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Abstract:The growing number of COVID-19 cases puts pressure on healthcare
services and public institutions worldwide. The pandemic has brought much
uncertainty to the global economy and the situation in general. Forecasting
methods and modeling techniques are important tools for governments to
manage critical situations caused by pandemics, which have negative impact
on public health. The main purpose of this study is to obtain short-term
forecasts of disease epidemiology that could be useful for policymakers and
public institutions to make necessary short-term decisions. To evaluate the
effectiveness of the proposed attention-based method combining certain data
mining algorithms and the classical ARIMA model for short-term forecasts,
data on the spread of the COVID-19 virus in Lithuania is used, the forecasts
of epidemic dynamics were examined, and the results were presented in the
study. Nevertheless, the approach presented might be applied to any country
and other pandemic situations. The COVID-19 outbreak started at different
times in different countries, hence some countries have a longer history of
the disease with more historical data than others. The paper proposes a novel
approach to data registration and machine learning-based analysis using data
from attention-based countries for forecast validation to predict trends of the
spread of COVID-19 and assess risks.

Keywords: COVID-19 spread modeling; attention-based forecasting; machine
learning; data registration; data analysis; ARIMA

1 Introduction

The COVID-19 pandemic has added an extremely high element of unpredictability to the
global economy and the situation in general. Governments are trying to overcome the infection
by taking serious measures in an effort to stabilize the situation. Experts are trying to predict how
the situation may change and how it will look when the coronavirus can be restrained and which
states will be the first to come out of the economic recession. At the moment, the priority is to
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solve urgent health care problems and maintain economic stability. Experts are already trying to
look into the near future and understand how the disease rate can progress.

Short-term and long-term forecasting models are generally used to forecast certain situations
and to alert us to events in the future so that we are better prepared. Short-term forecasting
models [1], which predict for no more than a few days, react and reflect more up-to-date data than
long-term models. The latest new data in long-term models has a much less impact on the forecast
growth curves as the more recent data form a much smaller proportion of the total. Therefore,
to create accurate short-term forecasts, it is necessary to be especially careful and pay attention
to the up-to-date data on new cases. Practice shows that stochastic methods are most effective for
short-term forecasts, while deterministic methods, like SIR or SEIR [2,3], are most suitable for
describing long-term scenarios.

Effective short-term prediction models are needed to predict the number of new cases. In this
regard, it is important to develop strategic planning methods in the public health care system
to avoid further increases in incidence of infection, as well as to introduce special measures to
reduce the scope of infection. Various methods based on mathematical modeling and data mining
are powerful tools for understanding the COVID-19 transmission [4], as well as for modeling
and studying different scenarios for short-term pandemic forecasting. The accuracy of forecasting
methods largely depends on the quality and quantity of available data used to make forecasts and
assess the situation. The problems of forecasting the dynamics of confirmed cases of COVID-19
are being widely discussed in many recent scientific publications [5–13].

Despite the limitations associated with medical data-based forecasting and the specific nature
of the data being analyzed, forecasting plays an important role as it enables a better under-
standing of the current situation and makes plans for the future. Mathematical modeling and
disease prediction are powerful tools for understanding the spread of COVID-19 and studying
different scenarios. Various methods and time series analysis are currently being used for short-
term forecasting of COVID-19 epidemic disease dynamics: linear forecasting models, including
autoregressive integrated moving average (ARIMA) model [5,14–16], artificial intelligence inspired
models [10,13,17–19], hybrid forecasting models [20–22]. Because of the limited amount of data
available, models inspired by artificial intelligence were not used in this study. The authors pro-
pose an attention-based method and compare short-term forecasting results with the simple but
effective ARIMA model for forecasting disease spread trends. By means of machine learning
clustering, the authors of this paper draw attention to countries with a longer COVID-19 disease
spread history and, based on the data obtained, calculates the forecast for the country under study.
According to the recent research [5], two criteria are emphasized: the accuracy of forecasts and
the simplicity of the models used. A variety of applicable strategies make it possible to combine
several methods, such as data preprocessing, data mining methods, and common forecasting
models. ARIMA model has the advantage of a simple structure and a strong ability to interpret
the data. Rather than focusing on which model is more correct, we need more models that answer
additional questions and the use of which may affect the spread of COVID-19 [23].

The main purpose of this article is to provide short-term forecasting that could produce a
reliable forecast for policymakers to make the necessary decisions and to provide useful guidance.
In this paper, the authors provide the results of statistical forecasting of confirmed cases of
COVID-19 in Lithuania using the attention-based approach and ARIMA models. The proposed
methods might be applied to any country and other pandemic situations. The paper is organized
as follows: Section 2 presents the analyzed data and methodology for short-term forecasting
of confirmed cases of COVID-19 using the ARIMA models and the attention-based machine
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learning method. The experimental results of the proposed method as well as the comparison with
Lithuanian forecasting results obtained using the ARIMA models are presented in Section 3. The
results of the study are concluded in Section 4.

2 Materials and Methods

2.1 Data in the Context of Lithuania
During the pandemic, the source of Lithuanian COVID-19 data changed, which made the

task of spread forecasting challenging. The main data provider in Lithuania is the National Public
Health Center (NPHC) under the Ministry of Health. Since the beginning of the spread of
COVID-19 in Lithuania, the data has been announced on the website of the Ministry of Health.
The problem with such an announcement was that no historical data was available, only the
daily statistics, thus the authors had to collect, process, and store data by creating their own
database. However, because of problems with data collection in the NPHC–delays by various
institutions, errors caused by human factors, etc.–historical data has also been revised, but this has
not been announced. At first, the revisions were not substantial and did not affect the short-term
forecasts. However, corrections became substantial before the autumn of 2020, when the number
of confirmed cases increased. Since the end of August, the National Public Health Center under
the Ministry of Health started sharing files with the time series data. Although there were still
problems with the quality of the data, but historical data became available. Since November, the
only institution announcing the COVID-19 data is Statistics Lithuania.1 Although the quality
problems have not been completely resolved, detailed daily datasets with revised historical data
are now available.

Nevertheless, it has been noticed that some time series, such as recoveries or active cases, still
suffer from quality problems due to delays in reporting recoveries by hospitals. Thus, in the middle
of February 2021, Statistics Lithuania started announcing two time series for recovered and active
cases: a de jure series, which announces registered cases and statistical series, which announces
statistical estimates. These time series are very different from each other and have differences with
the earlier recovered and active cases time series.

The authors use data2 from the Coronavirus Resource Centre (CRC) at Johns Hopkins
University as a data source for other countries. It was noticed that Lithuanian historical data of
the disease was not correctly updated in the CRC source. Thus, while analyzing Lithuania in the
context of the European countries, the authors used the data from Lithuanian data sources rather
than from the CRC. For the clustering and attention-based forecasting, European countries and
COVID-19 data of confirmed, recovered cases, deaths from COVID-19 per 100,000 people, and
population density from the United Nations database on 2019 mid-year period was used in the
research. The motivation for including population density was based on the assumption that more
densely populated countries have a higher risk of more rapid spread of COVID-19.

Despite the fact that the beginning of confirmed cases of COVID-19 in Lithuania is February
28, 2020, the authors in this research use data on the spread of the disease in Lithuania during
the period from March 12, 2020, to February 1, 2021, because only one case was registered until
March 12, 2020. Moreover, we take the earlier definition of recovered cases since new definitions
have appeared after the period we are investigating. Fig. 1 shows the dynamics of the daily

1 https://osp.maps.arcgis.com/apps/MapSeries/index.html?appid=c6bc9659a00449239eb3bde062d23caa.
2 https://github.com/CSSEGISandData/COVID-19.

https://osp.maps.arcgis.com/apps/MapSeries/index.html?appid$=$c6bc9659a00449239eb3bde062d23caa
https://github.com/CSSEGISandData/COVID-19
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confirmed cases and cumulative confirmed cases per 100,000 people. There was a huge increase
in the number of confirmed cases per day in the autumn of 2020 and January 2021, while the
spring and summer of 2020 were relatively stable periods. There are several reasons for this. In
spring 2020, Lithuania announced a very strict lockdown–schools, kindergartens, and universities
switched to online learning, all non-food shops and services were closed, only online trade was
allowed, the number of imported cases was higher than inside the country; thus, the closure of
borders helped to reduce the spread of COVID-19. During the summer period, a small number of
confirmed cases might be possibly related to the reduced extent of traveling abroad and weather
conditions. During the autumn there was no strict lockdown, mostly recommendations, schools
and kindergartens operate in normal or mixed mode, universities operate in online or mixed mode.
Thus, the spread becomes very intensive, and the prevention becomes belated and unresponsive
to the actual situation of COVID-19. Therefore, as most cases occur within the country, border
closures are not used to prevent the spread of the COVID-19 virus.

Figure 1: Confirmed (top) and cumulative (bottom) confirmed cases per 100,000 people

Every day by January 26, 2021, forecast models were built based on 35 subsequent observa-
tions, and forecasts were performed for 5 steps ahead. As mentioned above, there were different
trends in virus spread during the spring and autumn periods, so the authors built models for
the spring sub-period by analyzing data for the period from March 12 to June 30, 2020 (the
forecast of five steps ahead is included), and for the autumn sub-period from October 1, 2020
to January 31, 2021. We refer to these periods as “first wave” and “second wave” though in
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epidemiological terms these waves may have different time stamps. The authors do not investigate
other sub-periods, since the summer was fairly stable and calm in terms of the spread of
COVID-19.

Two approaches were used for the short-term forecasting of confirmed cases of COVID-19
in Lithuania: ARIMA models and the attention-based forecasting method. The results of
ARIMA models and all the data used for modeling and forecasting are available at
www.covid19.projektas.vu.lt.

2.2 ARIMAModel
ARIMA models are frequently used to forecast time series in a short period of time. Although

such type of models is simple and easy to apply, these models show good performance for short-
term forecasting. ARIMA models are best fitted to stationary or differentiated data if the data
is stationary after the differentiation. In this paper, we apply the non-seasonal ARIMA(p, d, q)
model:

yt = β +φ1yt−1+ · · · +φpyt−p+ θ1εt−1 + · · · + θqεt−q, (1)

where t denotes the time; p denotes the order of the autoregressive part (AR(p)); q denotes the
order of the moving average part (MA(q)); d denotes the order of the differences of the data;
yt are the observations that are differentiated d times, usually d = 0, 1, 2; εt are model innovations.

To estimate the ARIMA model, the Hyndman-Khandakar algorithm [24] is used, which com-
bines unit root tests, minimization of the AICc criterion (Akaike information criterion modified
for the small samples), and the maximum likelihood estimator. With the view to choose the best
model, the AICc criterion has been used. The motivation is related to the fact that a quite small
sample of only 35 observations is used in the estimation procedure. The criterion is defined as:

AICc=AIC+ 2k2 + 2k
n− k− 1

= 2k− 2 ln(L̂)+ 2k2 + 2k
n− k− 1

,

where L̂ is the maximum value of the likelihood function of the model, n is a sample size, and
k is a number of estimated parameters. More information on the ARIMA models can be found
in [25].

2.3 Attention-Based Forecasting Method
The idea of the attention-based approach is to use a mechanism that selects specific factors

from the data available. The idea can be accomplished by focusing attention on small regions
of multidimensional information rather than on the data as a whole. In this way, dimensionality
reduction techniques are used to draw attention to similar countries where the spread of the virus
is similar and to further analyze the data for countries that fall into the attention cluster. The
attention-based mechanism acts as an extractor of information while inferring the similarity and
minimizing the number of countries used for spread forecasting.

The authors propose an attention-based forecasting method that consists of three steps:

1. Data registration regarding the first confirmed case of COVID-19 for the first wave and
the day after July 1, 2020, when the number of confirmed cases per 100,000 is greater than
or equal to 3 for the second wave.

2. Selection of countries most similar to Lithuania, using data mining and machine learning
techniques.

https://www.covid19.projektas.vu.lt
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3. Forecasting based on the use of trends in confirmed cases in the selected countries.

Each step of the method is described in more detail in the subsections below.

2.3.1 Data Registration
The outbreak of COVID-19 started at different time periods in different countries. Thus, some

countries have a longer history and more historical data of the COVID-19 spread than others. The
novelty of the proposed method is to consider the onset of the spread of COVID-19 in different
European countries, and to compare the dynamics of the virus and integrate this knowledge into
the forecast. The idea is to use data from countries with more historical disease data to forecast
trends in Lithuania. For this purpose, we have recorded the data in such a way that the time series
starts from the first confirmed case of COVID-19, i.e., we use an artificial time scale (number of
days from the first confirmed case) rather than an actual calendar date for the spring sub-period
(the first wave). For the autumn sub-period (the second wave), we took data from July 1, 2020,
and registered data in such a way that the first day is the day when the number of confirmed
cases per 100,000 population is greater than or equal to three. We chose a threshold value of
three since the increase in confirmed cases has begun at this time point in the second sub-period
for many countries. For the short-term forecasting for the first wave, countries that have more
historical data, compared to Lithuania, on the disease from the first confirmed case of COVID-19
were selected: Austria, Belgium, Croatia, Denmark, Estonia, Finland, France, Germany, Greece,
Iceland, Italy, Netherlands, North Macedonia, Norway, Romania, Spain, Sweden, Switzerland,
and the United Kingdom. Accordingly, the following countries were identified in the same way
for short-term forecasting in the case of the second wave: Austria, Belgium, Bulgaria, Croatia,
Czechia, Denmark, France, Greece, Hungary, Ireland, Italy, Liechtenstein, Luxembourg, Malta,
Montenegro, Netherlands, North Macedonia, Norway, Portugal, Romania, Serbia, Slovakia, Slove-
nia, Spain, Sweden, Switzerland, and the United Kingdom. Lithuanian data was also included for
both waves.

2.3.2 Selection of Countries
The multidimensional data describe complex objects or phenomena characterized by many

features. For better comprehension, it is useful to provide data in an easy-to-understand form: to
define the structure of the data, relationships, and clusters. Multidimensional data visualization
methods are used to provide data mining results in a more comprehensive form by drawing
attention to similarities. The attention-based selection of the European Union countries for
forecasting is performed by integrating multidimensional data clustering and data dimensional-
ity reduction methods: self-organizing neural network (SOM), multidimensional scaling (MDS),
and t-distributed stochastic neighbor embedding (t-SNE). The data was first clustered using the
SOM neural network. For the clustering result inspection, visualization techniques such as MDS
or t-SNE methods can be used. Different visualization techniques were chosen to validate the
clustering results obtained by the SOM, using methods based on different operating principles.
Dimensionality reduction methods transform the analyzed dataset from the l-dimensional space
Rl into a lower-dimensional space Rd (d < l), where the distribution of points can be observed
visually, e.g., d = 2. In this study, we consider multidimensional data of the following form:

Yi = (yi1,yi2, . . . ,yin, xi1,xi2, . . . , xin, zi1, zi2, . . . , zin,p_di), i= 1, . . . ,m,
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where n= 1, . . . , 35 (number of observations), m—number of countries analyzed, yi1,yi2, . . . ,yin—
number of cumulative confirmed cases, xi1,xi2, . . . , xin—number of cumulative deaths, zi1, zi2, . . . ,
zin—number of cumulative recovered cases, p_di—population density for i-th country, respectively,
i.e., the study deals with data described by 106 features.

Typically, Yi ∈ Rl, i = 1, . . . ,m are interpreted as points in the multidimensional space Rl,
where l defines the dimensionality of the space (in our case, 106 features). If the dimensionality
of the projection space is two, then the MDS and t-SNE methods can be applied to represent the
multidimensional data in a 2D space.

The self-organizing neural network SOM was used for clustering of multidimensional data.
SOM is a neural network-based method that is trained in an unsupervised way using competitive
learning [26,27]. Self-organizing maps use a neighboring function to preserve the topological
properties of the input space. Typically, SOM represents a set of interconnected neurons according
to some topology, e.g., the rectangular SOM is a two-dimensional array of neurons. Each element
of the input data set is connected to every individual neuron in the rectangular structure. Every
neuron is entirely defined by its location on the grid by its specific index at the row and the
column and by its weight (so-called code book vector). After SOM training, the data are presented
to SOM, and the winning neuron for each input data is found. The winning neuron is the one
to which the Euclidean distance of the input data vector is the shortest. In such a way, the
input data are distributed on SOM, and resulting data clusters can be observed. t-SNE is a
nonlinear dimensionality reduction technique based on Stochastic Neighbor Embedding [28]. The
method minimizes the divergence between two distributions: a distribution that measures pairwise
similarities of the high-dimensional objects and a distribution that measures pairwise similarities
of the corresponding low-dimensional points in the embedding.

The MDS method is used to find a configuration of points in a space, usually Euclidean,
where each point represents one of the objects or individuals, and the distances between pairs of
points in the configuration match as well as possible the original dissimilarities between the pairs
of objects or individuals [29]. The MDS method represents (dis)similarity data as distances in a
low-dimensional space to make these data accessible to visual inspection and exploration [30].

2.3.3 Forecasting
The trends of the number of confirmed cases in the countries which belong to the same

cluster as Lithuania and have more historical data on the disease from the first confirmed case
of COVID-19 are used. The regression models with countries as covariates are considered. The
forecasting is done for such a number of days ahead as is the history of the confirmed number
of cases in the countries belonging to the same cluster as Lithuania. However, some countries,
which belong to the same cluster as Lithuania, do not have a much longer history of confirmed
cases than Lithuania. Thus, to obtain a forecast for required steps ahead, ARIMA models (see
Section 2.2) were used to forecast the number of the confirmed cases in each country, and then
these forecasts were employed in regression analysis to get the forecast of the confirmed cases in
Lithuania.

To achieve the goal above, the linear regression with ARMA errors was used:

yt = β0+β1xt+ ηt, ηt =
p∑
i=1

φiηt−i+ εt+
q∑
j=1

θjεt−j, (2)
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where p and q are AR and MA orders respectively; β0, β1, φi, θj are unknown parameters and εt
are random errors.

After the linear regression models were obtained for each country in the cluster, the forecast
was calculated by taking the average of forecasts from these models:

ŷLT ;t = 1
k

k∑
l=1

ŷl;t, (3)

where ŷl;t is the forecast from each regression performed.

2.4 Forecast Accuracy
The comparison of the accuracy of the forecasts over the considered time period was made

by choosing models for every interval of 35 days and forecasting five steps ahead. The following
measures of the forecast accuracy were used:

RMSE =
√√√√ 1
T

T∑
i=1

(ŷt− yt)
2, MAPE = 100%

T

T∑
i=1

∣∣∣∣
yt− ŷt
yt

∣∣∣∣ , MAE = 1
T

T∑
i=1

∣∣yt− ŷt
∣∣ (4)

where T is the number of time points, yt and ŷt are observed and fitted values of the dependent
variable, respectively.

3 Results

3.1 ARIMA Forecasting Results
We estimate the ARIMA model for cumulative confirmed cases every day with 35 recent

observations for the period March 12, 2020–January 26, 2021, dividing data into two sub-periods
as follows: March 12–June 25, 2020, and October 1, 2020–January 26, 2021. Earlier data and the
summer period are truncated due to a very small number of confirmed cases.

We would like to point out that modeling started at the end of March, and different types of
models and lengths of data at first were used. Here we present the final version of the forecasting
approach, thus the historical forecast in the paper might differ from the forecast announced for
the public.

Note that the model was built based on the cumulative number of confirmed cases per
100,000 people. In addition, the authors analyze the non-seasonal ARIMA model for the daily
data, though a slight seasonality might be observed because of the weekend effect, when
fewer tests are performed. However, testing with the seasonality models does not have better
performance than with the non-seasonal models.

A new ARIMA model is fitted for every day. The orders of each ARIMA model are shown
in Fig. 2.

For every day, not only a new model is built, but forecasts are performed for five steps ahead
as well as prediction intervals with 80% and 95% prediction probabilities are computed.

The complete algorithm for every day model is given in Algorithm 1 presented in Fig. 3.

The result of Algorithm 1 is the graph where the black line and black dots indicate predicted
values, the red dots indicate true values, the dark blue band indicates the 80% prediction interval,
and the light blue band indicates the 95% prediction interval (see Fig. 4).
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Figure 2: ARIMA orders for every day models. (a) March 12–June 25, 2020 (b) October 1, 2020–
January 26, 2021

Figure 3: Algorithm 1. ARIMA short-term forecast

As it was mentioned earlier, the historical data has been changing over time, and the pre-
diction scheme has also slightly changed over the pandemic period. Thus, a retrospective analysis
of the goodness of the prediction of the ARIMA models has been accomplished. To achieve
this goal, training set errors and prediction errors computed over the whole period, taking into
account all historical models, were investigated (see Fig. 5: Algorithm 2).
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Figure 4: Visualization of forecasting results obtained by ARIMA. Red dots represent actual cases,
blue line and dots represent ARIMA forecasts, and the blue and light blue bands are prediction
intervals. (a) April 22–April 28, 2020 (b) January 25–January 31, 2021

Figure 5: Algorithm 2. Training and prediction

In total, 156 models (72 for the first wave and 84 for the second wave) were estimated, and
training sets and prediction errors were saved and the final output of Algorithm 2 consists of two
tables. Tab. 1 illustrates several TrainingError values.
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Figure 6: Algorithm 3. Prediction error

Table 1: Training set errors

Model RMSE MAE2 MAPE

1 0.32 0.24 3.53
2 0.32 0.24 3.15
3 0.34 0.26 6.65
. . . . . . . . . . . .

The result of a Prediction Values table is a table with 52 columns and 77 rows for the first
wave and 89 rows for the second wave. The columns are as follows:

• Date: the date for the true and predicted values;
• Observed: the observed values;
• S1_point, . . . , S5_point: point forecasts for each step ahead separately computed with
Algorithm 1;

• S1_l80, . . . ,S5_lo80, S1_hi80, . . . ,S5_hi80, S1_lo95, . . . ,S5_lo95, S1_hi95,. . .S5_hi95: predic-
tion intervals lower and upper values computed with Algorithm 1;

• RMSE_S1, . . . ,RMSE_S5, MAE_S1, . . . ,MAE_S5, MAPE_S1, . . . ,MAPE_S5: cumulative
prediction errors computed with Algorithm 3;

• S1_int_80, . . . ,S5_int_80, S1_int_95, . . . ,S5_int_95: indicator values, if true value is in the
prediction interval.

The cumulative RMSE, MAE, and MAPE errors showed that the values of the median and
variance increased with each prediction step (see Fig. 7, e.g., with MAPE error).

The same algorithms have been applied for the second period of data, as mentioned in
SubSection 2.1: October 1, 2020–January 31, 2021.

The results obtained are very similar, but we have slightly larger errors. The bigger difference
appears in the empirical probability for the true value to be in the prediction interval. Note that
the authors have computed 80% and 95% prediction intervals, but retrospectively it is the indicator
values if the true value is in this interval (Algorithm 2). Empirical prediction probabilities were
computed as follows:

p= #number of true values in a prediction region
#number of total predictions performed

.

The results are presented in Tab. 2. It can be seen that the results of the forecast are
promising. For the further prediction steps, the probability is getting lower but is still above the
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value of 0.89 for the step 5 with the 95% prediction interval over the first wave and greater than
0.80 for the second wave.

Figure 7: ARIMA models: cumulative MAPE errors. The figure shows boxplots for each pre-
diction step, from one to five, ahead, that is mape_s1 denotes MAPE values for the first step
ahead forecast, mape_s2 denotes MAPE values for the second step ahead forecast, etc. (a) March
12–June 30, 2020 (b) October 1, 2020–January 31, 2021

Table 2: ARIMA models: empirical prediction probabilities (P.I.–prediction interval)

First wave Second wave

Prediction step 80% P.I. 95% P.I. 80% P.I. 95% P.I.

1 0.90 0.93 0.67 0.86
2 0.83 0.99 0.58 0.80
3 0.79 0.99 0.60 0.81
4 0.79 0.93 0.68 0.80
5 0.75 0.89 0.69 0.83

3.2 Attention-Based Forecasting Results
The results obtained using attention-based forecasting are presented in this section. The

complete scheme for attention-based forecasting is given in Algorithm 4 (see Fig. 8). In an effort
to compare the resulting forecasting accuracy of the two methods considered, the time periods,
measures of the forecast accuracy, and the study of performance over the time kept the same as
in Algorithms 2 and 3 (see Figs. 5 and 6).
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Figure 8: Algorithm 4. Attention-based short-term forecast

3.2.1 Registration and Clustering Results
Following the data registration described in Section 2.3.1, 20 European countries with a longer

history of the disease and virus spread than Lithuania were selected for the study: 17 European
Union countries, the United Kingdom, Norway, and Northern Macedonia. Daily cumulative
relative data (per 100,000 people per day) for the last 35 days of the research is used: cumulative
new confirmed cases, deaths, recovered cases, and population density. As mention above, the
multidimensional data consists of 106 features per country. Following the registration of data
for the first case (see Section 2.3.1), a cluster and visual analysis of multidimensional data were
carried out (see Section 2.3.2). To forecast the number of cases and disease trends in Lithuania,
six countries were identified with more historical disease data, and in which the registered data
for the past 35 days have a similar trend to Lithuania. Tab. 3 presents the six countries selected
for regression analysis for each month from March to June (registered for the first wave), which
have been identified as most similar countries to Lithuania in terms of trend and similarity of the
virus spread. The countries were ranked based on the summarized results of visual and cluster
analysis (see Section 2.3.2). All six selected countries had a longer history from the first confirmed
case of COVID-19 compared to Lithuania based on SOM output. In some cases, SOM output
resulted in less than six countries in the same cluster as Lithuania. To select the lacking data to
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form the cluster of six countries, the points closest to Lithuania, representing the countries, were
identified based on Euclidean distances in the multidimensional space.

Table 3: Ranked first wave countries (most similar to Lithuania in terms of trends and similarities
in the spread of the virus from March to June: the first wave)

Rank March April May June

1 Croatia Croatia Croatia Croatia
2 North Macedonia Romania Finland Greece
3 Greece North Macedonia Romania Finland
4 Romania Sweden North Macedonia Romania
5 Sweden Greece Greece Estonia
6 Finland Finland Estonia Norway

Tab. 3 shows that Croatia, Northern Macedonia, Romania, and Greece were the most similar
countries to Lithuania in terms of virus spread trends from March to June. Since the visualization
results obtained by the MDS and t-SNE methods are quite similar, we present only the results
obtained by the t-SNE method. The visualization results of the analyzed data from the period
from March 12 to April 15, 2020 are presented in Fig. 9a. When visualizing data, one color is
allocated to countries in a single cluster, formed using the SOM. Similar trends in the spread of
the virus during this period were also observed in Sweden, Finland, Estonia, and Norway, based
on the results of visualization of the corresponding multidimensional data (see Fig. 9). As the
situation in Romania and Macedonia changed already in May, these countries began to disappear
from the cluster with Lithuania. The summer period is a stable and calm time in the spread of
COVID-19, the situation changes slightly. Lithuania belongs to the same cluster as countries with
a small number of confirmed cases. From August to September, the same cluster with Lithuania
included Greece, Finland, Estonia, Norway, and Germany.

However, since November, the situation begins to change. Tab. 4 presents six countries from
September to January (data registration for the second wave). From November, Lithuania was
in the same cluster as Slovenia, Czechia, Slovakia, Austria, Italy, Montenegro, and Hungary.
The number of cases in these countries has been increasing. As an example, the results of
the visualization of the analyzed data in the period of December 23, 2020–January 26, 2021,
obtained using the t-SNE method, are presented in Fig. 9b. The same clustering results were
observed by applying the MDS method for clustering results inspection. However, MDS relies on
Euclidean distances in multidimensional space, and when the figures are produced in 2D space,
the points representing countries form quite dense clusters on the plane that are hardly readable
but comparable to those obtained by t-SNE. Thus, only t-SNE results are being presented.
Lithuania has been a part of the same cluster as Czechia, Slovenia, and Luxembourg. Other
countries (Austria, Slovakia, Croatia, Montenegro, Hungary, Italy) have been identified as similar
to Lithuania, although they belong to other clusters.
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Figure 9: Visualization results obtained using t-SNE. Countries with the same color depict the
same cluster meaning a similar COVID-19 spread. European Union and other countries have been
assigned a two-letter country code.3 (a) March 12–April 15, 2020 (b) December 23, 2020–January
26, 2021

Table 4: Ranked second wave countries (most similar to Lithuania in terms of trends and sim-
ilarities in the spread of the virus from September 2020 to the end of January 2021: second
wave)

Rank September October November December January

1 Bulgaria Spain Slovakia Slovenia Czechia
2 Sweden North Macedonia Italia Austria Slovenia
3 Ireland Montenegro Czechia Belgium Slovakia
4 Croatia Romania Spain Hungary Montenegro
5 Norway Hungary Hungary Slovakia Croatia
6 Romania Slovakia Montenegro Italy Austria

3.2.2 Forecasting Results
The approach outlined in Section 2.3.3 and the results presented in Section 3.2.1 were used

to obtain the forecasts. Six countries from the same cluster and closest to Lithuania were used to
make forecasts based on the number of cumulative confirmed cases. The same time intervals were
considered to compare the results with those of the ARIMA models: the first is March 12–June
30, 2020 (corresponds to the first wave of COVID-19), and the second is October 1, 2020–January
31, 2021 (corresponds to the second wave).

Algorithm 4 was applied to obtain results, and the graph presents the final result (see Fig. 10):
the black line and black dots represent the predicted values, the red dots represent true values,
and the dark and light blue bands represent 80% and 95% prediction intervals, respectively.

3https://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:Country_codes.

https://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:Country_codes
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Figure 10: Visualization of forecasting results obtained by the attention-based method. The red
dots represent actual cases, the blue line and dots represent forecasts using the attention-based
method, and the blue and light blue bands are prediction intervals. (a) April 22–April 28, 2020
(b) January 25–January 31, 2021

Comparing the results of ARIMA models and attention-based forecasting (see, for example,
Figs. 3 and 10), it can be concluded that one of these methods shows a better fit for some periods
and the other is better for other periods. A higher forecast accuracy is achieved in periods when
countries in the same cluster are closer to Lithuania.

All models, as in the case of ARIMA models, were estimated historically (overall 156 models
were fitted: 72 in the case of the first wave and 84 in the case of the second wave), training
set errors were saved and prediction errors over the two considered sub-periods were obtained
(see Fig. 5: Algorithm 2). The cumulative values of RMSE, MAE and MAPE (see Fig. 6: Algo-
rithm 3) show that the median and variance become larger with each prediction step (see Figs. 11a
and 11b for MAPE values). The medians are similar, as in the case of ARIMA, however, the
variance is slightly larger.

The comparison of the results obtained by the attention-based method for the two sub-periods
(waves) shows that the forecast errors in the case of the first wave (see Fig. 11a for MAPE values)
are smaller than in the case of the second wave (see Fig. 11b). This is due to the reason that
the situation in countries differs more in the autumn than in the spring when countries from the
same cluster as Lithuania were closer to each other.

The empirical probabilities that the true value is in the prediction region were obtained (see
Tab. 5). The results show that the accuracy of the estimation is similar to that of ARIMA in the
case of the first sub-period (wave) considered, but it is slightly worse in the case of the second
wave.
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Figure 11: Attention-based method: cumulative MAPE. The figure shows boxplots for each pre-
diction step one through five, ahead, that is mape_s1 denotes MAPE values for the first step
ahead forecast, mape_s2 denotes MAPE values for the second step ahead forecast, etc. (a) March
12–June 30, 2020 (b) October 1, 2020–January 31, 2021

Table 5: Attention-based method: empirical prediction probabilities (P.I.–prediction interval)

First wave Second wave

Prediction step 80% P.I. 95% P.I. 80% P.I. 95% P.I.

1 0.86 0.96 0.62 0.81
2 0.89 0.99 0.61 0.78
3 0.85 0.99 0.58 0.77
4 0.88 0.97 0.56 0.75
5 0.88 0.97 0.51 0.70

4 Discussion

This study investigates methods for obtaining short-term forecasts of the COVID-19 virus
spread that can be useful for policymakers and public institutions in making necessary decisions
and providing useful guidance as to what might happen in the coming week. By borrowing the
idea of the attention-based approach from Long Short-Term Memory deep neural networks and
combining this approach with the mathematical modeling and prediction methods, we obtain
a powerful tool for understanding the spread of COVID-19 and exploring different short-term
spread scenarios.
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Two approaches were used for short-term forecasting of the confirmed COVID-19 cases in
Lithuania: the ARIMA model and a new attention-based forecasting method, which combines
machine learning techniques and statistical methods. The novelty of the approach presented
above is the use of data from countries with a longer history of the disease to forecast trends
in Lithuania. To this end, the authors introduce the data registration from the first confirmed
case of COVID-19. Such a way of data registration and integral data analysis using techniques
for clustering and multidimensional data dimensionality reduction allows to assess trends in the
spread of the virus in different countries and to group them according to similarity, i.e., to draw
attention to those countries where the spread of COVID-19 behaves in a similar way. Moreover,
the proposed approach allows to assess the dynamics of the spread of the virus and changes
in the situation over time. The clustering analysis shows the specificity of the virus spread and
enables to review the measures applied in the countries of the same cluster to control the virus
and assess the impact (effectiveness) of the measures applied on the increase in the number of
newly confirmed cases of the disease. The attention-based focus and identification of countries
that are similar to the investigative one, i.e., Lithuania, with the ability to have a longer history
of virus spread analysis, as well as the forecast based on their trends, allows to create and foresee
the virus spread scenarios based on the historical data of other countries.

Summarizing the results of the forecasting, it can be concluded that both methods demon-
strate similar accuracy in forecasting of the so-called first wave time period COVID-19 cases
(March 12–June 30, 2020), none of the methods outperforms the other. The forecast accuracy
obtained using the attention-based forecasting, taking the second wave (October 1, 2020–January
31, 2021), is slightly lower compared to the results obtained by ARIMA. The explanation can be
related to the fact that the situation and trends of confirmed cases in the countries being rather
different, the number of countries in the same cluster as Lithuania is not large, and the distances
from Lithuania in the cluster are varied. However, the attention-based forecasting approach gives
promising results. Higher forecast accuracy is achieved in periods when the countries in the same
cluster are closer to Lithuania. The two approaches discussed above complement each other and
provide insights for the short-term forecasting of COVID-19 spread and enable to validate the
forecasting results. The dimensionality reduction techniques, viewed as an attention-based method
for similar COVID-19 spread country or region selection, combined with regression analysis,
provide a means to validate the forecasting results. The approach presented in the paper can be
applied to any country with the view to analyze other pandemic situations.
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