
echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2022.018773

Article

Deep Semisupervised Learning-Based Network Anomaly Detection in
Heterogeneous Information Systems

Nazarii Lutsiv1, Taras Maksymyuk1,*, Mykola Beshley1, Orest Lavriv1, Volodymyr Andrushchak1,
Anatoliy Sachenko2, Liberios Vokorokos3 and Juraj Gazda3

1Lviv Polytechnic National University, Lviv, 79013, Ukraine
2West Ukrainian National University, Ternopil, 46009, Ukraine

3Technical University of Kosice, Kosice, 04200, Slovakia
*Corresponding Author: Taras Maksymyuk. Email: taras.maksymyuk@gmail.com

Received: 21 March 2021; Accepted: 23 April 2021

Abstract: The extensive proliferation of modern information services and
ubiquitous digitization of society have raised cybersecurity challenges to new
levels.With themassive number of connected devices, opportunities for poten-
tial network attacks are nearly unlimited. An additional problem is that many
low-cost devices are not equippedwith effective security protection so that they
are easily hacked and applied within a network of bots (botnet) to perform
distributed denial of service (DDoS) attacks. In this paper, we propose a
novel intrusion detection system (IDS) based on deep learning that aims to
identify suspicious behavior in modern heterogeneous information systems.
The proposed approach is based on a deep recurrent autoencoder that learns
time series of normal network behavior and detects notable network anoma-
lies. An additional feature of the proposed IDS is that it is trained with an
optimized dataset, where the number of features is reduced by 94% without
classification accuracy loss. Thus, the proposed IDS remains stable in response
to slight system perturbations, which do not represent network anomalies.
The proposed approach is evaluated under different simulation scenarios and
provides a 99% detection accuracy over known datasets while reducing the
training time by an order of magnitude.

Keywords: DDoS; deep semisupervised learning; cybersecurity; anomaly
detection

1 Introduction

Cybersecurity has always been a key part since the very beginning of the development of
information and communication technologies. With the rapid proliferation of the Internet of
Things (IoT), cybersecurity is becoming increasingly important because large volumes of personal
data widely circulate in modern information systems. To this end, there are many technical
solutions that aim to detect malicious behavior within a network. However, the continuous
improvement on the attacker side has encouraged researchers and network equipment manufac-
turers to develop new advanced solutions, which handle new potential threats. Modern network
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attacks occur when malicious traffic is masqueraded as typical network traffic, which remains
undetected via a brief overview of packet headers. Therefore, most current intrusion detection
systems (IDSs) are based on deep packet inspection (DPI), which allows deep examination of
the packet payload and identification of the corresponding application layer service [1–3]. Despite
the widespread use and great potential of DPI, this approach exhibits certain important limi-
tations. First, DPI effectively detects known intrusions but easily fails to detect new intrusions.
Second, attackers may even exploit DPI as a tool to perform malicious actions. Third, DPI
adds more complexity to existing firewalls, which requires continuous updates to maintain a good
performance. Finally, DPI is very slow in modern networks due to the limitation of the packet
processing time. Recent studies have indicated that DPI works well if the data rate of incoming
traffic reaches up to 1 Gbps. At higher data rates, modern DPI tools start to discard packets.
For example, at a data rate of 10 Gbps, DPI discards approximately 20% of packets. Studies
have shown that hardware acceleration through parallel DPI processing may provide a data rate
up to 4 Gbps without any loss via field programmable gate arrays and up to 7.2 Gbps via
application-specific integrated circuits [4,5].

Nevertheless, with the widespread deployment of 5G networks, 10-Gbps data rates can be
expected for single small cells, which indicates data rates of several terabits per second via the
transport network [6–8]. At these data rates, even the most effective DPI solutions cannot be
effectively scaled to provide the required tradeoff between service quality and security. Therefore,
most recent studies have focused more on artificial intelligence (AI)-based techniques, which detect
certain anomalies of data flows and prevent attacks without deep inspection of each packet.
Among all AI-based solutions, the most promising are those based on deep learning, or more
specifically deep neural networks [9–12]. A detailed survey of existing solutions based on deep
learning was reported in [13]. Most modern solutions based on deep learning attain an accuracy
higher than 90% in the detection of the most common network attacks. However, there is no
simple solution among the various existing solutions that can be effectively applied under all
network scenarios and types of attacks. Therefore, further research is needed to gain more insights
into the proper selection of deep learning models for each particular cybersecurity problem.
One of the main limitations of current systems is that they require extensive training over large
datasets, which is not always feasible in real work applications.

In this paper, we propose a new IDS based on deep learning, which is founded on a deep
recurrent autoencoder that allows learning adequate network behavior and detection of any
anomalies without extensive training over large datasets. The key feature of the proposed IDS
is optimal feature extraction to reduce the computational complexity and improve the detection
of previously unknown attacks. The proposed model may be implemented either as a standalone
solution or as a part of a more complex IDS with other deep learning and DPI models. The
performance of the proposed model is tested on different datasets in terms of distributed denial
of service (DDoS) attacks.

The remainder of this paper is organized as follows. Section 2 surveys the most recent AI-
based IDS solutions. Section 3 describes the proposed IDS solution based on the deep recurrent
autoencoder. Section 4 provides the simulation results and performance evaluation of the proposed
model. Finally, we conclude the paper in Section 5.
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2 Recent Related Research on Existing AI-Based IDS Solutions

2.1 Basic Requirements of DDoS Detection in Modern Information Systems
DDoS attacks occur when malicious users infect a massive number of network nodes and turn

them into networks of bots (botnets), which send numerous packets to a target victim server [14].
DDoS attacks have been known for quite a long time, and we have observed tremendous growth
in both the attack power and detection abilities of IDSs [15,16]. With the current development
of the IoT and the corresponding exponential growth of the number of devices connected to
the Internet, attackers have more opportunities to deploy massive botnets composed of IoT
devices [17–19]. Considering that most of these devices are usually low-cost devices and not well
protected, in the foreseen future, we can expect notable attacks from different IoT devices, such
as smart kettles or home thermostats. Therefore, despite the many studies conducted over the last
decade, IDS development against DDoS attacks remains of great interest.

Most existing IDSs exhibit a modular architecture that allows continuous updates and swift
implementation of new features [20–24]. In a modular architecture, a separate module is created
for each data-particular IDS task with corresponding methods and data structures. The major
limitation of the modular architecture in the modern IDS is the problem of dependency between
the different modules and compatibility issues. Any change in program code results in updates of
all related modules. Therefore, most IDSs are designed in a way that allows the implementation
of new features with a minimum change in the whole system.

The key challenge in the detection of modern DDoS attacks is that they usually do not
contain common revealing attributes. The distributed nature of attacks does not allow their proper
tracing nor determination of the identity of the attacker. Moreover, the large variety of connected
devices with different types of connections and levels of security introduces an additional degree
of uncertainty into the DDoS attack process.

Therefore, so far, we have observed a growing interest in machine learning-based solutions for
DDoS attack detection and prevention purposes. In general, machine learning for attack detection
can be implemented as follows:

• Supervised classification requires a training dataset with labeled classes of normal and
anomalous system behaviors [25–27].

• Unsupervised or semisupervised clustering requires only a training dataset of normal system
behavior to form a corresponding cluster. Then, any event sufficiently different from the
previously learned cluster is considered anomalous system behavior [28,29].

In practical IDS applications, both aforementioned cases have usually been implemented to
improve the detection capability. In the following section, we cover the recent related research on
machine learning and AI approaches to DDoS attack detection.

2.2 Recent Related Research on AI-Based DDoS Detection
The advantage of AI-based detection systems is their ability to learn based on collected

statistical information and accordingly modify detection rules without human input [30]. Many
different AI-based methods for DDoS attack detection have been developed so far based on
various machine learning models.

In [31], the authors proposed calculation of the packet score, upon which packets were
discarded based on the Bayesian theoretic grade. In [32], a Bayesian inference prototype was
applied in trust agreement among access routers to detect malicious routers. In [33], the authors
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presented a real-time DDoS attack detection method based on a naive Bayesian classifier of
legitimate and malicious network packets and a signature-based IDS for attack detection. In [34],
a signature-based IDS was proposed to identify DDoS attacks on HTTP servers. The proposed
system adopted a naive Bayesian classifier, which achieved a detection accuracy up to 98%.
Nevertheless, the proposed approach was useful only against low-rate DDoS attacks.

Different models based on fuzzy logic function well when there is a need to analyze a
large number of input parameters, such as the CPU load, traffic rate, and connection time [35].
In [36], the integration of fuzzy logic with cross-correlation was proposed to improve the detection
precision. However, the proposed system failed in regard to real-time detection due to its time-
consuming calculations. Real-time DDoS detection was achieved by Wang et al. via the application
of fuzzy logic in Hurst factor analysis [37]. Another recent study has proposed a reliable DPI
method for anomaly detection via Hurst factor calculation considering different time frames [38].
Authors have proposed threshold boundaries for the Hurst factor considering different timeframes
to prevent false detection/misdetection of anomalous traffic.

In [39], the authors proposed a method for the advanced detection of DDoS attacks by using
the K-nearest neighbor method of traffic classification. Their approach is suitable for the initial
detection phase because it considers only traffic variation. In [40], a more comprehensive model
was developed considering different types of DDoS attacks. The proposed model achieved an
accuracy ranging from 40–70% depending on the attack type.

In [41], a new DDoS attack detection model based on several support vector machines
(SVMs) was established. The authors analyzed the traffic attributes of attacks and achieved a
high precision of early anomaly detection. Another SVM-based approach was proposed in [42] in
regard to attack categorization. The authors adopted a two-step approach to initially recognize
anomalous traffic and then performed a detailed classification of the attack type.

Over the last few years, deep learning methods for DDoS attack detection have gained
attention due to their promising outputs in many other tasks. Deep learning models based on
different types of neural networks provide better results than those yielded by basic signature
testing methods [43]. In [44], the authors proposed a time delay neural network as an early DDoS
detector. The proposed model employed a layered architecture to implement appropriate actions
against DDoS attacks with an 82.7% accuracy.

In [45], the authors mapped attributes of the neural network to recognize DDoS attacks based
on traffic monitoring with a software-defined network (SDN) controller. Another SDN-based
approach was proposed in [46] via multivector deep learning-based DDoS detection. However, the
major drawback of both methods is that they struggle in the detection of low-rate attacks, usually
considered legitimate traffic.

A very promising research direction was reported in [30], where the authors developed a
multilevel anti-DDoS framework for the IoT and cloud environment. The authors considered
a typical state-of-the-art structure comprising intelligent IoT edges, fog computing and cloud
computing levels. This framework was demonstrated to effectively neutralize DDoS attacks by
exploiting early detection at IoT edges, local state analysis in the fog and powerful big data
analytics in the cloud with deep learning tools.

2.3 Existing Challenges of AI-Based Network Anomaly Detection
The main advantage that drives the popularity of machine learning-based IDSs is their ability

to quickly adapt to changes in the network environment. Modern heterogeneous information
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systems contain numerous available degrees of freedom that they do not allow us to predict
all potential vulnerabilities in DDoS attack deployment and manually hardcode required secu-
rity mechanisms. Summarizing the abovementioned related research, we conclude that AI-based
methods overcome the limits of statistical approaches, which are based only on statistical param-
eters. While smart attackers may easily adjust the statistical properties of DDoS traffic, thereby
rendering them undistinguishable from legitimate traffic, they are still unable to determine how
many other latent attributes can be learned by deep neural networks. Nevertheless, an important
challenge remains involving the training time and data availability for AI-based IDSs [47].

Considering the real-time detection requirements and lack of time required for training over
new possible attacks, it is important to extract the most important features of network traffic.
By learning the most important features of network traffic, we can finely tune the deep learning
model on normal system behavior so that potentially new attacks are easily detected by the IDS.
Another advantage of optimal feature selection is that the computational complexity of detection
is reduced and that the IDS is more compatible with real-time operation. To our knowledge, opti-
mal feature extraction currently lacks attention in recent research of AI-based network anomaly
detection. Therefore, further development of deep learning-based IDSs leveraging advanced feature
extraction and optimization is of great interest for modern heterogeneous information systems.

3 Proposed Semisupervised Intrusion Detection System Based on a Deep Recurrent Autoencoder

3.1 System Model
Usually, deep learning-based solutions for DDoS attack detection are based on supervised

learning over a large dataset of known attacks mixed with normal network traffic. These datasets
consist of input parameters, which are passed to the deep neural network and output labels are
targeted so that the model can learn any hidden dependencies between the input and output.
During training, the neural network evaluates the input features and predicts the output values.
The output values are then compared to target values, and the corresponding loss function
is calculated. With each iteration of the training process (epoch), the weight between neurons
is updated to reduce the loss function. This training process continues until the loss function is
minimized to an acceptable threshold.

However, supervised learning alone is not feasible for modern IDSs because there are many
possible attacks with different features, which renders the training process computationally expen-
sive and time consuming. Therefore, most recent research works have applied autoencoders in
IDSs and obtained promising outputs [48,49]. An autoencoder is an unsupervised learning tech-
nique that uses neural networks for the so-called task of representation learning [50]. The key
function of the autoencoder is data dimensionality reduction so that hidden structures within the
data can be discovered and represented as a compressed form. The important aspect of training
an autoencoder for DDoS attack detection is to ensure that its learned compressed latent space
representation comprises meaningful attributes of the input network traffic. The above compressed
representation can be learned by limiting the number of neurons in the hidden layers so that the
deep neural network is forced to reconstruct the original traffic from a much smaller number of
features (Fig. 1).

3.2 Traffic Prediction Using a Long Short-Term Memory-Based Autoencoder
Since supervised anomaly detection systems are naturally limited only to known types of

network attacks over which the AI model has been trained, in this paper, we focus mostly on
semisupervised anomaly detection using the deep autoencoder. Recently, semisupervised IDSs have
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gained attention from the industry as a promising solution to bridge the gap in supervised models.
Instead of learning numerous patterns of different network attacks, semisupervised algorithms
learn the features of legitimate network traffic and treat any traffic with notable differences as
an anomaly. Nevertheless, the following unsolved problems of semisupervised anomaly detection
based on autoencoders remain [51–53]:

• The complex training process of the autoencoder occurs due to the large number of traffic
parameters and corresponding features, which vary over time.

• Frequent false detections of anomalous traffic behavior may occur when a notable variation
in legitimate traffic is observed in the network.

Figure 1: General architecture of autoencoder-based representation learning of traffic features

To tackle the aforementioned problems, we propose a preliminary feature selection approach
to determine the most important parameters of network traffic and train the most fitted autoen-
coder model over normal network behavior within long and short timeframes.

We adopt an autoencoder structure based on the recurrent neural network (RNN). RNNs
have been widely applied for time series prediction, analysis and classification, such as natural
language processing [54], stock market prediction [55], and anomaly detection [56–58]. Therefore,
RNNs are suitable for IDSs to learn the different features of network traffic and recognize attacks.
In particular, we employ an advanced RNN model, namely, the long short-term memory (LSTM)
model [59,60]. The LSTM model is composed of complex cells, which allows the learning of both
long- and short-term dependencies. This feature is especially useful in network traffic analysis and
important feature learning in different time frames. The LSTM cell contains four main blocks:
input gate, forget gate, hidden state and output gate.

The data processing workflow with an LSTM cell is described as follows: initially, the LSTM
cell filters out the less relevant features of network traffic and removes them from the cell state
via the forget gate. The function of the forget gate can be expressed as follows:

ft = σ(Wxf xt+Whf ht−1), (1)
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where σ denotes the sigmoid activation function and Wxf and Whf are the input and hidden
state weight matrices, respectively. After the operation within the parentheses in Eq. (1), a value
between 0 and 1 is determined for each feature in the previous cell state. This value is then passed
through the sigmoid activation function, which outputs a value of 0 for less important information
and a value of 1 for more important information. Thus, the LSTM cell forgets less important
features of the traffic time series while retaining the most significant features, which reflect the
currently learned network behavior.

After filtering out redundant information, the input gate decides what information should be
memorized with the following function:

it = σ(Wxixt+Whiht−1) (2)

where σ denotes the sigmoid activation function and Wxi and Whi are the input and hidden state
weight matrices, respectively. The output of the input gate function is processed in the same way
as that of the forget gate by the sigmoid activation function.

When the relevant traffic features have been determined, the cell state is updated with new
values to replace those removed by the forget gate as follows:

c′t = tanh(Wxcxt+Whcht−1), (3)

ct = ft� ct−1+ it� c′t (4)

Eqs. (3) and (4) reflect the LSTM cell state update process, which thus affects the learning
process of neural networks. Thereafter, the LSTM cell calculates the output and transfers it to
the next cell:

ht = σ(Wxoxt+Whoht−1)� tanh(ct) (5)

Finally, the LSTM neural network outputs the predicted traffic based on the most recently
learned features.

Thus, with the LSTM-based autoencoder, we solve the uncertainty in network traffic vari-
ation over time because the IDS can now compare the predicted traffic with the LSTM to
real network traffic and make a decision regarding potentially anomalous behavior. However,
the most important task is to appropriately train the autoencoder and find the best generalized
traffic representation, which must be robust to small fluctuations that are still distinguishable from
anomalies. The uncertainty in this task is that we must attain a tradeoff between the number of
features and model performance. While it may be intuitively expected that more features provide
a better performance, in reality, this is not always the case. Too many features usually result
in a more complex training process and high overhead of the model, while the elimination of
redundant features makes the model vulnerable to specific target attacks.

3.3 Feature Extraction from Network Traffic via Principle Component Analysis
We describe the process of feature extraction in detail by using the CSE-CIC-IDS2018

dataset [61]. CSE-CIC-IDS2018 contains information on different attacks, such as brute-force,
botnet, DDoS, web, and many other attacks on the cloud datacenters and other information sys-
tems [62]. The dataset is based on the logs of 80 features, which have been extracted from captured
network traffic. To improve the efficiency of AI model training, we analyze the most important
features, which are associated with the high variance in classification via the gradient boosting
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model. As a result, we obtain the numerical output weights of features to better understand their
impact on the overall classification performance. To estimate the minimal number of features
required to achieve a total weight close to 1, we calculate the cumulative feature importance.
According to the obtained results, the total number of required features can be reduced from 80
to 20, without a notable loss in the cumulative importance for AI-based classification.

However, considering highly heterogeneous network traffic, which is generated by the very
large number of different personal, industrial and other IoT applications, there exists a high
possibility that feature weights vary over time. Thus, straightforward elimination of redundant
features could result in IDS vulnerability to new types of traffic anomalies in the future.

Therefore, in the proposed IDS model, we implement preliminary feature extraction from
network traffic with the principal component analysis (PCA) algorithm [63]. Similar to gradient
boosting, the key idea of PCA is to realize informative visualization of each input data feature
to find those features more important to the correct classification between normal network traffic
and network attacks. However, the key difference of PCA is that it applies an orthogonal linear
transformation of the input data to obtain a new coordinate system as follows:

T=XW (6)

where W is a matrix of the weights of size K×K, K is the number of input traffic features, and X
is a matrix of the input traffic features contained in the CSE-CIC-IDS2018 dataset. The columns
of W are eigenvectors of XTX, so that each feature in matrix T is related to all features in input
matrix X.

The cumulative contribution of the output features produced by PCA to the variance score
of the features is shown in Fig. 2. According to the results, to maintain the total variance at
98.75%, it is enough to consider only 3 traffic features, while 5 features provide a total variance
of 99.55%.

Figure 2: Cumulative variance score of the traffic features after PCA
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The result of data clustering into benign and malicious traffic behaviors based on the 3
most important features of the CSE-CIC-IDS2018 dataset is shown in Fig. 4a. For a more
detailed assessment of the data clustering representation, we also apply the t-distributed stochastic
neighbor embedding (t-SNE) algorithm based on the 3 most important features (Fig. 3b) [64].

Figure 3: Distribution of the benign and malicious traffic clusters based on the 3 most important
features before (a) and after (b) application of the t-SNE algorithm

As shown in Fig. 3b, the benign and malicious traffic clusters are easily distinguished by using
only the 3 most important features. Therefore, we can assume that these 3 features sufficiently train
a robust autoencoder for network anomaly detection. The interesting result, which is observed
in Fig. 4, is that the benign class can be further classified into 3 different clusters. Hence, the
obtained features allow us to train other AI-based traffic analyzers, which can be employed to
classify different types of network services while applying the corresponding quality of service
policies. However, these aspects are beyond the scope of the current paper.

To maximize the variance score of the training dataset, we consider the top 5 most important
features, which account for 99.55% of the total variance score. Note that further increasing the
number of features is inefficient because 0.45% is almost evenly distributed among 75 statistically
insignificant features, while the computational complexity of training exponentially increases with
each additional feature. A scatter matrix of the top 5 selected features for the training dataset is
shown in Fig. 4.

4 Simulations and Performance Analysis of Anomaly Detection Based on the Deep Recurrent
Autoencoder

In the previous section, we explained the key steps undertaken to prepare the dataset for
training. In the current section, we describe the process of autoencoder training over the improved
dataset. We train an LSTM-based autoencoder considering only the time series of benign traffic,
which narrows our problem to regression instead of binary classification. Therefore, we choose a
mean square error (MSE) loss function to minimize it during training [65]. The MSE calculates
the squared differences between the true and predicted values as follows:

L(x,x′)= 1
N

N∑

i=0

(xi−x′i)
2 (7)
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where x is the real value and x‘ is the value predicted by the neural network.

Figure 4: Scatter matrix of the top 5 selected features for the training dataset

The training objective is to minimize the MSE by iteratively updating the weights between the
neurons (i.e., the LSTM cells). The training process is conducted by using an optimizer algorithm
that updates the weights of the neural network until the MSE is minimized. In our system, we
implement an Adam optimizer, which adjusts the learning rate based on the mean and uncentered
variance moments of the gradient [66]. More specifically, the Adam optimizer calculates exponen-
tial moving average values of the gradient and the squared gradient and controls their decay rates
by adjusting parameters β1 and β2.
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During training, we selected 216800 samples of normal traffic behavior, while during testing,
we considered 90033 samples of normal traffic behavior and 360833 samples of anomalous traffic
behavior. An additional part, which contains 54001 samples, was adopted for validation to learn
the model and avoid overfitting (see Tab. 1).

Table 1: Description of the training parameter distribution

Data type Normal traffic behavior Anomalous records

Training dataset 216800 -
Validation dataset 54001 -
Test dataset 90033 360833

The training process was conducted over 50 epochs. The batch size was set to 100, i.e., the
weights of the neural network were updated once per 100 data samples. The result of autoencoder
training over the training dataset is shown in Fig. 5. The level of the decision-making error is
determined by the last error value for the validation dataset, which equals 0.005. Simulation results
of the anomaly detection error for the testing dataset are shown in Fig. 6.

Figure 5: Result of autoencoder training over the dataset with the optimized features

Numerical results of the anomaly detection accuracy of the trained IDS are listed in Tab. 2.
According to the results, the decision accuracy to recognize a DDoS attack is 100%. However,
confusion remains when recognizing normal traffic.
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Figure 6: Simulation results of the anomaly detection error for the testing dataset

Table 2: Simulation results of the anomaly detection performance

Traffic behavior type Normal traffic detected Anomalous traffic detected

Normal traffic records 90012 (99.97%) 21 (0.023%)
Anomalous traffic records 0 (0%) 360833 (100%)

According to the results in Tab. 2, the accuracy of normal traffic recognition is 99.97%, i.e.,
21 out of 90012 normal samples are recognized as an anomaly. To assess the efficiency of dataset
decomposition with the PCA algorithm, we provide an additional training cycle of the deep neural
network with all 80 available features. The dataset is split into training, validation and test parts
at the same proportions as those defined in Tab. 1. Corresponding training results of the deep
recurrent autoencoder without feature optimization are shown in Figs. 7 and 8.

According to the results shown in Fig. 8, we observe that the absolute accuracy of the autoen-
coder trained on the dataset with all 80 features is only 0.03% higher than that of the autoencoder
trained on the dataset with the optimized features (Tab. 3). However, it is important to understand
that this performance level is idealistic due to the limited dataset, and we should not expect a
100% accuracy in real-world deployment. However, the key advantage of the proposed approach
of feature optimization is the much faster convergence and notably shorter training time. This
result verifies that the proposed IDS solution achieves a better performance in real-world traffic
testing. Therefore, in our further research, we will provide much deeper insights and experimental
verification of the proposed solution under various scenarios of network deployment, such as
fixed enterprise networks, 5G mobile networks, and massive IoT deployments. A generalized flow
diagram of network anomaly detection with the proposed IDS based on feature optimization and
a deep recurrent autoencoder is shown in Fig. 9.
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Figure 7: Result of autoencoder training over the dataset with all features

Figure 8: Simulation results of the anomaly detection error for the testing dataset

Table 3: Simulation results of the anomaly detection performance

Traffic behavior type Normal traffic detected Anomalous traffic detected

Normal traffic records 90033 (100%) 0 (0%)
Anomalous traffic records 0 (0%) 360833 (100%)
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Figure 9: Flow diagram of the network anomaly detection procedure with the proposed IDS based
on feature optimization and a deep recurrent autoencoder
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5 Conclusions

In this paper, we have proposed a novel semi-supervised learning-based IDS system to detect
traffic anomalies caused by DDoS attacks. The main novelty of the proposed system is in the
preliminary feature extraction from the original network traffic to reduce the number of input
features for the training dataset by 94%. Then, the optimized dataset is used to train the deep
LSTM based autoencoder. Training has been conducted in the semi-supervised manner, i.e., only
normal traffic behavior has been used for training. Then the trained autoencoder is used to
detect any traffic, which is not recognized as the learned normal behavior as an anomaly. By
combination of the dataset features optimization and LSTM regression capabilities to learn time
series relations, we have reduced the training time by 10 times, while losing only 0.03% of
accuracy. This advantage of the proposed IDS provides a wide range of possible use cases in the
real world network deployment with highly dynamic environment, such as modern 5G networks
with massive number of IoT devices.
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