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Abstract: This paper addresses improvements in fractional order (FO) system
performance. Although the classical proportional–integral–derivative (PID)-
like fuzzy controller can provide adequate results for both transient and
steady-state responses in both linear and nonlinear systems, the FOPID fuzzy
controller has been proven to provide better results. This high performance
was obtained thanks to the combinative benefits of FO and fuzzy-logic tech-
niques. This paper describes how the optimal gains and FO parameters of
the FOPID controller were obtained by the use of a modern optimizer, social
spider optimization, in order to improve the response of fractional dynamical
systems. This group of systems had usually produced multimodal error sur-
faces/functions that occasionally had many variant local minima. The integral
time of absolute error (ITAE) used in this study was the error function.
The results showed that the strategy adopted produced superior performance
regarding the lowest ITAE value. It reached a value of 88.22 while the best
value obtained in previous work was 98.87. A further comparison between
the current work and previous studies concerning transient-analysis factors of
the model’s response showed that the strategy proposed was the only one that
was able to produce fast rise time, low-percentage overshoot, and very small
steady-state error. However, the other strategies were good for one factor, but
not for the others.

Keywords: Fuzzy-logic control; fractional-order systems; parameter estimation;
optimization

1 Introduction

Fuzzy-logic control (FLC), established by the use of integer orders, has been used in several
engineering applications, including photovoltaic [1], fuel-cell [2], thermoelectric generation [3],
and biodiesel [4] systems. In engineering applications, numerous dynamic systems can be con-
trolled more precisely by the use of fractional orders (FOs). However, recently the use of FLC
systems with FOs instead of integer orders has produced a significant improvement in system
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performance [5]. FLC systems provide an alternative approach to design controllers by using
empirical data. These data are generated from a human operator who directly controls the
procedure. The operator identifies a set of rules for controlling the process. These rules are then
included in the fuzzy controller to mimic the decision-making procedure of the operator. Frac-
tional FLC is the result of integrating the traditional FLC and FO techniques. This integration
exhibits improved performance for a wide range of dynamic systems compared to conventional
FLC.

Control systems based on fractional calculus have recently been drawing growing attention in
research, due to their extra flexibility and improved design performance [6]. Fractional calculus
has been used in such engineering applications as signal processing, process control [7], nuclear
reactor control [8], and chaos synchronization [9]. Fractional calculus has also been integrated
into different controllers to improve their performance. The FO proportional–integral–derivative
(FOPID) controller is a generalized controller of conventional PID. It offers superior response and
more stability compared to conventional PID [10] yet determining the parameters of FOPID is a
dilemma. Five parameters need to be identified, instead of only three in the case of conventional
PID. Consequently, several tuning approaches have recently been established to determine the
parameters of FOPID [10].

FOPID has been demonstrated to be an effective controller in several complex nonlinear
systems [11]. Li et al. [12] designed a fuzzy-PID controller for a nonlinear hydraulic turbine–
governing system. Mohanty et al. [13] conducted an analytical study of a FOPID controller with
a derivative filter for automatic generation control in a multiarea power system. Xu et al. [14]
studied an adaptive controller based on FLC for a pumped storage unit. Arya et al. [15] proposed
a FOPID controller for automatic generation control of multizone, multisource power-generation
systems. These studies have proven that the FOPID controller shows better performance and
robustness.

The current research aimed to determine the optimal gains and FO parameters of FOPID
when using social spider optimization (SSO) to improve the response of fractional dynamic
systems. This type of system usually produces a multimodal error surface that occasionally has
many local minima. During the optimization process, the gains and FO parameters of PID are
used as the decision variables, whereas the integral time of the absolute error (ITAE) is assigned
as the objective function. The results are compared with genetic algorithms (GAs), particle-swarm
optimization (PSO), harmony search (HS), gravitational search algorithms (GSA), and cuckoo
search (CS).

This paper is organized as follows. In Section 2, the concept of a FOPID-like fuzzy controller
is introduced. In Section 3, a brief description of the SSO algorithm is presented. Section 4
presents the discussion of the results obtained and comparative testing. Finally, in Section 5, the
main findings are outlined.

2 FOPID-Like Fuzzy Controller

In the classical PID controller, the controlling signal (control action) is calculated according
to proportion of error, integral of error, and derivative of error. The constants of proportionality
are the controller’s gains. They are usually named KP, KI , and KD for proportional, integral, and
derivative gains, respectively. The control action and transfer function of the PID controller as a
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function of the system’s error are shown in Eqs. (1) and (2), respectively:

u(t)=KPe(t)+KI

∫ t

0
e(t)dt+KD

de(t)
dt

(1)

U(s)
E(s)

=KP+ KI
s

+KDs (2)

FOPID is an example of the use of fractional calculus in control systems. The modification
in the controller’s transfer function includes the derivative and integral terms by changing the
Laplace complex frequency, s, to accept FOs. Therefore, FOPID becomes:

U(s)
E(s)

=KP+ KI

sλ
+KDsα (3)

where λ and α are two positive real numbers.

Since the concept’s introduction in 1965, FL has become an effective technique in industrial
applications. Accordingly, FL added a new perspective to the control theory with the aim of
formulating the relationship between input and output variables. Previously, this relationship had
been represented mathematically. However, in the sense of FL, the relationship between inputs
and outputs can be represented by a set of “if–then” rules. Every rule signifies a portion in the
input–output space. Therefore, signal processing in the fuzzy controller passes through the three
processing operations like a normal fuzzy system. In other words, every input should be fuzzified
(converted from crisp to fuzzy) through its associated fuzzy membership functions (MFs). These
fuzzy inputs are passed to the rules in the knowledge base in the inference engine to produce the
rules’ fuzzy outputs. The overall fuzzy output is obtained by the aggregation (union) of the fired
fuzzy rules. Finally, the defuzzification (conversion from fuzzy to crisp) operation takes place to
come up with the final output value. In control systems, a Mamdani-type fuzzy rule is preferable
for most systems:

IF error is NS and change-of-error is PS, THEN control action is Z

where NS is negative small, PS positive small, and Z zero MFs.

Two crucial parameters have to be set properly in the design of a fuzzy controller. The first
is the controller’s inputs and their associated MFs. The second is the fuzzy rule–based list. In
classical PID, the control-action value is based on information about the system’s error, integration
of error, and derivative of error. However, in fuzzy control, integration of error cannot produce
sufficient information to take any action based on its value. Therefore, information related to
the integration term can be obtained by considering the controller’s input as a derivative term,
then integrating the controller’s output. In this respect, two configurations can be adopted to
implement a PID-like fuzzy controller. The first is to build both a PD and a PI fuzzy controller,
and sum their outputs. The following is an example of two fuzzy rules for PD and PI controllers,
respectively:

IF error is NS and change in error PS, THEN control action is Z

IF error is NS and change in error PS, THEN change in control action is Z

The PI-like fuzzy controller of the first configuration is shown in Fig. 1.

Fortunately, the same rule base can be used for both PD and PI controllers. The second
configuration of the PID-like fuzzy controller is to use a combination of PD and PI controllers,
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as shown in Fig. 2. It can be seen from the figure that the configuration is composed of a PD-
like fuzzy controller added to a classical integrator. The latter configuration is adopted in many
industrial processes.

Figure 1: PI-like fuzzy-controller closed-loop configuration
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Figure 2: FO PD + I fuzzy-controller configuration

In this study, the error (E) and change in error (� E) are considered the fuzzy controller
inputs. Each input is represented by seven MFs that cover the universe of discourse in the range
[−1, 1]. Usually, the rule base is built with the help of an expert who fully understands the
system’s behavior and the controller’s dynamics. PD-like fuzzy controller rules are listed in Tab. 1.
Linguistic variables of the MFs are N and P, denoting negative and positive, respectively, and B,
M, S, and Z, denoting big, medium, small, and zero, respectively.

Table 1: Rule base of the PD-like fuzzy controller

e � e

NB NM NS Z PS PM PB

NB NB NB NB NB NM NS Z
NM NB NB NB NM NS Z PS
NS NB NB NM NS Z PS PM
Z NB NM NS Z PS PM PB
PS NM NS Z PS PM PB PB
PM NS Z PS PM PB PB PB
PB Z PS PM PB PB PB PB

3 Optimal SSO-Based Parameters

In this work, SSO, a recent and efficient optimizer, was applied to obtain optimal gains
and optimal FOs for the controller. SSO simulates the cooperative behavior of spiders within
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a colony. It uses a population (S) of N candidate solutions, where every solution represents a
spider position, whereas the general web symbolizes the search space—X. During the optimization
process, every spider (i) maintains a weight (wi) based on its best solution:

wi = fitnessi−worst
best−worst

(4)

where fitnessi denotes the value of the cost function of the ith spider’s position. An important
feature of SSO is the exchange of information among spiders through the vibrations produced in
the communal web. This feature is modeled thus:

Vi, j =wje
d2i, j (5)

where wj denotes the spider weight and d2i, j the distance between spiders i and j.

The update process depends on the sex. For the female, these equations can be used:

f k+1
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
f ki +α.Vi, c.

(
Sc− f ki

)
+β.Vi,b.

(
Sb− f ki

)
+ δ.

(
r− 1

2

)
→ probability (PF)

f ki −α.Vi,c.
(
Sc− f ki

)
−β.Vi,b.

(
Sb− f ki

)
+ δ.

(
r− 1

2

)
→ probability (1−PF)

(6)

where α, β, δ, and r denote random values, K the iteration number, Vi,c the vibration transferred
by the closest individual (c), and Vi,b the vibration transferred by the best solution. For male
members, this update equation can be used:

mk+1
i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

mk
i +α.Vi,f .

(
Sf −mk

i

)
+ δ.

(
r− 1

2

)
→ if . . .mk

i ∈D

mk
i +α.

(∑
h∈NDm

k
h.wh∑

h∈NDwh

)
→ if . . .mk

i ∈ND
(7)

where Sf represents the nearest female element to the individual male and Vi,f the vibration trans-
ferred by the nearest female spider. More details about the algorithm’s mathematical modeling
and physical illustration can be found in Cuevas et al. [16].

The objective function is used as in Eq. (3), with a time range (T) of 3 s. The configuration
of the optimization process is shown in Fig. 3.

To optimally track the system’s input, the tracking error should be as minimal as possible.
Accordingly, the performance of a controller is best evaluated in terms of the error criterion. Most
optimization techniques use the objective function in terms of system error. However, the most
popular performance-assessment criteria are integral of absolute errors, integral square of errors,
mean-squared error, and ITAE. In this work, ITAE was selected as the objective function [16] for
a fair comparison with the results obtained by Cuevas et al. [5]. The formulae for the objective
function are:

J(x)=
∫ T

0
te(t)dt (8)

e (t)= r(t)− y(t) (9)
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where e(t), r(t), and y(t) are system error, unit-step reference value, and system output, respectively,
T system-response time, and x controlling-variable vector containing the controller gains KP, KI ,
KD, and KU , as well as the controller FOs—λ and α.

Figure 3: FOPID-like fuzzy controller–optimization process

Systems’ performances are usually compared by their behavior in the transient-response phase.
This can be done using quantitative markers. The most important markers of a system’s response
include rise time (tr), delay time (td ), steady-state time (ts), peak time (tp), percentage overshoot
(%OS), and steady-state error (Ess). Fig. 4 shows the step response of the second-order system on
the main performance indices. In this work, we adopted the most important markers: tr, %OS,
and Ess.

Figure 4: Transient-response specifications of second-order system

tr defines the time elapsed for the system’s output to go from 10% to 90% of its final value
and %OS is the percentage of the difference between output and input at the first peak, Mp, over
output at the steady state—y(∞):

%OS =
Mp− y(∞)

y(∞)
∗ 100 (10)
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Ess is the difference between the reference value and the final value of the system’s response.
For a unit-step response, it can be calculated as Ess = 1 – y(∞), where y(∞) is the steady-state
value of the system’s response.

4 Results and Discussion

The closed-loop system, comprising the FO system as the controlled process and the FOPID
fuzzy controller, was implemented using MatLab R2020b and its Simulink toolbox. The FO part
was implemented using the Fomcon toolbox. In this work, seven triangular MFs were selected
as the fuzzification functions for the inputs and the output, which resulted in 49 Mamdani-type
fuzzy rules. The output was defuzzified using center-of-gravity defuzzification method.

In this study, the system under consideration included a fractional dynamical system that
usually produces a multimodal error surface with many local minima. The transfer function of
the fractional system is presented in Eq. (11):

G= 1
s1.5+ 1

(11)

The configuration of the closed-loop model of the proposed FOPID fuzzy controller that
controls the fractional system is presented in Fig. 5.
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Figure 5: The closed-loop model of the proposed FOPID fuzzy controller

The results of the strategy proposed compared to previous work in the literature are presented
in Tab. 2. The table shows that adding a fractional integrator produced better performance with
regard to lowest ITAE value compared to other strategies.

Table 2: Comparison of results of strategy proposed and others previously proposed

Controller type Kp Kd Ki Ku α λ ITAE

GA PDα+ I 1.3329 0.6341 0.6130 5 0.4932 1 98.20
PSO PDα+ I 1.331 0 0.6937 5 5 1 311.66
HS PDα+ I 0.7867 0.8128 0.8271 3.6129 0.9319 1 804.16
GSA PDα+ I 1.0823 0.6463 0.2924 4.0152 0.5802 1 346.70
CS PDα+ I 1.2220 0.6590 0.6647 5 0.4232 1 105.47
SSO PDα+ I 1.3173 0.6560 0.5932 4.9797 0.5091 1 98.87
SSO PIλDα 1.4058 1.5646 1.7423 4.9928 0.5921 0.4854 88.22

Fig. 6 presents plots of the system’s response at the resulting optimal gains and FOs obtained
through the technique proposed, as well as responses obtained with previous techniques.
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Figure 6: Step response of the FOPID fuzzy controller vs. previous strategies

The comparison was extended to measure transient-response factors. This analysis included
calculation of system tr, %OS, and Ess. The resulting values of all factors for the strategy
proposed in comparison to the other strategies are shown in Tab. 3. FOPID provided the best
set of transient-response factors. It yielded fast tr, low %OS, and small Ess, the only strategy to
accomplish this. The findings of this study confirm that the combination of FL and fractional
calculus can provide a robust and efficient FOPID-like fuzzy controller that can improve the
performance of complex systems, such as FO ones.

Table 3: Transient-response factors of strategy proposed and others

Method Tr (ms) %OS |Ess|

GA 405.00 5.24 0.00
PSO 350.65 29.13 0.02
HS 1485.24 0.58 0.17
GSA 573.79 1.62 0.05
CS 383.46 7.92 0.00
SSO 421.67 4.02 0.00
SSO (FOPID) 368.06 2.36 0.01

5 Conclusion

This study describes the use of a FOPID-like fuzzy controller to enhance the performance
of FO systems. The properly set values of the controller played a vital role in the system’s
performance. The optimal parameters of the controller relative to its gains and the FOs were
obtained using SSO. The resulting gains and FOs produced the best (lowest) ITAE value: that
obtained using the strategy proposed exceeded the previous best in the literature by 10.77%.
Transient-response factors showed better performance in terms of fast tr, low %OS, and small Ess.



CMC, 2022, vol.70, no.1 179

Consequently, the findings of this study prove that compared to other controllers, the use of a
FOPID-like fuzzy controller can produce outstanding performance in linear or nonlinear systems.
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