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Abstract: The performance and accuracy of computer vision systems are
affected by noise in different forms. Although numerous solutions and algo-
rithms have been presented for dealing with every type of noise, a comprehen-
sive technique that can cover all the diverse noises andmitigate their damaging
effects on the performance and precision of various systems is still missing. In
this paper, we have focused on the stability and robustness of one computer
visionbranch (i.e., visual object tracking).We have demonstrated that, without
imposing a heavy computational load on a model or changing its algorithms,
the drop in the performance and accuracy of a system when it is exposed
to an unseen noise-laden test dataset can be prevented by simply applying
the style transfer technique on the train dataset and training the model with
a combination of these and the original untrained data. To verify our pro-
posed approach, it is applied on a generic object tracker by using regression
networks. This method’s validity is confirmed by testing it on an exclusive
benchmark comprising 50 image sequences, with each sequence containing 15
types of noise at five different intensity levels. The OPE curves obtained show
a 40% increase in the robustness of the proposed object tracker against noise,
compared to the other trackers considered.
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1 Introduction

Visual object tracking (VOT), which is a subset of computer vision systems, refers to the
process of examining a region of an image in order to detect one/several targets and to estimate
its/their positions in subsequent frames [1]. Computer vision includes other sub-branches such as
object detection [2], classification [3], optical-flow computation [4], and segmentation [5]. Because
of its greater challenges and more versatile applications, further attention has been paid to the
subject of VOT, and it has become one of the main branches of computer vision, especially in
the last two decades [6].

The applications of VOT in the real world can be classified into several categories, includ-
ing surveillance and security [7,8], autonomous vehicles [9], human-computer interaction [10],
robotics [11], traffic monitoring [12], video indexing [13], and vehicle navigation [14,15].
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The VOT procedure is implemented in four steps of i) target initialization, ii) appearance
model, iii) motion prediction, and iv) target positioning [15]. In the target initialization step, the
object/objects we intend to track is/are usually specified by one/several bounding boxes in the first
frame. The appearance model itself comprises the two steps of visual representation (which is
used in the construction of robust object descriptors with the help of various visual features) and
statistical modeling (which is employed in the construction of mathematical models by means of
the statistical learning techniques) for the detection of objects in image frames [16,17]. The target
positions in other frames are estimated in the motion prediction step. The ultimate position of a
target is determined in the final step by different search methods such as greedy search [18] or by
the maximum posterior prediction techniques [19].

In any computer vision application, a correct and precise object tracking operation can be
achieved by feeding clean data and images to a system; image corruptions in any form can lead to
a drop in system performance and robustness. For example, the presence of atmospheric haze can
diminish the performance and accuracy of autonomous vehicles and surveillance systems. Mehra
et al. [20] showed that the presence of haze or any type of suspended particles in the atmosphere
has an adverse snow noise effect on an image, degrading its brightness, contrast and texture
features. Also, these suspended particles may sometimes alter the foreground and background of
images and cause the failure of any type of computer vision task (e.g., VOT). In another research,
the retrieval of lost information in LIDAR images acquired by autonomous vehicles in snowy
and rainy conditions has been investigated. The principle component analysis has been used to
improve the obtained images [21].

Other issues also influence the VOT robustness and factors such as the quality of camera
sensors, requirements for real-time processing, noise, loss of information during the transfer from
3D to 2D space, and environmental changes. Several factors could cause the environmental fluc-
tuations themselves, e.g., the presence of occlusions, illumination problems, deformations, camera
rotation, and other external disturbances [15]. In VOT, the occlusions can occur in three forms:
self-occlusion, inter-object occlusion, and occlusion by the background; and for each of these
occlusions, four different intensity levels are considered: non-occlusion, partial occlusion, full
occlusion, and long-term full occlusion [22].

Modeling an object’s motion by means of linear and nonlinear dynamic models is one way of
dealing with occlusion in object tracking. Such models can be used to predict the motion of an
object from the moment of its occlusion to its reemergence. Other methods such as the silhouette
projections, color histogram, and optical flow techniques have also been employed for removing
the occlusions and boosting the robustness of object trackers [22]. Liu et al. [23] presented a
robust technique for detecting traffic signs. They claimed that all the traffic signs with occlusion
of less than 50% could be identified by their proposed method. In another study [24], occlusion
problem was solved by using particle swarm optimization as a tracker and combining it with
Kalman filter.

In this paper, we have proposed a new method for increasing the robustness and preventing
the performance drop of object trackers under different ambient conditions. The presented method
can be applied to various types of trackers and detectors and it does not impose a heavy
computational load on a system. To substantiate our claim, we have implemented our approach
on a visual tracker known as the generic object tracking using regression networks. The main
challenge we confronted was the lack of a specific benchmark for evaluating the proposed model
and comparing it with other existing algorithms. To deal with this deficiency, we tried to create
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a benchmark that included most of the existing noises. The main contributions of this work can
be summarized as follows:

• Building new training data from previous data through style transfer and combining them.
• Modeling and classifying 15 different types of noises in four groups with five different
intensity levels and applying them to the benchmark.

• Applying the proposed method on one of the existing object trackers and comparing the
obtained results with those of the other trackers.

It should be mentioned that the presented technique can be applied to multi-object trackers as
well. In the rest of this paper, a review of the research activities was conducted to improve image
quality and suppress the adverse effects of noise on visual tracker performance has been presented
in Section 2. The proposed methodology has been fully explained in Section 3. In Section 4,
the obtained results have been given and compared with those of other techniques. Finally, the
conclusions and the future work have been covered in Section 5.

2 Common Methods of Maintaining Robustness in Object Trackers

Image enhancement and image restoration are usually known as image denoising, deblocking
and deblurring [25]. Yu et al. [25] have defined the image enhancement and restoration process as
follows:

“Aprocedure that attempts to improve the image quality by removing the degradationwhile preserving
the underlying image characteristics.”

The works conducted on the subject of robustness in object trackers can be generally divided
into two categories: i) denoising techniques and ii) using deep networks. The denoising techniques
inflict a high computational cost. Conversely, the low speed of deep networks in updating the
weights has become a serious hurdle in the extensive use of these networks in visual tracking [26].
Each of these methods has been explained in the following subsections.

2.1 Denoising Techniques
The first and simplest method for improving a system’s accuracy and performance against

noisy data is to use a denoising or image restoration technique. In this approach, before feed-
ing the data to the system, different filters and algorithms are used to remove the noise from
a corrupted image and to keep the edges and other details of the image intact as much as
possible. Some of the more famous of these techniques in the last decade are the Markov
random field [27], block-matching and 3D filtering (BM3D) [28], decision-based median filter
(DBMF) [29], incremental multiple principal component analysis [30], histogram of oriented
gradients [31], local binary pattern human detector [32], co-tracking with the help of support
vector machine (SVM) [33], and the nonlocal self-similarity [34] methods [14]. For example, the
BM3D filtering technique has been employed in [28] for image denoising, using the unnecessary
information of images.

The standard image processing filters have many problems. For example, the median filter
acts on all image pixels and restores them without paying attention to the presence or absence
of noise. To deal with this drawback, fuzzy smart filters have been developed. These filters have
been designed to act more intensely on the noisy regions of images and overlook the regions with
no noise. Fuzzy logic was used in [35] for the first time to improve the quality of color images,
remove the impulsive noises, and preserve the image details and edges. Earlier, Yang et al. [36] had
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employed the heuristic fuzzy rules to enhance the multilevel median filters’ performance. Despite
the mentioned advantages of the fuzzy smart filters, they have two fundamental flaws:

• New image corruptions: The mentioned techniques cause new corruptions in the processed
images in proportion to the noise intensity levels. For example, in applying the median
filter, the edges in the improved images are displaced in proportion to the window size.
As another example, in image denoising with a diffusion filter’s help, the image details,
especially in images with high noise intensities, fade considerably.

• Application-based: The mentioned filters cannot be applied to any type of noise. For exam-
ple, it was demonstrated in [37] that the Weiner filter performs better on speckle, Poisson,
and Gaussian noises than the mean and the median filters.

The denoising techniques improved very little during the last decade. The denoising algorithms
were believed to have reached their optimal performance, which cannot be further improved [38].
It was about this time that the emergence of machine learning techniques opened a new door to
image quality improvement and denoising.

2.2 Learning-Based Methods
First convolutional neural network (CNN), called LeNet, was presented by LeCun et al. [39]

to deal with large data sets and complex inference-based operations. Later on, and since the
development of the AlexNet, the CNNs have turned into one of the most common and successful
deep learning networks for image processing. Jain et al. [40] have claimed that using the CNNs to
denoise natural images is more effective than using other image processing techniques such as the
Markov random field. For face recognition in noisy images, Meng et al. [41] have proposed a deep
CNN consisting of denoising and recognition sub-networks. Contrary to the classic methods, in
which the two mentioned sub-networks are trained independently, these two have been trained as
a sequence in the above-mentioned work.

Using a CNN and training it without a pre-learned pattern requires a large training dataset.
Moreover, even if such data are available, it would take a long time (tens of minutes) for training
a network and reaching the desired accuracy [26]. Considering this matter, a CNN-based object
tracker consisting of four layers (two convolutional layers and two fully-connected layers) was
presented in [26]. This tracker has been proposed by adding a robust sampling mechanism in
mini-batches and modifying the stochastic gradient descent to update the parameters, significantly
boosting the execution speed and robustness during training.

Based on machine learning knowledge, a prior image is required by the learning-based
methods. Despite the simplicity of these techniques, they have two drawbacks:

• Extra computational cost—which is imposed on a system due to the optimization of these
techniques

• Manual adjustment—which has to be performed because of the non-convexity of these
techniques and the need to enhance their performance

To deal with these two issues, discriminative learning methods were proposed. Using a dis-
criminative learning approach, Bhat et al. [42] presented an offline object tracking architecture
based on the target model prediction network, predicting a model in just a few optimization
steps. Despite all the approaches presented so far, the problem of dependency on prior data
still remains. Some researchers have tackled this problem with the help of correlation filters.
Using the correlation filters in object tracking techniques to improve performance and accuracy is
common; this has led to two classes of object trackers: correlation filter-based trackers (CFTs) and
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non-correlation filter-based trackers (NCFTs). A novel method of vehicle detection and tracking
based on the Yolov3 architecture has been presented in [43]. The researchers have used a vision
and image quality improvement technique in this work, which includes three steps: illumination
enhancement, reflection component enhancement, and linear weighted fusion. In another study,
and based on a sparse collaborative model, Zhong et al. [44] presented a robust object tracking
algorithm that simultaneously exploits the holistic templates and local representations to analyze
severe appearance changes.

Another method for preventing accuracy loss when using corrupted data is to import these
data directly into a training set. Zhao et al. [45] focused on blurred images as a particular case
of data corruption. They showed that a low accuracy is obtained by evaluating the final model
on blurred images, even by using deeper or wider networks. To rectify this problem, they tried
to fine-tune the model on a combination of clear and blurred images in order to improve its
performance. A review of the different techniques used for enhancing the robustness of object
trackers has been presented in Fig. 1.

Maintaining 
Robustness

Learning Based Method Denoising Technique

CNN Based

Training Set Approach

Filtering

Statistical Approach

Linear Filtering

Non-Linear Filtering

Maximum Likelihood Estimation

Multi Layer Perception

Deep Learning Method

Training model with Noisy Data

Locally

Non-Locally

Figure 1: A review of the different techniques presented for boosting the robustness of object
trackers

3 Methodology

In this section, we will describe the proposed procedure in full details. At first, we need to
introduce an object tracker, which will be used in this work. After selecting a tracker type, the
process will be divided into several subsections, which will then be applied in sequence to the
model considered.

Our methodology comprises three basic steps. In the first step, we train our network model
with a set of initial data and then evaluate it on an OTB benchmark and compare it with other
trackers. In the second step, we apply the modeled noises to the benchmark and again evaluate
the model on the noisy benchmark. In the third step, we obtain the style transfer of every single
training dataset, train the model with a combination of clean and stylized data, apply the trained
model on the benchmark of the preceding step, and report the results.

3.1 Selecting an Object Tracker
In the early part of 2016, Held et al. [46] demonstrated that the generic object trackers could

be trained in real-time by observing objects’ motion in offline videos. In this regard, they presented
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their proposed model known as the generic object tracking using regression networks (GOTURN).
They also claimed this tracker to be the first neural network tracker that was able to complete
the learning process at a speed of about 100 frames per second (100 fps). Thus, we decided
to implement our method on this tracker and compare the results before and after applying
the changes. It should be mentioned that the presented method in this paper can be applied to
all the object trackers and detectors that might be affected by various noises. Fig. 2 shows the
performances of two of the most common object trackers (the GOTURN and the SiamMask [47])
in the presence of snow noise. Here, we applied the said noise at five different intensity levels on
a dataset consisting of 70 image frames and evaluated these two trackers’ performances on the
noisy images. The figure includes only 18 sample frames (frame numbers 0, 1, 5, 9, 13, 17, 21,
25, 29, 33, 37, 41, 45, 49, 53, 60, 65 and 69, starting from top left). As is observed in the figure,
The GOTURN tracker fails in frame 30, at the noise intensity level of 3, and the SiamMask
tracker fails in frame 52, at the noise intensity of 4. Although the SiamMask tracker shows more
robustness than the GOTURN tracker, the tracking operation in both trackers is hampered at
different noise intensity levels.

Figure 2: The performances of the GOTURN and the SiamMask trackers on a noisy dataset

3.2 Training/Testing with Clean Data
In this paper, we trained our network with a combination of common images and films. Also,

to minimize the error between the predicted bounding box and the ground-truth bounding box,
we used the L1 loss function.

The film set: This set contains 314 video sequences, each of which has been extracted from
the ALOV300++ dataset [48]. On the average, the 5th frame of each video sequence was labeled
according to the position of the object to be tracked, and an annotation file was produced for
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these frames. The film set was then split into two portions; 20% as the test data and 80% as the
training data.

The image set: The first set of images has been taken from the ImageNet detection challenge
set, which contains 478807 objects with labeled bounding boxes. The second set of images has
been adopted from the common objects in context (COCO) set [49]. This dataset includes 330,000
images in 81 different object categories. More than 200,000 of these images have been annotated,
and they cover almost 2 million instances.

3.3 Model Evaluation with Corrupted Data
Most of the benchmarks presented in the literature include either clean data or only specific

noises such as the Gaussian noise, while in the real world, our vision is affected by noises of
different types and intensities. We needed a noisy benchmark for this work, so we decided to
build our own custom benchmark. Note that the mentioned benchmark will only be employed to
evaluate the system robustness against different types of noises, and it will never be used to train
the proposed object tracker.

In 2019, Hendrycks et al. [50] introduced a set of 15 image corruptions with five different
intensities (a total of 75 corruptions). They used it to evaluate the robustness of the ImageNet
model in dealing with object detection. The names and details of these corruptions have been
displayed in Fig. 3. Based on our viewpoint, we have divided these 15 visual corruptions into the
following four categories and interpreted each one by a model of real-world events:

• Brightness: We consider the amount of image brightness equivalent to noise and model it
with three types of common noises, i.e., the Gaussian noise, the Poisson noise (which is
also known as the shot noise), and the impulse noise. For example, the authors in [50] have
claimed that the Gaussian noise appears in images under low-lighting conditions.

• Blur: Image blurriness is often a camera-related phenomenon, and it can occur via different
mechanisms such as the sudden jerking of the camera, improper focusing, insufficient depth-
of-field, camera shaking, shutter speed, etc. We modeled these factors’ effects on images
with four types of blurriness: defocus blur, frosted glass blur, zoom blur, and motion blur.

• Weather: One of the most important parameters affecting computer vision systems’ qual-
ity and reducing their accuracy is the weather condition. We considered a corresponding
image corruption for each of the four types of common weather conditions (rainy, snowy,
foggy/hazy, and sunny). The snow noise simulates the snowy weather, the frost noise reflects
the rainy conditions, the fog noise indicates all the different situations in which a target
object is shrouded, and finally, the brightness noise models the sunny conditions and the
direct emission of light on camera sensors and lenses.

• Digital accuracy: Any type of change in the quality of an image during its saving, compres-
sion, sampling, etc., can be considered noise. In this section, such noises will be modeled by
the changes of contrast, elastic transforms [51], saving in the JPEG format, and pixelation.

This paper’s basic benchmark (the OTB50) includes 50 different sequences such as basketball,
box, vehicle, dog, doll, etc. [52]. We apply all the above noises at five different intensity levels
(from 1 for the lowest to 5 for the highest intensity) on each of these sequences and build our own
custom benchmark. In selecting a benchmark, we must ensure that the data and images in the
different sequences of the benchmark don’t have any commonality and overlap with the training
data; otherwise, the obtained results will be inaccurate and biased and cannot be generalized to
other models. For example, the VOT2015 benchmark cannot be used in this paper because of its
overlap with the training data.
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Figure 3: Illustrating 15 types of data corruptions with noise intensity levels of 1 to 5

3.4 Model Training/Testing with Combined Data
One of the applications of deep learning in the arts is the style transfer technique, closely

resembling the Deep Dream [53]. This technique was first presented by Gatys et al. [54] in 2016.
In this transfer process, two images are used as inputs: the content image and the style reference
image. Then, with the help of a neural network, these two images are combined to yield the
output image. This network aims to construct a completely new image whose content is provided
by the content image and whose style is adopted from the style reference image. This new image
preserves the content of the original image in the style of another image.

We employ this technique here and get the style transfer of each of our datasets (with
hyperparameter α = 1) by means of the adaptive instance normalization (AdaIN) method [55].
Again, as before, an annotation file is created for the new dataset. Finally, we train our
object tracker model with a combination of the initial (standard) dataset and the stylized
dataset. An example of this transfer and the proposed methodology has been illustrated in
Fig. 4. (The style transfer method used for training the proposed model has been taken from
https://github.com/bethgelab/stylize-datasets).

https://github.com/bethgelab/stylize-datasets


CMC, 2022, vol.70, no.1 989

Figure 4: The proposed methodology, along with some samples of style transfer

4 Experimental Results

In order to evaluate the performance of the proposed method and the results achieved by
applying it to our custom benchmark, we need to define a specific measure. The most com-
mon method used for evaluating the object tracker algorithms is the one-pass evaluation (OPE)
approach. In this approach, for each algorithm, the ground-truth of a target object is initialized
in the first image frame. Then, the average accuracy or the success rate is reported for the rest of
the frames [52]. Considering the many types of noises (15 noise models) and the intensity levels
for each noise (5 intensities), a total of 75 graphs will be obtained. Plotting all these graphs and
comparing them with one another will not be logical or practical and confuse the reader. Thus,
we decided to adopt a criterion that would be appropriate to our approach. In this criterion, the
abscissa of each diagram is partitioned into many intervals. The number of these partitions and
their intervals are indicated with n and � x, respectively, so that

x0 = a< x1 < · · ·< xn−1 < xn = b (1)

where a and b represent the lower and the upper bounds of the abscissa and have values of 0
and 1, respectively.

The closer the partitions are, the higher the obtained accuracy. Therefore, we bring n closer to
infinity in order to reduce the distance between the partitions. Next, the average value is computed
for each of the four noise models (brightness, blur, weather, and digital) and different types of
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trackers in the OPE diagrams. Thus, we have

OP̂E = 1
N

lim
n→∞

N∑
j=1

n∑
i=1

f
(
x∗i

)
, x∗i ∈ [xi−1, xi] (2)

xi = a+ i�x, �x= (b− a) /n (3)

where x is the overlap threshold and f is the success rate. Also, N indicates the number of subsets
in each of the four noise models, and its values are 3, 4, 4 and 4 for the brightness, blur, weather,
and digital noise types, respectively.

Similar to the Riemann sum theory [56], the above function will converge either to the upper
bound (called underestimation in the literature) or the lower bound (called overestimation in the
literature), depending on the chosen values of the functions in the partitioned intervals. This
notion can also be described by the upper and lower Darboux sum theory. Therefore,

OP̂Einf =Ln
(
f

(
x∗i

))= 1
N

lim
n→∞

N∑
j=1

n∑
i=1

inf f
(
x∗i

)
, x∗i ∈ [xi−1, xi] (4)

OP̂Esup =Un
(
f

(
x∗i

))= 1
N

lim
n→∞

N∑
j=1

n∑
i=1

sup f
(
x∗i

)
, x∗i ∈ [xi−1, xi] (5)

Lemma (1): Assuming a large number of partitioned intervals, the underestimated and over-
estimated values will be equal to each other, and it will be proven that the above function is
integrable in the [a, b] interval. Thus

for n→∞ : OP̂Einf =OP̂Esup =OPEnew (6)

Lemma (2): Using the Riemann sums, the value of a definite integral in the following form
can be easily approximated for continuous and non-negative functions:

∫ b

a
f (x)dx≈

N∑
i=1

f
(
x∗i

)
(xi−xi−1) , x∗i ∈ [xi−1,xi] (7)

Hypothesis (1): A bounded function is Riemann integrable over a compact interval if, and
only if, it is continuous almost everywhere. It means that the set of non-continuity points in
terms of the Lebesgue size has zero value. This characteristic is sometimes called the “Lebesgue’s
integrability condition” or the “Lebesgue’s criterion for Riemann integrability.”

By considering Lemma (2) and Hypothesis (1) and assuming equal lengths for the partitioned
intervals, the above equation can be rewritten as

n
∫ b

a
f (x)dx≈

N∑
i=1

f
(
x∗i

)
(8)
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Figure 5: Comparing the performances of different object trackers on the OTB50 benchmark using
the proposed criterion

By substituting Eq. (6) into Eq. (8), and according to the transposition property of sigma
and integral, we will have

OPEnew = n
N

lim
n→∞

∫ b

a

n∑
i=1

f
(
x∗i

)
dx= n

N
lim
n→∞

n∑
i=1

∫ b

a
f

(
x∗i

)
dx (9)

The simulation results obtained based on the defined criterion have been displayed in Fig. 5.
As is observed in this figure, without altering the structure of a model, the proposed approach has
been able to significantly enhance the robustness of the model against different types of noises.

In conclusion, by using the results of Fig. 5, we have calculated the average area under curve
(AUC) of each tracker and also calculated the amount of their AUC drop after applying noise
in 5 different levels according to the following equations. The results are reported in Tab. 1.

AUCavg =Ls = 1
M

M∑
i=1

∫ 1

0
f (x)dx (10)

%AUCdrop= (L0−Ls)× 100 (11)

where M is equal to the number of noise categories modeled, L0 is the value of the AUC without
noise and s also represents the noise levels in which; s ∈ {1, 2, 3, 4, 5}.

Although our work has reached its aims, it has potential limitations. First, due to the com-
bination of clean data and their style transfer, the size of the final data set will be more than
doubled, which will increase the network learning time. Second, selecting the proper content layer,
style layer, and optimization techniques (e.g., Chimp optimization algorithm [57]), to some extent,
might affect the obtained result and performance of the tracker in presence of noise.

According to the results, at the noise level of 1, all trackers showed relatively good robustness,
and their AUC drop was less than 18%. At the noise level of 2, a small number of trackers
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experienced an AUC drop of more than 24%, and the rest of the trackers had a maximum AUC
drop of 20%. From the noise level of 3 onwards, there is a significant drop in the trackers’
robustness, in which the upper limit of AUC drop between the trackers and in the noise level of
3, 4 and 5 was about 25%, 30% and 40%, respectively. However, the GOTURN trackers training,
according to the approach proposed in this paper, showed excellent robustness to all five noise
levels, and the maximum AUC drop in all five levels did not exceed 5%.

Table 1: Average AUC of each tracker in the evaluation process on the OTB50 benchmark in five
different noise levels

Tracker L0 L1 %L1 L2 %L2 L3 %L3 L4 %L4 L5 %L5

GOTURN+ 0.411 0.399 2.9 0.399 2.9 0.394 4.1 0.393 4.4 0.391 4.9
MDNet 0.646 0.547 15.3 0.530 18.1 0.496 23.2 0.476 26.3 0.453 29.8
ECO 0.641 0.558 12.9 0.550 14.2 0.512 20.1 0.496 22.7 0.460 28.2
CCOT 0.619 0.552 10.9 0.536 13.3 0.494 20.2 0.472 23.6 0.462 25.4
ECO-HC 0.601 0.504 16.1 0.480 20.1 0.464 22.8 0.453 24.6 0.427 28.9
DeepSRDCF 0.564 0.496 12.1 0.473 16.0 0.440 22.0 0.428 24.1 0.398 29.4
SRDCFdecon 0.556 0.487 12.4 0.462 16.8 0.434 22.0 0.420 24.3 0.381 31.5
SRDCF 0.542 0.476 12.2 0.453 16.4 0.420 22.5 0.402 25.7 0.380 29.9
HDT 0.535 0.456 14.8 0.430 19.7 0.400 25.2 0.370 30.9 0.352 34.2
CF2 0.529 0.440 16.9 0.401 24.1 0.385 27.2 0.365 31.0 0.358 32.3
Staple 0.526 0.453 13.9 0.445 15.3 0.388 26.2 0.372 29.1 0.357 32.1
CNN-SVM 0.516 0.439 14.9 0.432 16.1 0.390 24.4 0.375 27.3 0.352 31.8
LCT 0.514 0.437 15.0 0.408 20.7 0.382 25.7 0.365 28.8 0.339 34.0
SAMF 0.488 0.409 16.2 0.400 18.2 0.357 26.9 0.335 31.2 0.320 34.4
MEEM 0.485 0.414 14.6 0.391 19.3 0.369 23.9 0.360 25.8 0.339 30.1
DSST 0.466 0.385 17.4 0.351 24.6 0.335 28.1 0.309 33.6 0.299 37.8
KCF 0.420 0.352 16.2 0.336 19.9 0.303 27.9 0.286 31.9 0.268 36.2

5 Conclusion and Future Work

Visual noises in images are unwanted and undesirable aberrations, which we always try to get
rid of or reduce. In digital images, noises appear as random spots on a bright surface, and they
can substantially reduce the quality of these images. Image noises can occur in different ways
and by various mechanisms such as overexposure, sudden jerking or shaking of camera, changes
of brightness, magnetic fields, improper focusing, and environmental conditions like fog, rain,
snow, dust, etc. Noises have negative effects on the performance and precision of computer vision
systems such as object trackers. Separately dealing with each of these challenges is an easy task,
but it is much more difficult to manage them collectively, which is practically more important. In
this paper, a novel method was presented for preserving the performance and accuracy of object
trackers against noisy data. In this technique, the tracker model is only trained by a combination
of standard training data and their style transfer. To validate the presented approach, an object
tracker was chosen from the commonly used trackers available, and the proposed technique was
applied to it. This tracker was tested on a customized benchmark containing 15 types of noises at
five different noise intensity levels. The obtained results show an increase in the proposed model’s
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accuracy and robustness against different noises than the other considered object trackers. In
future work, we intend to apply the Deep Dream technique on our custom training set and train
the object tracker with the combination of this dataset and its style transfer. We also intend to
test it on both single-object and multi-object trackers. It is worthy of mentioning that this method
can be used as a kind of preprocessing block for maintaining robustness in any object detections
or computer vision tasks.
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