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Abstract:Wireless Sensor Network (WSN) forms an essential part of IoT. It is
embedded in the target environment to observe the physical parameters based
on the type of application. Sensor nodes in WSN are constrained by different
features such as memory, bandwidth, energy, and its processing capabilities. In
WSN, data transmission process consumes the maximum amount of energy
than sensing and processing of the sensors. So, diverse clustering and data
aggregation techniques are designed to achieve excellent energy efficiency in
WSN. In this view, the current research article presents a novel Type II Fuzzy
Logic-based Cluster Head selection with Low Complexity Data Aggrega-
tion (T2FLCH-LCDA) technique for WSN. The presented model involves
a two-stage process such as clustering and data aggregation. Initially, three
input parameters such as residual energy, distance to Base Station (BS), and
node centrality are used in T2FLCH technique for CH selection and cluster
construction. Besides, the LCDA technique which follows Dictionary Based
Encoding (DBE) process is used to perform the data aggregation at CHs.
Finally, the aggregated data is transmitted to the BS where it achieves energy
efficiency. The experimental validation of the T2FLCH-LCDA technique was
executed under three different scenarios based on the position of BS. The
experimental results revealed that the T2FLCH-LCDA technique achieved
maximum energy efficiency, lifetime, Compression Ratio (CR), and power
saving than the compared methods.
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1 Introduction

Wireless Sensor Networks (WSN), a kind of wireless network, are composed of several
isolated and small sensors placed in a target field. These sensors interact with one another
through wireless connections [1]. Sensor is nothing but an inexpensive device termed as mote/node
which performs with restricted features based on energy assets and calculation ability. The recent
developments in wireless communication technology and microelectronics expanded the application
of this technique through several WSN applications. There is a drastic growth experienced in
WSN applications in the recent years [2]. WSNs are widely applied in agriculture, industries,
environment, defense, healthcare and smart city environment. Some of the instances where WSN
is applied include smart grids [3] and health care [4]. The major goal of WSN sensors is to observe
few physical parameters in their respective platforms and transmit the values to base station that
collects the data for further processing. The last device in WSN is Base Station (BS) sink or
gateway.

Base Station (BS) is generally linked to power grid and can perform complex calculations.
To be accurate, the power assets in sensors are restricted to WSN due to which it ensures the
proper functioning of the network. However, it collects all the necessary data and transmits the
same to BS. Thus, the most common problem of WSN is its lifetime. So efforts are taken to
raise the lifetime of network to avoid the battery of nodes from getting wasted, while attaining
unwanted processes. Clustering is one of the most beneficial methods to increase the lifetime of
networks, while conventional routing is a better candidate for huge networks. Among a bunch
of nodes, a few of them are selected as Cluster Heads (CH) [5]. CHs collect the information
from related nodes which are otherwise cited as ‘contributing nodes’. The nodes that transmit
their measurements to CH are generally present nearby the CH. Later, all the CHs aggregate the
data from its sets and transmits the data to BS. This method prevents every node from getting
exhausted. This is because the transmission does not occurs directly to BS as this process reduces
their battery lifetime quickly, due to nonlinear dependency of the power loss with distance.

WSN consumes less energy for calculation than data transmission. Instead of transferring
the sensed data to sink node separately every time, the data is initially gathered and combined
by aggregate functions like avg( ), sum( ), and so on. Then, it is sent to sink node where several
energies can be stored. The efficiency of the transmission between nodes is decided based on
data aggregate method. Data aggregation is an essential process to reduce the consumption of
energy and store the constrained assets. An efficient data aggregation method can improve energy
effectiveness and lifetime of the network [6].

The current research article presents a novel Type-II fuzzy Logic-Based Cluster Head selection
with Low Complexity Data Aggregation (T2FLCH-LCDA) technique for WSN. The presented
model includes a two-stage process such as clustering and data aggregation. At first, three input
parameters namely, Residual Energy (RE), distance to base station (DBS), and node centrality
(NC) are used for CH selection and cluster construction in T2FLCH technique. In addition,
the LCDA technique encompasses a Dictionary Based Encoding (DBE) process to achieve data
aggregation at the CHs. At last, the aggregated data is transmitted to BS where it achieves the
energy efficiency. The proposed T2FLCH-LCDA technique was simulated under three dissimilar
scenarios based on the position of BS and the results are present in upcoming sections.
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2 Literature Review

Clustering process can be executed through Artificial Intelligence (AI). Mainly, Fuzzy Rule
Based Systems (FRBS) emphasize the clustering process as an appropriate method to decide the
nodes that may act as the CH. Such system is applied in different fields to find the right candidate,
whenever there is a need. For clustering, Moorthi et al. [7] defined a particle optimization method
depending on LEACH protocol. Agrawal et al. [8] utilized an FL Type-1 distributed method with
two outputs. In this method, the initial outcomes determine the sent radius of the transmitted
message whereas the next one decides whether a node would become a CH or not. Cluster head
Election using FL (CHEF) is one of the primary centralized techniques which utilizes the expert
system [9]. The BS implements a FL Type-1 process to select the node that acts as CH in every
event. In Zhang et al. [10], the BS chooses the optimum node depending upon fuzzy type-2
method.

In Heinzelman et al. [11], BS obtains the data about location and energy of the nodes. Later,
the base station follows simulated annealing method to decide the node that can organize itself
as a CH. Thangaramya et al. [12] defined a centralized technique which followed an extremely
complicated method. Particularly, Convolutional Neural Network (CNN) was used to determine
the optimum CH. Shivappa et al. [13] introduced a centralized method in which the BS utilizes
AI as FCM to define the optimum position center for all the clusters. Merabtine et al. [14]
demonstrated a centralized technique in which PSO was utilized for selecting the optimum CH.
Abidoye et al. [15] emphasized the importance of IoT in WSN. This energy efficient method
was proposed for allowing a service-oriented application in IoT-enabled WSN field under two
phases. In initial phase, clustering-based method is utilized to serve the application whereas in the
subsequent phase, an energy aware method was implemented. These methods were predominantly
better though it remained insufficient for IoT networks. Further, their efficiency was poor in case
of static networks. Li et al. [16] presented a comprehensive research on IoT networks in which
the researchers introduced Analytical Hierarchy Procedure (AHP) and fuzzy-based energy manage-
ment system for the organization of industrial tools. In Kasana et al. [17], fuzzy-based vehicular
physical methods were investigated upon Internet of Vehicles (IoV) utilizing fuzzy architecture
with Markov chain in order to optimize the location-oriented channel access delay.

Hu et al. [18] proposed an additional feature of IoV that allows transmission to occur at the
edge using FL. Clustering Head or gateways were selected with the help of few parameters such
as antenna height, fuzzy variable velocity, and vehicle neighboring density. Kaiwartya et al. [19]
proposed a genetic virtualization method as a technique to overcome the torrent delay and
minimize the energy consumption in IoT-allowed sensor networks. Kaiwartya et al. [20] presented
a method which was utilized for appropriate placement of nodes to connect and the method was
used for agricultural purposes. There are two techniques followed to place the nodes depending
on seven metrics which calculate the quality measurement of sensor nodes. Delgado et al. [21]
introduced a distributed method to create a dynamic cluster. However, it is rarely supported by
the BS. Particularly, the BS sends three messages in network lifetime to reconfigure the skipped
value of network.

3 The Proposed T2FLCH-LCDA Technique

The workflow involved in the proposed T2FLCH-LCDA technique is shown in Fig. 1.
According to the figure, the nodes are randomly deployed in target region. Then, the initialization
of nodes occurs after which CH selection process is executed by following T2FLCH technique.
Once the CHs are selected, the nodes nearby the CHs join the CHs and form clusters. Then,



804 CMC, 2022, vol.70, no.1

the CM transmits the data to CH which then performs data aggregation using LCDA technique.
Finally, the aggregated data is transmitted to the BS.

Figure 1: The working process of T2FLCH-LCDA model

3.1 System Model
Assume a network of N nodes that are randomly deployed in the target area to sense the

physical parameters in environment. Here, the clustering process occurs according to T2FLCH
technique. Every cluster has only one CH that receives the data from its respective CMs. The
nodes are static and homogeneous in nature i.e., possess identical initial energy and are able to
sense the region, process the sensed data, and transmit it. The radio links present among the
nodes are symmetric in nature. This denotes that the node necessitates an identical amount of
energy to transmit data in all the directions [22]. BS is installed at three possible locations in
the target field. The sensors are able to modify the transmission power based on the distance
between the recipient nodes. Packet size is deemed to be m bits. The entire energy spent during
the transmission of a packet of m bits over l meter distance between two nodes can be derived
using the following Eq. (1):

ETNE (m, l)=
{
m ∗Eelect+m ∗ εfsp ∗ l2 if l< lo
m ∗Eelect+m ∗ εmpf ∗ l4 if l ≥ lo

(1)

The energy spent on receiving a packet of m bits from the transmitted node is given herewith.

ERCE (m)=m ∗Eelect (2)

where Eelect signifies the data with regards to energy dissipation that can be influenced by different
factors such as bit rate, modulation, etc. In addition, εfsp and εmpf represent the energy utilization
factors in free space path and multipath fading correspondingly. If two sensors are detached
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from the limit of threshold value lo
(
lo=

√Efsp/Emp
)
, it utilizes the free space model. In other

terms, multipath fading channel is applied to determine the amount of energy utilized during
transmission.

3.2 T2FLCH Based Clustering Technique
The presented T2FLCH-based clustering technique involves three input parameters to select

the CHs in WSN. Residual Energy (RE), Node Centrality (NC), and DBS are the input variables
in the proposed T2FLCH-LCDA model. Residual Energy is an essential feature to signify a node
as either CH or not, since CH nodes use further energy to become a member node. CH nodes
gather information from the members, collates the gathered information, and transmits it to BS.
In Node Centrality (NC), the total number of one-hop neighboring nodes in Rc of the node is
named after Node Degree (ND). NC is a feature that defines the node when it is placed in the
middle of its neighbors. A node has higher probabilities of getting chosen as a CH under less
NC value.

NC=
√∑ND

i=1 dist2i /ND

Ntk-Dimension
(3)

In Eq. (3), ND relates to the counting of neighbors in transmission radius Rc of node and
Ntk-Dimension value is ‘M’ in M ×M field region and dist2i implies the distance through ith
adjacent nodes. The amount of energy, utilized in the transmission of data increases, when the
distance between transmitter as well as receiver nodes increases [23]. From energy conservation
perspective, the distance between CH as well as BS is to be minimized.

Distance to BS= di
α ·Ntk-Dimension

(4)

α = dmax

Ntk-Dimension
.

where di refers to the distance between nodes i and the BS, dmax represents the maximal distance
between a node in the network and BS whereas α implies the network dimensional particular
constant. T2FLCH-LCDA takes 1 output variable chance. It can be a crisp output value depends
upon the fact that the CH ability of node gets resolved. The superior chance value signifies
the superior chance of a node being chosen as a CH. Type-2 Mamdani system is employed in
T2FLCH technique. It is composed of two components namely Fuzzifier, Rules, Inference Engine
and Output (Type reducer and Defuzzifier). The general block diagram of T2FLCH technique is
shown in Fig. 2 which has three input parameters that decides whether a node can become a CH
or not.

Figure 2: The structure of T2FLCH model
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3.2.1 Fuzzification Process
The process of fuzzification is to map every individual crisp input value to a fuzzy set.

In T2FLCH technique, the fuzzifier element performs the mapping of crisp input vector x′ =
(x
′
1, . . . ,x

′
p) to Type 2 fuzzy set Ãx′ . To simplify the computation, singleton fuzzification model

is employed, i.e., for ∀i = 1, . . . ,p, the membership function of the fuzzified input set X̃i is
represented herewith.

μX̃i
(xi)=

{
1/1 xi = x0i
1/0 xi �= x0i

(5)

and μÃx′
(x) = �pi=1μX̃i

(xi), where x = (x1, . . . , xp), and � signify the juncture function of type-2

fuzzy sets. The three input values come under a uniform range of [0, 1]. To minimize the com-
putation complexity, three inputs are partitioned into three levels namely, low, medium, and high.
Every secondary Membership Function (MFs) is engaged to an interval set, whereas the primary
membership remains triangular or trapezoidal [24]. The output variable denotes the chance of
becoming CH which can be partitioned into six stages such as very weak, weak, little weak, lower
medium, medium and higher medium [25].

3.2.2 Fuzzy Rules
The proposed T2FLCH technique generates a set of 27 IF-THEN rules. The rules are

generally represented as given herewith.

Rl : IF x1 is F̃
l
1 and . . . and xn is F̃ ln THEN y1 is G̃

l
1 and y2 is G̃

l
2 (6)

where F̃ li (i = 1, 2, 3) denotes the type-2 antecedent fuzzy set, G̃l
j (j = 1, 2) represents the type-2

consequent fuzzy set. The node with maximum energy, minimum DBS, and high node degrees
have the likelihood of becoming CH.

3.2.3 Inference and Output Processing
This technique utilizes the Center Of Sets (COS) type-reducer that integrates the task of type-

reducing and inference. Particularly, for jth (j = 1, 2) type-2 fuzzy output set, COS type-reducer
substitutes all type-2 subsequent set, G̃l

j , with its centroid, CG̃lj
(which is a type-1 set by itself)

and detects an average weight of this centroid. The weight related to lth (l = 1, . . . , 27) centroid
is the degree of firing equivalent to lth rule i.e., the firing interval [f l, f−l(x)], where the right

endpoint f−l(x) and left endpoint f l(x) are calculated by upper membership functions μ
F̃ li

(xi)

and low membership function μ
F̃ li

(xi) of antecedent type-2 fuzzy set F̃ li , i = 1, . . . ,p, which are

correspondingly given herewith ∀x= (x1, . . . ,xp),

f l (x)=μ
F̃ l1

(x1) ∗ · · · ∗μF̃ lp

(
xp

)
(7)

f−l (x)=μF̃ l1
(x1) ∗ · · · ∗μF̃ lp

(
xp

)
.
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The jth (j= 1, 2) extend output Yj
cos(x) of T2MFLS is given as:

Yj
cos (x)= [yjl (x) ,yjr (x)]=

∫
ylj∈

[
yljl ,y

l
jr

] · · ·
∫
yMj ∈

[
yMjl ,y

M
jr

]
∫
f l∈

[
f l ,f−l

] · · ·
∫
f M∈

[
f M ,f−M

] 1
/∑M

i=1 f ly
l
j∑M

i=1 f l
(8)

where Yj
cos (x) (j = 1, 2) represents the interval type-1 set defined by two endpoints, yjr(x), and

yjl(x) and
[
yljl,y

l
jr

]
(l = 1, . . . , 27) corresponding to the centroid of type-2 interval subsequent set

G̃l
j . Furthermore, it neglects x in firing interval

[
f l(x), f−l(x)

]
for simple indication. Lastly, it

defuzzifies the jth extended output Yj
cos (x) by an average of yjr(x) and yjl(x), the jth defuzzified

output of this interval T2FLCH method is as given below.

yj (x)=
yjl (x)+ yjr (x)

2
(9)

3.2.4 Cluster Head Selection Algorithm
Next to T2FLCH process, all alive nodes have their probability, si. Probability denotes that

these nodes can be a candidate CH. The node with high probability is defined as the CH.
When a node becomes a CH, then the nodes with competitive radius further cannot be chosen
as CH. With the mortality of nodes, the number of nodes that are alive keeps on varying.
While the optimum cluster number also varies accordingly. In this method, it selects kopt CH in
sequence, where kopt denotes the optimum cluster number for all rounds which is estimated as
given herewith.

kopt =
⌊
n ∗P ∗

(
n−dead

n

)
+ 0.5

⌋
(10)

where n represents the node counts whereas the ‘dead’ indicates the number of energy-exhausted
nodes and P denotes the CH probability.

Algorithm 1: T2FLCH technique
if BS receive node details then

Determine the probability by T2FLCH technique
node i← not dead
ni·probability ← (ni·energy, ni·degree, ni·distance)

end if
[Pro]= arranget([s·probability], ‘descending’)
cluster= 1; i= 1;
while cluster <= kopt+ 1 do

Pro(i)← assign CH
cluster= cluster+ 1;
if d

(
Pro (i) , sj

)
< sPro(i)·radius then

sj←no CH
end if
i= i+ 1;

end while
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3.3 DBE Based Data Aggregation Technique
After the clusters are constructed, every CH executes the DBE technique to aggregate the

data received from its CMs. The proposed DBE model is a bit-oriented, dictionary-based single
character encoding model that utilizes Deterministic Code Allocation Dictionary (DBED) for
codeword allocation to the input data. It allocates a predefined length codeword for all the
characters in input data using DBED. A peculiar characteristic of DBE model is its utilization of
4-bit codeword to all possible characters that exist in the input data. When considering an input
data of length N, the DBE technique desires the lowest number of Cbits for storing the aggregated
data which is determined as given below.

Cbits=
N∑
i=1

NDBE (i) (11)

where NDBE denotes the bit count that exists in codewords. In most of the cases, the bit count
required for storing a character is equivalent to 4. Then, the bit count which is required on an
average for storing an individual character in DBE model is given below.

DCAch_av =
Cbits
N
≈ 4 (12)

Primarily, the DBE model keeps DBED which holds a set of codewords for 12 possible
characters (0–9 numerals, ‘,’ and ‘*’) that exist in WSN. It significantly assists in the reduction
of complexity of the presented technique. Besides, astreik (*) is employed as a delimiting element
and is employed in the detection of endpoint of every sample. DBED encompasses a static 4-bit
codeword for 12 characters which eliminates the necessity of delimiting elements for characters.
DBED is kept at fixed value at both transmitter and receiver sides apriori. Upon receiving the
input data, the DBE model utilizes DBED and allots respective codewords. Next to the assignment
of codewords, merging process occurs to generate a compressed file. At last, the resulting optimum
codewords of the encoded characters undergo concatenation to generate the compressed file which
includes only 50% of its actual size. This is also communicated to the receiving end. Fig. 3
illustrates the existing codewords in DBED.

Figure 3: The predefined codewords in DBED
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4 Performance Validation

This section validates the efficiency of the proposed T2FLCH-LCDA model against existing
methods. The results were examined under three distinct scenarios and on the basis of location
of the BS. BS is located at the center of WSN in first scenario whereas it is exterior to WSN
in the second scenario, though not very far from the monitored area. In third scenario, the BS
is positioned far away from the WSN. In order to detect the aggregation performance of LCDA
technique, a set of simulations was performed on benchmark WSN dataset.

4.1 Energy Efficiency Analysis
Fig. 4 depicts the results from energy consumption analysis of the proposed T2FLCH-LCDA

model against existing methods under scenario 1. The figure demonstrates that the LEACH model
consumed the maximum amount of energy than other methods. Followed by, the EEUC model
consumed a slightly low energy over LEACH, but not lower than other methods. Next to
that, PEGASIS model accomplished a moderate energy consumption per round which remained
uniform over several rounds of execution. Then, CRT1FLACO and CRT2FLACO techniques
demonstrated closer and competitive energy consumption outcomes. But the presented T2FLCH-
LCDA technique consumed the least amount of energy, compared to existing techniques, over
several rounds of execution.

Figure 4: The energy consumption analysis of T2FLCH-LCDA model under scenario 1

Fig. 5 illustrates the results attained from energy consumption analysis of T2FLCH-LCDA
model against existing methods under scenario 2. The figure showcases that the LEACH model
consumed the maximum amount of energy compared to all other methods. Followed by, EEUC
model consumed somewhat lesser energy than LEACH, but not lower than other methods. Next
to that, PEGASIS model consumed a moderate amount of energy per round which remained
uniform over several rounds of execution. Afterward, CRT1FLACO and CRT2FLACO models
demonstrated closer and competitive energy consumption outcomes. But the presented T2FLCH-
LCDA approach consumed the least amount of energy, compared to existing methods, over
several rounds of execution.
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Figure 5: The energy consumption analysis of T2FLCH-LCDA model under scenario 2

Fig. 6 demonstrates the results accomplished from energy consumption analysis of T2FLCH-
LCDA technique against existing methods under scenario 3. The figure demonstrates that the
LEACH model consumed the maximum amount of energy compared to all other methods. Then,
EEUC model reduced its energy consumption over LEACH model, but not less than other
methods. Next to that, the PEGASIS method accomplished a uniform and moderate energy con-
sumption across several rounds of execution. Then, CRT1FLACO and CRT2FLACO approaches
demonstrated closer and competitive energy consumption outcomes. But the proposed T2FLCH-
LCDA technique exhibited the least energy consumption, compared to other models, over several
rounds of execution.

Figure 6: The energy consumption analysis of T2FLCH-LCDA model under scenario 3

4.2 Network Lifetime Analysis
Tab. 1 shows the network lifetime analysis results for the proposed T2FLCH-LCDA model in

terms of FND, HND, and LND.
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Table 1: The network lifetime analysis results for the proposed T2FLCH-LCDA model against
existing models with respect to FND, HND and LND

Scenario-1

Methods FND HND LND

LEACH 689 813 881
EEUC 696 879 930
PEGASIS 263 986 1139
CRT1FLACO 1004 1027 1056
CRT2FLACO 1012 1074 1133
T2FLCH-LCDA 1026 1092 1157

Scenario-2

Methods FND HND LND

LEACH 277 659 920
EEUC 739 845 939
PEGASIS 254 881 1070
CRT1FLACO 1000 1023 1036
CRT2FLACO 1028 1099 1117
T2FLCH-LCDA 1059 1143 1139

Scenario-3

Methods FND HND LND

LEACH 61 173 402
EEUC 84 332 499
PEGASIS 208 638 814
CRT1FLACO 660 764 807
CRT2FLACO 702 795 849
T2FLCH-LCDA 752 843 880

Fig. 7 portrays the results from network lifetime analysis of T2FLCH-LCDA model under
scenario 1. From the figure, it can be understood that the LEACH model offered ineffective
outcomes with least FND, HND, and LND values from 689, 813, and 881 rounds respectively.
Followed by, EEUC technique accomplished a slightly higher outcome with FND, HND, and
LND values from 696, 879, and 930 rounds respectively. Next to that, the PEGASIS model show-
cased a certainly improved lifetime with FND, HND, and LND values from 263, 986, and 1139
rounds respectively. Meanwhile, the CRT1FLACO model accomplished a moderate lifetime with
its FND, HND, and LND values from 1004, 1027, and 1056 rounds respectively. Furthermore,
the CRT2FLACO model achieve a reasonable lifetime with FND, HND, and LND values from
1012, 1074, and 1133 rounds respectively. However, the T2FLCH-LCDA model accomplished
the maximum lifetime with FND, HND, and LND values from 1026, 1092, and 1157 rounds
respectively.
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Figure 7: The network lifetime analysis of T2FLCH-LCDA model on scenario 1

Fig. 8 examines the network lifetime analysis of the proposed T2FLCH-LCDA model under
scenario 2. From the figure, it can be understood that the LEACH method offered ineffective
results with minimum FND, HND, and LND values from 277, 659, and 920 rounds respectively.
Then, the EEUC technique accomplished a slightly higher outcome with its FND, HND, and
LND values from 739, 845, and 939 rounds correspondingly. Then, the PEGASIS model show-
cased a certainly higher lifetime with FND, HND, and LND values from 254, 881, and 1070
rounds correspondingly. Followed by, CRT1FLACO model accomplished a moderate lifetime with
FND, HND, and LND values from 1000, 1023, and 1036 rounds respectively. Furthermore, the
CRT2FLACO model attained a reasonable lifetime with FND, HND, and LND values from
1028, 1099, and 1117 rounds respectively. However, the proposed T2FLCH-LCDA approach pro-
duced a superior lifetime with FND, HND, and LND values from 1059, 1143, and 1139 rounds
correspondingly.

Figure 8: The network lifetime analysis of T2FLCH-LCDA model on scenario 2

Fig. 9 inspects the network lifetime analysis results of the proposed T2FLCH-LCDA model
under scenario 3. From the figure, it can be inferred that the LEACH model offered an ineffective
outcome with the least FND, HND, and LND values from 61, 173, and 402 rounds respectively.
In line with this, EEUC technique somewhat accomplished a higher result with FND, HND, and
LND values from 84, 332, and 499 rounds respectively. The PEGASIS model, on the other hand,
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showcased a certainly improved lifetime with FND, HND, and LND values from 208, 638, and
814 rounds respectively. Meanwhile, the CRT1FLACO technique accomplished a moderate lifetime
with FND, HND, and LND values from 660, 764, and 807 rounds correspondingly. Furthermore,
the CRT2FLACO model attained a reasonable lifetime with FND, HND, and LND values from
702, 795, and 849 rounds respectively. However, the proposed T2FLCH-LCDA model produced a
higher lifetime with FND, HND, and LND values from 752, 843, and 880 rounds correspondingly.

Figure 9: The network lifetime analysis of T2FLCH-LCDA model on scenario 3

4.3 Compression Ratio Analysis
Tab. 2 illustrates the results for compressed size and CR analysis of LCDA model on the

applied WSN datasets. From the table, it is apparent that the LCDA model exhibited the optimal
performance in terms of compressed size and CR. For instance, for test LU_84 Temp dataset,
the LCDA model compressed the file size of 3135824 bits into 398574 bits with a CR of 0.1271.
In case of test FN_101 Temp dataset, the LCDA model compressed the file size of 680368 bits
into 126436 bits with a CR of 0.1858. In case of test LG_20 Temp dataset, the LCDA method
compressed the file size of 1043032 bits into 218494 bits with a CR of 0.2095. In line with this,
test LU_84 RH dataset was compressed by LCDA approach from a file size of 4096168 bits into
732134 bits with a CR of 0.1787. Meantime, on the test FN_101 RH dataset, the LCDA approach
compressed the file size of 696704 bits into 154389 bits with a CR of 0.2216. At last, test LG_20
RH dataset file size was compressed by LCDA technique from 1358872 bits into 329701 bits with
a CR of 0.2426.

Table 2: The results of the LCDA analysis on various WSN datasets in terms of compressed size
and CR

Dataset Ori. size (Bits) Comp. size (Bits) Comp. ratio

LU_84 Temp 3135824 398574 0.1271
FN_101 Temp 680368 126436 0.1858
LG_20 Temp 1043032 218494 0.2095
LU_84 RH 4096168 732134 0.1787
FN_101 RH 696704 154389 0.2216
LG_20 RH 1358872 329701 0.2426
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4.4 Power Saving Analysis
The results of the detailed power saving analysis of LCDA model with existing data

aggregation techniques are shown in Fig. 10.

Figure 10: The power saving analysis of LCDA model

From the obtained values, it is inferred that the LCDA model showcased superior power sav-
ing performance over other methods. For test LU 84 Temp dataset, LCDA technique achieved the
maximum power saving of 92.74%, whereas the LCE, S-LZW, ALDC, and FELACS techniques
resulted in minimum power saving such as 66.62%, 41.69%, 70.07%, and 70.61% respectively. In
case of test FN 101 Temp dataset, a high power saving of 89.38% was accomplished by the
proposed LCDA model, whereas the LCE, S-LZW, ALDC, and FELACS techniques saved lesser
energy such as 60.41%, 20.38%, 62.55%, and 62.90% correspondingly. Besides, for the test LG
20 Temp dataset, a maximum power saving of 88.03% was attained by the proposed LCDA
technique, whereas the LCE, S-LZW, ALDC, and FELACS models achieved lesser power saving
such as 47.16%, 10.88%, 50.74%, and 51.30% respectively. Further, for test LU 84 RH dataset,
a maximal power saving of 88.08% was accomplished by LCDA technique, whereas the LCE,
S-LZW, ALDC, and FELACS methodologies accomplished a minimal power saving of 49.06%,
8.323%, 54.05%, and 54.83% respectively.

Simultaneously, on test FN 101 RH dataset, a maximum power saving of 85.23% was attained
by the proposed LCDA technique, whereas the LCE, S-LZW, ALDC, and FELACS techniques
saved less power such as 49.46%, 15.04%, 55.11%, and 56.27% correspondingly. For test LG 20
RH dataset, a superior power saving of 83.82% was reached by LCDA approach, whereas the
LCE, S-LZW, ALDC, and FELACS techniques accomplished low power saving such as 30.81%,
12.57%, 37.16%, and 38.47% correspondingly. The experimental values inferred that the T2FLCH-
LCDA technique achieved maximum energy efficiency, lifetime, CR, and power saving over the
compared methods. The proposed model improves energy efficiency than the methods compared
due to the inclusion of effective clustering technique and data aggregation approach.

5 Conclusion

The current research article presented a novel T2FLCH-LCDA technique for WSN. Primarily,
the nodes are randomly used in the target region. Then, the initialization of the nodes occurs
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after which CH selection process is executed using T2FLCH technique. T2FLCH technique has
three input parameters namely, RE, DBS, and NC which are used in CH selection and cluster
construction processes. Once the CHs are selected, the nearby nodes join the CHs and form
clusters. Then, the CM transmits the data to CH which performs the data aggregation process
using LCDA technique. This technique is loaded with DBE process to perform data aggregation
at CHs. Finally, the aggregated data is passed on to BS. The T2FLCH-LCDA technique was
simulated under three dissimilar scenarios based on the position of BS. The experimental values
inferred that the T2FLCH-LCDA technique achieved maximum energy efficiency, lifetime, CR,
and power saving over the compared methods.
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