
echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2022.019369

Article

Comparison of Missing Data Imputation Methods in Time Series Forecasting

Hyun Ahn1, Kyunghee Sun2 and Kwanghoon Pio Kim3,*

1Division of Software Convergence, Hanshin University, Gyeonggi, 18101, Korea
2Contents Convergence Software Research Institute, Kyonggi University, Gyeonggi, 16227, Korea
3Division of AI Computer Science and Engineering, Kyonggi University, Gyeonggi, 16227, Korea

*Corresponding Author: Kwanghoon Pio Kim. Email: kwang@kyonggi.ac.kr
Received: 11 April 2021; Accepted: 23 May 2021

Abstract: Time series forecasting has become an important aspect of data
analysis and has many real-world applications. However, undesirable missing
values are often encountered, which may adversely affect many forecasting
tasks. In this study,we evaluate and compare the effects of imputationmethods
for estimating missing values in a time series. Our approach does not include
a simulation to generate pseudo-missing data, but instead perform imputa-
tion on actual missing data and measure the performance of the forecasting
model created therefrom. In an experiment, therefore, several time series fore-
casting models are trained using different training datasets prepared using
each imputation method. Subsequently, the performance of the imputation
methods is evaluated by comparing the accuracy of the forecasting models.
The results obtained from a total of four experimental cases show that the
k-nearest neighbor technique is the most effective in reconstructing missing
data and contributes positively to time series forecasting compared with other
imputation methods.
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1 Introduction

The recent emergence of cutting-edge computing technology such as the internet of things
(IoT) and big data, has resulted in a new era in which large-scale data can be generated, collected,
and exploited. By combining unstructured data created from various data-generating sources with
well-structured data that are primarily used for data analysis, not only the data volume but also
information and knowledge that were previously difficult to obtain can now be acquired more
easily.

Among the wide array of data classes, time series, which is a sequence of data arranged
in chronological order (i.e., a typical type in data analysis), has many real-world applications in
various domains, such as energy [1,2], climate [3], economics [4], business [5] and healthcare [6].
The use of a significant amount of time series data that can be obtained via sensors and comput-
ing devices that have evolved in recent years might enhance analysis and forecasting abilities for
solving real-life problems. Nevertheless, many data analysis studies have empirically confirmed that
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numerous missing values often coexist within such rich data. These missing values are considered
as major obstacles in data analysis because they distort the statistical properties of the data and
reduce availability. In particular, in time series modeling where it is critical to capture correlations
with past data, missing values may significantly impair the performance of time series analysis
and forecasting.

To address the missing data problem, which is inevitable in real-life data analysis, various
imputation techniques for reconstructing missing values have been primarily investigated in the
field of statistics [7–10]. In this regard, this paper presents experimental results for evaluating the
effect of imputation on time series forecasting performance by applying well-adopted imputation
methods to multivariate time series datasets. An intuitive approach to confirm the effect of
imputation is to estimate the values of the deliberately introduced missing data and quantitatively
measure their similarity to the ground truths of the missing parts [11]. However, this approach
presents two limitations. First, artificial missing values are part of the results of a simulation,
which cannot consider missingness occurring in the real world that is affected by numerous factors
and their dependence. Second, when analyzing real data, incomplete data with a high missing rate
are likely to be encountered. Hence, the ground truths of missing data cannot be obtained, and
a significant portion of the data cannot be evaluated.

The experiment performed in this study was designed to avoid the shortcomings mentioned
below. First, incomplete data are filled with estimated values by imputing the actual missing values
instead of introducing artificial missing parts. Next, individual forecasting models were trained
from different datasets recovered by each imputation method. Subsequently, the performances
of the forecasting models were measured on a common test set, and the effectiveness of each
imputation method was evaluated and compared with those of other methods. We exploited six
imputation methods provided as a Python library that is easily accessible and used by non-
technical people. In addition, four datasets of multivariate time series including actual missing
data were used in the experiments.

The remainder of this paper is organized as follows. In Section 2, the basic missing types
are defined, and related studies involving the imputation of missing values within a time series
are summarized. Section 3 provides definitions of missing value imputation and the main related
techniques. Section 4 presents the experimental results for the evaluation and comparison of the
imputation methods. Section 5 provides the conclusions and future research directions.

2 Background and Related Work

Missing values are often encountered in many real-world applications. For example, when
obtaining data from a questionnaire, many respondents are likely to intentionally omit a response
to a question that is difficult to answer. As another example, when collecting data measured by
machines or computer systems, various types of missing values can occur owing to mechanical
defects or system malfunctions. Because missing values have undesirable effects on data availability
and quality, handling such missing values should be considered in data analysis. To devise an
optimal strategy for deciding how to handle missing values, the underlying reasons contributing
to the occurrence of missing values must be understood. The primary types of missing values
identified in previous studies related to the field of statistics are as follows:

• Missing completely at random (MCAR): This indicates that the missingness of data is
independent of both observed and unobserved variables. The MCAR assumption is ideal
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in that unbiased estimates can be obtained regardless of missing values; however it is
impractical in many cases of real-world data [7].

• Missing at random (MAR): Missingness is related to observed but not unobserved variables.
A dataset that holds the MAR assumption may or may not result in a biased estimate.

• Missing not at random (MNAR): Missingness is related to unobserved variables, i.e., miss-
ing values originate from events or unknown factors that are not measured. Similar to
MAR data, a dataset that holds the MNAR assumption may or may not result in a biased
estimate.

Whereas analysis on a dataset with MCAR outputs unbiased results, a dataset with MAR
or MNAR, which comprise the majority of real-world data, requires the appropriate treatment
to alleviate estimate biases. This can be solved using several methods, however, in this study, we
focused on imputation methods that replace missing values in an automated manner.

In terms of time series data, missing values might be the primary cause of distortion in
the statistical properties of the data. In particular, for time series that are highly correlated with
themselves in the past, the improper handling of missing values may result in inaccurate results in
analysis tasks (e.g., time series forecasting). For example, if a simple solution for handling missing
values, such as case deletion, is applied to time series data regardless of the data characteristics,
it is highly likely to fail in the modeling of temporal dependencies, resulting in degraded model
predictive power. However, the appropriate use of the imputation method, which recovers missing
values through numerical or algorithmic approaches, yields more reliable time series analysis
results.

Various univariate imputation methods [12–14] that reconstruct the missing values of a single
variable based on time dependence can be used as the simplest form of imputation. In [12], uni-
variate imputation methods such as mean substitution, last observation carried forward (LOCF),
linear interpolation, and seasonal Kalman filter [15] were compared in terms of imputation accu-
racy. In an experiment, the missing values in the dataset were randomly generated; subsequently,
the imputation accuracy of each method was measured based on the differences between the
imputed and actual values. The results show that the Kalman filter method is the most effective for
univariate imputation. In addition, [13] attempted univariate imputation using statistical time series
forecasting models such as autoregressive integrated moving average (ARIMA) and its variant,
SARIMA for seasonality modeling. The authors of [14] proposed a univariate imputation method
based on dynamic time warping (DTW). First, DTW is performed to identify a time series that
includes a subsequence that is the most similar to a subsequence before the missing part. Then,
the missing part is replaced by the next subsequence of the most similar one. However, since many
time series are multivariate and contain covariates between variables, the range in which univariate
imputation methods can be effectively applied is limited.

As correlations between variables generally exist in real-world data, multivariate imputation
is likely to be more effective than univariate imputation. In this regard, the k-nearest neighbors
(k-NN [8]), expectation-maximization (EM [16]), local least squares (LLS [17]), and probabilistic
principal component analysis (PPCA [10]) have been widely applied in multivariate imputation. As
a comparative study, [18] performed a benchmark analysis on traffic data using various multivari-
ate imputation methods. The results showed that the PPCA achieved the best performance among
the methods. Meanwhile, multiple imputation by chained equation (MICE [19]), which selects a
single value among several imputed values, is another technique for multivariate imputation.
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With the advent of big data, imputation techniques based on deep neural networks [11,20–22]
that are capable of capturing nonlinear temporal dynamics have garnered significant attention.
Recurrent neural network (RNN) is a representative deep learning model designed for sequential
data and has been widely used for natural language processing (NLP) and time series forecasting.
Because RNNs can model temporal dependencies, those variants combined with the encoder-
decoder framework [20,22] for many-to-many predictions or the bidirectional feed forwarding
process [21] were devised and demonstrated to be competitive in reconstructing missing values.
In addition, there have been attempts to perform imputation by combining machine and deep
learning models with optimization techniques such as the Monte Carlo Markov chain [23] and
collaborative filtering [24]. These state-of-the-art methods are excellent at generating accurate
imputation results when large-scale data are available. However, many of these are not generally
used by non-technical people because they are seldom distributed in user-friendly packages or do
not provide reproducibility.

In this study, we analyzed the effect of the imputation process on the time series forecast-
ing performance using several imputation techniques that are suitable for time series data and
easily accessible. In the benchmark studies [12,18] described above, missing values are generated
artificially first, and then the performance of imputation methods are compared by measuring
prediction losses, which indicate the difference between the imputation results and the ground
truth values. By contrast, our benchmark does not impose missing values into the datasets;
instead, it exploits datasets that originally contain missing data. Because the actual values for the
missing parts are unknown, the imputation performance is evaluated by measuring the accuracy
of the forecasting models generated by each imputation method.

3 Imputation Methods for Time Series

This section introduces the concept of missing data imputation in the time series and
the imputation methods used in the experiments. We assume a multivariate time series X =
{x1, . . . ,xi, . . . ,xt}ᵀ ∈ R

t×d as a sequence of t observations with d-dimensional features. The ith

observation xi consists of d features
{
x1i , . . . ,x

j
i , . . . ,x

d
i

}
observed at time step i. To distinguish

between observed and missing features, we introduce a mask matrix of t × d dimensions, i.e.,

M ∈R
t×d , whose element mj

i represents whether the corresponding feature xji is observed or not,

i.e., mj
t = 1 if xji is observed; otherwise, mj

i = 0.

The imputation of a missing feature is defined as δ
(
xji

)
→ x̂ ji ∈ R, where xji is a missing

feature mj
i = 0, and x̂ ji is an estimated feature using a certain imputation method. The following

example shows a multivariate time series X ∈ R
3×4, its mark matrix M, and an imputed series

X ′, which contains not only the original features of X , but also the features estimated by the
imputation method.

X =

⎛
⎜⎜⎝
x11 − x31 −
x12 x22 − x42
x13 − x33 x43

⎞
⎟⎟⎠ , M =

⎛
⎜⎝
1 0 1 0

1 1 0 1

1 0 1 1

⎞
⎟⎠ , X ′ =

⎛
⎜⎜⎝
x11 x̂21 x31 x̂41
x12 x22 x̂32 x42
x13 x̂23 x33 x43

⎞
⎟⎟⎠

For an incomplete time series, the simplest method to handle missing features is to exclude
observations that contain a missing feature (e.g., pairwise and listwise deletion). However, these
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approaches may degrade the availability of data and yield biased estimates [25]. Therefore, meth-
ods that involve uniformly replacing missing features with a specific value are used more frequently

(e.g., mean substitution). For all missing features xji where mj
i = 0, the zero substitution applies

zero as the imputed feature, i.e., x̂ ji = 0. Similarly, the mean substitution replaces xji with the mean

x=
∑
xba
n

, where n is the number of non-missing features in X , and xba is a non-missing feature

with mj
i = 1; therefore, x̂ ji = x.

If the data provides missing parts of non-trivial size, then the missing values must be
estimated using an elaborate procedure rather than the simple approaches mentioned above. In
general, two types of imputation scenarios exist for replacing missing values with plausible values:
univariate and multivariate imputation. The most intuitive technique for univariate imputation is
the LOCF method, which carries forward the last observation before the missing data. Recalling
the example above, the missing feature of x32 is filled with the last observed feature x31 by

LOCF, i.e., x̂32 = x31. The next observation carried backward (NOCB) is the opposite technique of
LOCF, in that it uses the first observation after the missing data and carries it backward, i.e.,
x̂32 = x33 in the example. These are appropriate methods for univariate time series with a strong
autocorrelation. However, in multivariate time series, any advantage cannot be expected because
imputation is performed regardless of the correlations between variables.

For a multivariate time series, the correlations between variables must be modeled. The EM
algorithm [16] is a model-based imputation method that is frequently applied in multivariate
imputation, and it repeatedly imputes missing values based on maximum likelihood estimation.
The k-NN algorithm is another effective solution for the multivariate imputation method. For an
instance in which missing occurs, the k most similar instances are selected by a similarity measure,
and the missing value in that instance is imputed with the average value of the k instances. As
another approach, multiple imputation techniques based on the Monte Carlo method have been
used, in which several copies of the original missing data are created and subsequently combined
with the multiple imputation results into one complete dataset. MICE [19], also known as “fully
conditional specification (FCS)” is a representative technique of the multiple imputation approach.
The MICE algorithm works with the assumption of MAR, which implies that the missing data are
related to only the observed data, not the unobserved data. Accordingly, the imputation process
of this algorithm might include multiple regression models, and each missing value is modeled
conditionally depending on the observed values.

4 Experimental Results

In this study, the effect of missing value imputation in the time series forecasting problem
was evaluated experimentally according to the procedure shown in Fig. 1. The first step is to
obtain a refined dataset through data preprocessing steps, such as data cleansing, transformation,
and reduction. Next, imputation methods are used to fill in the missing values in the dataset.
For this procedure, we exploited six imputation methods: mean substitution, LOCF, NOCB, EM,
k-NN, and MICE. Subsequently, the individual forecasting models were trained with each imputed
dataset. Finally, the performance of the forecasting models was evaluated and compared using
loss functions.
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Figure 1: Overall experimental procedure

4.1 Datasets
We used four datasets of multivariate time series as experimental data to train and validate

the time series forecasting models. The datasets were obtained from [26,27] and contained actual
missing values of different patterns. A summary of the datasets used in the experiments is
provided in Tab. 1.

Table 1: Summary of datasets

Dataset Time period Unit of
sampling

# of
instances

# of
features

Target variable Missingness
in target
variable

Missing
rate (%)

Air quality 03/10/2004–
04/04/2005

Hourly 9,357 12 Carbon
monoxide

Yes 13.35

GECCO2015-A 11/19/2013–
05/21/2014

Minutely 264,900 3 Return
temperature

No 5.46

GECCO2015-B 05/22/2014–
11/21/2014

Minutely 264,900 3 Return
temperature

Yes 15.69

CNNpred 12/31/2009–
11/15/2017

Daily 1,984 81 Closed price No 1.86

4.1.1 Air Quality
The dataset (Air Quality) was originally provided to predict benzene concentrations to moni-

tor urban pollution [28]. This dataset contains 9,357 instances of hourly averaged responses from
an array of five metal oxide chemical sensors embedded in an air quality chemical multisensory
device. The device was placed in a significantly polluted area at the road level, within a city in
Italy. For the experiment in this study, we excluded some features with abnormally high missing
rates from the original dataset, and the reorganized dataset had a missing rate of 13.35%. The
hourly average concentrations of carbon monoxide (CO) were used as target variables.

4.1.2 GECCO 2015
The dataset was originally provided by the Genetic and Evolutionary Computation Con-

ference (GECCO) Industrial Challenge 2015 [27] to recover missing data in a heating system.
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Observations from the dataset were measured every minute via a closed-loop heating system and
comprised four time series: the system temperature setpoint, system supply temperature, system
power, and return temperature (target variable). The original dataset comprised 604,800 instances
from November 19, 2013 to December 1, 2015. For this experiment, we prepared two sub-
datasets with different patterns of missing data from the original dataset. The first sub-dataset
(GECCO2015-A) consisted of a total of 264,900 observations between November 2013 and May
2014, with a missing ratio of 5.46% and no missing target variable. The second sub-dataset
(GECCO2015-B) had the same data length as GECCO2015-A and included observations from
May 2014 to November 2014. The missing rate was 15.69%, which was relatively higher than
that of GECCO2105-A; in particular, it was discovered that the target variable contained missing
values.

4.1.3 CNNpred
The CNNpred dataset was first published in a study for predicting stock prices using convolu-

tional neural networks [29]. It contains several daily features related to stock market indexes in the
U.S., such as the S&P 500, NASDAQ Composite, and Dow Jones Industrial Average from 2010
to 2017. Specifically, CNNpred includes features from various categories of technical indicators,
future contracts, prices of commodities, important market indices, prices of major companies, and
treasury bill rates. In contrast to the other three datasets, CNNpred is a small-sized dataset with
a feature space of relatively high dimensionality (1,984 instances and 81-dimensional features);
additionally, it had the lowest missing rate (1.86%) and a complete non-missing target variable.

Figure 2: Missing patterns of datasets (a) Air quality (b) GECCO2015-A (c) GECCO2015-B (d)
CNNperd
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Fig. 2 shows the different missing patterns for each dataset. Each column corresponds to
an individual feature, and the rightmost column represents the target variable. The missing parts
are represented as blank spaces to indicate the number of missing values in each feature. The
sparklines on the right side of each subfigure represent the number of observed values for each
data instance. For the case shown in Fig. 2a, 1 on the sparkline represents that only one value
available within that instance, whereas the remaining values are missing. By contrast, 13 indicates
that all the values, including the target variable, are observations without missingness.

Depending on whether the target variable contains missing values, we applied different impu-
tation processing to each dataset. For the datasets shown in Figs. 2a and 2c, instances exist where
the target variable is missing. In cases of instances in the training set, all missing values, including
the target variable, were estimated by imputation, as shown in Fig. 3. However, if an instance
is within the test set, then the prediction loss cannot be measured without its ground truth;
therefore, that instance is excluded from the dataset (case deletion). Conversely, the datasets, shown
in Figs. 2b and 2d, contain complete target variables. Therefore, all missing values are imputed
regardless of the set to which the instance belongs.

Figure 3: Two different methods of handling missing values: imputation and case deletion

4.2 Long Short-Term Memory-Based Forecasting Model
Long Short-Term Memory (LSTM) is a deep learning model for learning sequence data

that can be applied widely, such as in natural language processing [4], human action recogni-
tion [30], and time series forecasting [2]. In LSTM neural networks, three gating mechanisms
are implemented, thereby providing advantages to gradient vanishing/exploding problems, which
are significant disadvantages of machine learning models based on artificial neural networks. As
shown in Fig. 4, an LSTM cell is a building block of LSTM networks and takes three inputs at
time step t: input vector (xt), cell state (Ct−1), and hidden state (ht−1). A forget gate controls the
amount of information of the cell state that is discarded through a sigmoid activation function
σ , with xt and ht−1 as inputs. Subsequently, the output ft is multiplied by Ct−1. Then, the weight
values, Wf and bf , are optimized during the backpropagation process.

ft = σ(Wf · [ht−1,xt]+ bf ) (1)

An input gate decides the new information to be stored in Ct−1. This process involves two
layers. First, a sigmoid activation function σ outputs it, which is the weight of input information.
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Next, a hyperbolic tangent activation function (called tanh) outputs a set of candidate values C̃t
that can be added to the cell state.

it = σ(Wi · [ht−1,xt]+ bi) (2)

C̃t = tanh(WC · [ht−1,xt]+ bC) (3)

Subsequently, the older cell state Ct−1 is replaced with a new cell state Ct through linear
pairwise operations with the outputs of the forget and input gates.

Ct =Ct−1 · ft+ it · C̃t (4)

An output gate produces the final output of an LSTM cell. First, through a sigmoid activa-
tion function, σ outputs ot to scale the significance of the output. Next, Ct is put through the
tanh function and then multiplied by ot. The result is a new hidden state ht that is propagated to
the next LSTM cell and the adjacent hidden layer.

ot = σ(W0 · [ht−1,xt]+ b0) (5)

ht = ot · tanh(Ct) (6)

Figure 4: Structure of LSTM cell

Based on LSTM neural networks, we constructed time series forecasting models that use
different training sets generated by each imputation method. Tab. 2 represents the hyperparameter
settings for the training forecasting models for each dataset. Through preliminary experiments, we
confirmed that the number of hidden layers and nodes slightly affected the model performance.
Therefore, we set these two hyperparameters to 3 and 30, separately for all the datasets. In
addition, the batch size and sequence length were assigned with different parameter values based
on the dataset size.

4.3 Performance Comparison
To evaluate the performance of the forecasting models, two loss functions, i.e., the mean

absolute error (MAE) and weighted mean absolute percentage error (WMAPE), were used as
scale-independent metrics. They are defined as follows:

MAE = 1
n

n∑
i=1

∣∣yi− ŷi
∣∣ (7)
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Table 2: Hyperparameter settings

Dataset # of hidden
layers

# of hidden
nodes

Batch size Sequence
length

Learning
rate

Epoch

Air quality 3 30 100 24 0.001 200
GECCO2015-A 3 30 1,000 10 0.001 200
GECCO2015-B 3 30 1,000 10 0.001 200
CNNpred 3 30 30 7 0.001 200

WMAPE =
1
n

∑n
i=1

∣∣yi− ŷi
∣∣

1
n

∑n
i=1 yi

(8)

where n is the number of samples; yi and ŷi are the actual and predicted values in the ith sample,
respectively.

Tab. 3 shows a comparison of the results obtained from the performance measurements of
the forecasting models for each imputation method. For each dataset, the best and worst cases are
shown in blue and red, respectively. Compared with other methods, k-NN demonstrated the best
results for three datasets (Air Quality, GECCO2015-A, and CNNpred). In the case of CNNpred
with the lowest missing rate (1.86%), the results indicate that k-NN widened the performance gap
compared with the other methods. For instance, k-NN outputs a WMAPE value of 3.54% ±
1.25%, which was approximately 11.77% lower than that of the LOCF of the most inaccurate
imputation results (15.31% ± 2.37%). EM indicated the best result for GECCO2015-B (0.0357 ±
0.0016 for MAE), whereas it yielded the most erroneous estimates in GECCO2015-A (0.0923 ±
0.0059 for MAE). It can be concluded that the forecasting performance of EM was inconsistent
because the ranking results were 4, 4, 1, and 5. In the case of MICE, the ranking results were
2, 2, 6, and 4, indicating its moderate performance. The remaining methods, i.e., LOCF, NOCB,
and mean substitution, classified as univariate imputation methods, did not yield favorable results
compared with the multivariate imputation methods (EM, k-NN, and MICE).

In summary, we confirmed that k-NN outperformed the other imputation methods in three
among four datasets. It ranked second only in GECCO2015-B, whose target variable contained
many missing parts. If missing values are few and the target variable is complete in a specified
dataset, then k-NN would be an attractive imputation technique for achieving stable time series
forecasting performance. In addition, we conclude from the results that multivariate imputation
methods are generally superior to univariate imputation methods because most time series in real-
life are multivariate and include relationships between variables.

In terms of threats to validity, we investigated only a small set of conventional imputation
methods, not including many state-of-the-art imputation techniques (e.g., deep-learning-based
models). In addition, because the simulation approach based on major assumptions (MCAR,
MAR, and MNAR) that relate to the occurrence type of missing values was not included in the
experiment, it is difficult to argue that the experimental results of this study elicit a general con-
clusion on the effect of missing data imputation. Therefore, to derive more significant benchmark
results, a wider variety of imputation techniques and missing scenarios should be investigated in
the future.
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Table 3: Comparison of performance based on experimental data

Method Air quality GECCO2015-A GECCO2015-B CNNpred

MAE WMAPE MAE WMAPE MAE WMAPE MAE WMAPE

Mean
substitution

2.1855±
0.0806

29.02%±
1.07%

0.0801±
0.0065

13.83%±
1.12%

0.0422±
0.0019

9.34%±
0.43%

0.1173±
0.0474

10.14%±
4.10%

LOCF 2.2263±
0.1168

29.56%±
1.55%

0.0718±
0.0054

12.42%±
0.94%

0.0437±
0.0022

9.66%±
0.48%

0.1771±
0.0274

15.31%±
2.37%

NOCB 2.3178±
0.2036

30.78%±
2.70%

0.0664±
0.0022

11.49%±
0.37%

0.0417±
0.0020

9.24%±
0.45%

0.1284±
0.0421

11.10%±
3.64%

EM [16] 2.2152±
0.1059

29.41%±
1.41%

0.0923±
0.0059

15.98%±
1.01%

0.0357±
0.0016

7.64%±
0.33%

0.1418±
0.0295

12.25%±
2.55%

k-NN [8] 1.9395±
0.0759

25.75%±
1.01%

0.0524±
0.0042

9.06%±
0.73%

0.0395±
0.0008

8.74%±
0.17%

0.0410±
0.0145

3.54%±
1.25%

MICE [19] 1.9961±
0.1307

26.51%±
1.74%

0.0536±
0.0028

9.28%±
0.48%

0.0438±
0.0028

9.67%±
0.61%

0.1376±
0.0470

11.90%±
4.07%

5 Conclusions

Missing values are a significant obstacle in data analysis. In time series forecasting, in par-
ticular, handling missing values in massive time series data is challenging. In this study, we
evaluated the effects of imputation methods for replacing missing values with estimated values. We
attempted to indirectly validate the imputation methods based on the performances of time series
forecasting models, instead of using an approach that generates virtual missing data by simulation.
The experimental results show that k-NN yielded the best model performance among the selected
imputation methods.

Owing to the limitations of the results, we plan to conduct a more sophisticated benchmark
study that can be extended to more imputation approaches, including machine learning techniques,
while considering several missing-data scenarios. In addition, by conducting an experiment to
investigate the efficacy of the imputation process in reconstructing missing values introduced by
simulation, we hope to investigate the imputation effect more comprehensively.
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