4. Compute the threshold value for Nn, In and An using the Eqs. (6), (8) and (10);
5 W = W + 1;
6. if G = = W then
7. High amplification energy is assigned to W;
8. else
9. Low amplification energy is assigned to G;
10. end if
11. for α in 1 to n do
12. Modify the residual energy ϑres of the nodes using the Eqs. (13) and (14);
13. Compute the energy threshold value for Nn, In and An from Eqs. (23)–(25);
14. if (ϑres < ϑTHV (Nn)&& ϑres < ϑTHV (In)&& ϑres < ϑTHV (An)) then
15. The new cluster head is selected from Si
16. else
17. Continue the same cluster head for further round;
18. end if
19. end for
20. end for
end

5 Simulation Analysis

The ETM-IoT simulation is carried out using the MATLAB. An area of 200× 200 m2 is
considered for simulation along with 200 nodes which are deployed across it. The sink node is
placed at the centre position with limitless energy.

Tab. 1 shows the parameters used in the simulated environment. The performance of the
proposed ETM protocol is compared with existing protocols such as LEACH, SEP and Z-SEP.
The values x and X can be varied based on different cases and the Y value is kept constant and
is taken as 0.3.
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Table 1: Network simulation parameters

Parameters Value

Packet size (n) 3000 bits
Distance between nodes (d0) 85 m
Energy consumption for data aggregation (ϑDA) 5nJ/bit
Energy consumption for free space model (ϑfs) 10 pJ/bit/m2

Energy consumption of amplifier (ϑamp) 100 pJ/bit/m2

Energy consumption for receiving(ϑRc) 0.013 pJ/bit/m4

Total energy of the network (ϑTr, ϑRc) 50 J

The efficiency of the ETM-IoT routing protocol is measured using the data throughput. This
is defined as the number of packets that have been successfully delivered by minimizing the packet
drop ratio. In the first case, the x value is taken as 0.1 and X value is taken as 1. In the second
case, the x value is taken as 0.2 and X value is taken as 1. The advanced nodes are taken as 10%
of the network, the intermediate nodes are taken as 30%, and the remaining nodes are normal
nodes.

Figs. 4 and 5 show the network stability where the number of iterations increases until
the sensor nodes eventually die. In Fig. 4, the advanced nodes are taken as 10% of the total
network. It is observed that LEACH has a much shorter network lifetime compared with other
routing algorithms. The LEACH protocol performs well in a homogeneous network but fails in
a heterogeneous network. The proposed ETM-IoT protocol demonstrates a better performance
when compared against the SEP, Z-SEP and LEACH algorithms. It shows a 26% improvement
in network lifetime compared with the Z-SEP. In Fig. 5, the advanced nodes are taken as 20%
of the total network. The network lifetime using the ETM-IoT protocol increases by up to 34%
when compared with Z-SEP.
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Figure 4: Network lifetime of LEACH, SEP, Z-SEP and ETM-IoT when x = 01



1824 CMC, 2022, vol.70, no.1

0 1000 2000 3000 4000 5000 6000 7000
0

20

40

60

80

100

N
um

be
r 

of
 D

ea
d 

N
od

es

Number of iterations

 LEACH

 SEP

 Z-SEP

 ETM-IoT

Figure 5: Network lifetime of LEACH, SEP, Z-SEP and ETM-IoT when x = 0.2

Figs. 6 and 7 show the network throughput achieved using the LEACH, SEP, Z-SEP and
ETM-IoT algorithms. In the first case, with 10% of advanced nodes, the proposed routing
protocol achieved the highest throughput compared with other algorithms. It recorded a 28%
increase on the throughput of the Z-SEP and a 65% improvement compared with the SEP. In the
second case, with 20% of advanced nodes, the network data transfer rate also improves, with the
ETM-IoT recording a 39% improvement in throughput rate when compared with Z-SEP.

0 1000 2000 3000 4000 5000 6000 7000
0.0

2.0x104

4.0x104

6.0x104

8.0x104

1.0x105

1.2x105

1.4x105

T
hr

ou
gh

pu
t

Number of iterations

 LEACH
 SEP
 Z-SEP

 ETM-IoT

Figure 6: Network throughput of LEACH, SEP, Z-SEP and ETM-IoT when x = 0.1

Cluster heads play a major role in collecting the data from the member nodes. The cluster
heads aggregate and forward data to the sink node. Figs. 8 and 9 show the formation of cluster
heads in each iteration process. It is observed that the low number of cluster heads preserves the
energy of the network and improves the data forwarding capability. In the first case, with 10%
advanced nodes, the ETM-IoT has fewer cluster heads when compared with the LEACH and SEP
scenarios. The ETM-IoT reaches almost 10–12 cluster heads in each iteration. In the second case,
with 20% advanced nodes, the ETM-IoT reaches almost 6 to 8 cluster heads in each iteration.
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Figure 7: Network throughput of LEACH, SEP, Z-SEP and ETM-IoT when x = 0.2
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Figure 8: Cluster head count in each round when x = 0.1
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6 Conclusion

This paper proposes an energy-aware model based on a threshold factor for efficient com-
munication across the internet of things (IoT). Traditional algorithms such as the LEACH and
SEP protocols are mainly used for homogeneous networks, and are ineffective when dealing with
heterogonous networks. In a real-time scenario, the IoT network is composed of many sensor
nodes which are limited in their energy use. Even though some objects such as mobile phones
and smart watches are rechargeable, there is still a need to minimize the energy requirements
of particular nodes which are limited in capacity. The proposed algorithm categorizes nodes
according to three different energy threshold levels. The proposed ETM-IoT protocol distributes
and regulates the energy use of the cluster heads and member nodes in the network. A simulation
analysis proves the efficiency of this ETM-IoT protocol when compared with other existing
protocols. The ETM-IoT protocol has the advantage of implementing real-time IoT across a
large-scale environment.
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