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Abstract: A number of requirements for 5G mobile communication are satis-
fied by adopting multiple input multiple output (MIMO) systems. The inter
user interference (IUI) which is an inevitable problem in MIMO systems
becomes controllable when the precoding scheme is used. In this paper, the
horizontal Gauss-Seidel (HGS) method is proposed as precoding scheme in
massive MIMO systems. In massive MIMO systems, the exact inversion of
channel matrix is impractical due to the severe computational complexity.
Therefore, the conventional Gauss-Seidel (GS) method is used to approximate
the inversion of channel matrix. The GS has good performance by using pre-
vious calculation results as feedback. However, the required time for obtaining
the precoding symbols is too long due to the sequential process of GS. There-
fore, the HGS with parallel calculation is proposed in this paper to reduce
the required time. The rows of channel matrix are eliminated for parallel
calculation inHGSmethod. In addition,HGSuses the ordered channel matrix
to prevent performance degradation which is occurred by parallel calculation.
The HGS with proper number of parallelly computed symbols has better
performance and reduced required time compared to the traditional GS.
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1 Introduction

Multiple input multiple output (MIMO) systems are key components of future wireless com-
munication in terms of high data rate over a limited frequency resource [1,2]. Massive MIMO
systems are specific cases of MIMO systems. The number of base station (BS) antennas is
much larger than the number of antennas for terminals in massive MIMO systems. In massive
MIMO systems, the inter user interference (IUI) which is an inevitable problem in MIMO systems
becomes controllable when the precoding scheme is used. The precoding schemes in massive
MIMO systems have been studied as promising techniques which achieve spatial multiplexing
gain to increase throughput and spatial diversity to improve reliability at 5G [3–8]. The massive
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MIMO systems promise significant improvements in terms of spectral efficiency, reliability, and
data rate compared to multi-user (MU) MIMO systems by using large channel matrix [9–11]. The
significant improvement of performances for the massive MIMO is shown mathematically in [12].
If the channel matrix is extremely large, the effect of fast fading and non-correlated noise becomes
extinct [13]. However, computational complexity at BS is extremely increased because of large
array of antennas at BS. The inversion of the channel matrix is critical task for massive MIMO
signal processing [14]. It means that the precoding schemes which use exact inversion of channel
matrix are impractical in massive MIMO systems. Therefore, the schemes which use approximated
matrix inversion have been studied for achieving low computational complexity in massive MIMO
systems.

The match filter (MF) precoding is the simplest precoding scheme. However, the performance
of the MF precoding is much poorer than the ZF scheme [9]. The ZF scheme at MU-MIMO
systems has sub-optimal performance and the lowest computational complexity. In contrast, the
ZF in massive MIMO systems has optimal performance because of the large channel matrix [15].
However, in massive MIMO systems, since the inversion of large gram matrix has to be calculated,
ZF scheme has impractically large computational complexity which is cubic order with respect to
the number of users.

Therefore, in [16], the approximate inversion of gram matrix is calculated by using Neumann
Series (NS). The computational complexity of approximate inversion using NS is lower than exact
inversion and the calculation of NS is parallelized. However, when the iteration of NS is more
than 2, NS has also computational complexity which is cubic order.

In contrast, precoding scheme based on Gauss-Seidel (GS) which was proposed in [17] keeps
the computational complexity which is square order. In addition, since the result of the previous
precoding symbol is used as the feedback of the following calculation of next precoding symbol,
the performance of the scheme based on GS is better than the scheme based on NS. It means that
the calculation at GS is not parallel processing and requires longer time for obtaining precoding
symbol.

Therefore, in this paper, horizontal GS (HGS) which reduces required time for obtaining
precoding symbol is proposed. The HGS calculates some precoding symbols without feedback of
the previous precoding symbol for parallel processing. The conventional schemes use calculation
result of previous symbol for calculating present symbol. It means that conventional schemes have
to wait for result of the (n − 1)th symbol to calculate the nth symbol [18]. However, parallel
calculation at HGS does not need to wait for result of previous symbol. Parallel calculation
technique calculates some symbols simultaneously. The calculation without feedback at GS results
in the performance degradation. In HGS, the channel matrix is sorted to overcome performance
degradation. The calculation without feedback at GS results in the performance degradation. In
HGS, the channel matrix is sorted to overcome performance degradation. Thus, the required
time for obtaining precoding symbol is reduced at HGS by calculating precoding symbol without
feedback. In addition, the performance of HGS is better than GS by sorting the channel matrix.

In Section 2, system model which is used in this paper is explained. The conventional schemes
which are compared with the proposed scheme are explained in Section 3. In Section 4, HGS
scheme is proposed. Section 5 shows the performance comparison between the conventional
schemes and the proposed scheme.
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2 System Model

In Fig. 1, massive MIMO broadcasting system which is composed of one base station with
NT transmit antennas and K users is considered. Rayleigh flat fading channel is assumed and the
kth user has one receive antenna. The number of transmit antennas is much larger than the total
number of receive antennas NR(NT �NR).

Figure 1: System model of the downlink massive MIMO channel

The transmit signal vector for the kth user is xk. The received signal yk for the kth device
can be expressed as follows,

yk = HkPkxk︸ ︷︷ ︸
intended signal

+
K∑

j=1,j /∈k
HkPjxj

︸ ︷︷ ︸
IUI

+nk, (1)

where Hk ∈ CNR×NT , Pk ∈ CNT×1, j and nk ∈ CNk×1 are the channel matrix of the kth user,
precoding matrix for the kth user, index of other users except for the kth user and the additive
white Gaussian noise vector of the kth user which has zero mean and variance σ 2

n , respectively.

The set of entire received signal vectors y ∈CNR×1 can be expressed as follows,

y= [yT1 · · ·yTK]T =

⎡
⎢⎣H1

...
HK

⎤
⎥⎦[P1· · ·PK

]⎡⎢⎣x1
...
xK

⎤
⎥⎦+

⎡
⎢⎣n1

...
nK

⎤
⎥⎦= H̃

⎡
⎢⎣x1

...
xK

⎤
⎥⎦+

⎡
⎢⎣n1

...
nK

⎤
⎥⎦ , (2)

where H̃ ∈CNR×K is the effective channel. The effective channel H̃ is obtained as follows,

H̃=

⎡
⎢⎢⎢⎣
H1P1 H1P2 · · · H1PK
H2P1 H2P2 · · · H2PK
...

...
. . .

...
HKP1 HKP2 · · · HKPK

⎤
⎥⎥⎥⎦ . (3)

Diagonal components in the effective channel matrix are MIMO channels for each user and
off-diagonal components express the IUI.
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3 Conventional Schemes

3.1 Zero Forcing Precoding
The ZF precoding scheme uses exact inversion of the gram matrix to eliminate IUI and inter

antenna interference (IAI). The precoding matrix of ZF can be expressed as follows,

PZF = βHH(HHH)−1 = βHHZ−1, (4)

where β =
√

K
tr(Z−1)

and Z=HHH are the normalization factor and the gram matrix, respectively.

The precoded signal vector can be expressed as follows,

s= βHHZ−1x= βHH x̂, (5)

where x̂ = Z−1x. In massive MIMO systems, since the channel matrix has large array, the ZF
can achieve optimal performance. However, the exact inversion of gram matrix is hard to be
calculated because of high computational complexity of O(K3). Therefore, the method to calculate
approximate inversion of the gram matrix is needed.

3.2 Gauss-Seidel Precoding
For downlink massive MIMO systems, the columns of channel matrix H are asymptotically

orthogonal [9]. It means that the gram matrix Z of the channel is the Hermitian positive definite
which is the condition to exploit GS method. Therefore, the approximate inversion of gram matrix
can be obtained by GS method.

The GS method is an iterative technique for solving linear equation Ax= b when A, x and
b are the K × K Hermitian positive definite matrix, the K × 1 unknown vector and the K × 1
measurement vector, respectively. The A can be decomposed as follows,

A=D+L+LH , (6)

where D, L and LH are the diagonal component, the strictly lower triangular component and the
strictly upper triangular component of A, respectively. The solution of Ax= b which is calculated
iteratively by using GS method can be expressed as follows,

x(i+1) = (D+L)−1(b−LHx(i)), (7)

where x(i+1) and x(i) are the (i+ 1)th and the (i)th approximations of x.

The GS method can be applied to linear equation x̂=Z−1x which can be rewritten as Zx̂= x.
The solution of linear equation Zx̂= x is expressed as follows,

x̂(i+1) = (D+L)−1(x−LH x̂(i)), (8)

where x̂(0) is the initial solution which is zero vector in this paper. Each component of x̂(i=1) in
Eq. (8) is sequentially calculated as follows,

x̂(i+1)
m = 1

zmm

⎛
⎝xm−

m−1∑
n=1

zmmx(i+1)
n −

K∑
n=m+1

zmmx(i)
n

⎞
⎠ . (9)

It means that the components of x̂(i+1) from the first to the (m− 1)th index are used as

feedback for computing x̂(i+1)
m . Therefore, the performance for the GS method is enhanced due to

the use of previous results. However, since the calculation of the mth component needs results of
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previous components, the mth component has to wait for calculation results of the components
from the first to the (m− 1)th index. It means that the required time to calculate precoding symbol
is long. Therefore, GS method which can be computed in parallel is proposed in this paper to
reduce the required time.

4 Proposed Horizontal Gauss-Seidel Precoding

The ZF precoding scheme has optimal performance with large scale MIMO systems. However,
when the ZF is used, large computational complexity of exact matrix inversion is inevitable. There-
fore, the methods which compute approximate inversion of channel matrix with low complexity
have been studied such as GS method. In GS method, the results of the precoding symbol from
the first to the (m− 1)th index are used to calculate the mth precoding symbol as feedback.
Since the previous results are used at the current calculation, the performance of GS method is
improved. It means that the precoding symbols are computed sequentially. The required time to
obtain precoding symbols becomes long due to sequential process of GS method. Therefore, HGS
method with parallel calculation is proposed to reduce the required time.

Fig. 2 is the flow chart of the HGS in massive MIMO systems. The parallel calculation at
GS method means the calculation of current precoding symbol without feedback. The precoding
symbols which are computed without feedback have to be chosen for parallel calculation. There-
fore, the criterion for choosing the precoding symbols without feedback has to be defined. For

example, when x̂(i+1)
1 at the (i+ 1)th iteration is calculated at conventional GS method, the results

at the (i)th iteration are only needed. However, when x̂(i+1)
2 at the (i+ 1)th iteration is computed,

a result x̂(i+1)
1 at the (i+ 1)th iteration is used. In other words, when the mth component of x̂(i+1)

is current calculated symbol, (m− 1) results at the (i+ 1)th iteration are used as feedback. The
number of used feedbacks is increased as an index of x̂(i+1) grows. In other words, with HGS, if
the mth precoding symbol is chosen for calculating without feedback, the (m− 1) feedbacks are
not used. The number of feedbacks which are not used in HGS varies depending on the index of
the selected symbol. Therefore, the precoding symbol with the smallest index has to be chosen as
calculated symbol without feedback. The symbol that requires the least feedbacks at calculation
is chosen to reduce performance degradation by not using feedbacks. In HGS, the rows of L are
eliminated horizontally from the second to the (s+ 1)th index not to use results of calculation at
the current iteration when the s is the number of selected symbols.

For example, Fig. 3 shows lower triangular matrix L when the number of calculated precoding
symbol without feedback is 0 (s= 0). When the number of computed precoding symbol without
feedback is 1 or 2 (s= 1 or s= 2), the row of L is eliminated as shown in Fig. 3.

The components which are excluded from L are added to upper triangular matrix LH as
shown in Fig. 4. Therefore, Eq. (7) for selected symbol can be rewritten as follows,

x̂(i+1)
m = 1

zmm

(
xm−

K∑
n=1

zmmx
(i)
n

)
, m= 1, · · · , s+ 1. (10)
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Figure 2: Flow chart of HGS in massive MIMO systems

The required time for calculating a precoding symbol is shown in Tab. 1. If the required time
for calculating a precoding symbol is t, the Kt time is needed at conventional GS method. In
HGS, when the number of symbols which are parallelly calculated is s, the total required time is
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(K − s)t. However, HGS method cannot avoid the performance degradation because of the parallel
calculation. Since the previous results are not used for computing current precoding symbol, the
performance of the HGS method becomes poor.

Figure 3: Lower triangle matrix L with various s

Figure 4: Upper triangle matrix L with various s

Table 1: The required time for calculating a precoding symbol

Scheme Required time for all symbols

ZF t
GS Kt
HGS (K − s)t

The performance degradation of the HGS can be prevented by sorting the gram matrix of
the channel. The criterion of sorting the gram matrix is the off-diagonal components of Z. The
power of the off-diagonal components for the first ordering is expressed as follows,

P1
m =

K∑
n=1
n�=m

|zmn|. (11)
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The off-diagonal components of the gram matrix mean the correlation with other channels.
The large correlation with other channels means that the interference from other channels is large.
Therefore, the symbol which has the channel corresponding to large off-diagonal components
needs many feedbacks. It means that the row of gram matrix with maximum off-diagonal com-
ponents should replace the bottom of the matrix. If the gth row of Z has maximum off-diagonal
components, it becomes the Kth row of ordered Z. Since the interference between the gth channel
and other channels is already considered at the first ordering, the power of the off-diagonal
components is calculated except for the interference from the gth row to find the row with the
second largest off-diagonal component. Therefore, the power of the off-diagonal components for
second ordering is expressed as follows,

P2
m =P1

m− |zmg|. (12)

The row with maximum P2
m becomes the (K − 1)th row of ordered Z. The power of the

off-diagonal components for the third ordering is also calculated except for the interference from
the row with maximum P2

m. Therefore, the power of the off-diagonal components for the second
ordering is expressed as follows,

Pim =P(i−1)
m − |zmg| i= 2, · · · ,K, (13)

where the g is the index of the row with maximum P(i−1)
m . The row with minimum off-diagonal

components are positioned on top of the matrix. The gram matrix at HGS is sorted into the
off-diagonal components of the gram matrix. The performance of HGS is better than the GS by
sorting the gram matrix. In addition, the performance of HGS is still better than the GS when
the s is smaller than K

2 . It means that the HGS has better performance and shorter required
time than traditional GS. The HGS needs extra operation for ordering the gram matrix of the
channel compared to the traditional GS. However, while the channel is unchanged, the benefit
from reducing the required time with an arrangement is considerable.

Since the approximation of HGS rapidly gets close to the exact inversion of the gram
matrix, the performance of HGS is better than the conventional GS. However, the GS has better
convergence rate by using only sequential calculation. The HGS overcomes poor convergence rate
by sorting the gram matrix. The approximation error between approximate solution and exact
solution can be expressed as follows,

x̂(i+1) − x̂=−(D+L)−1LH(x̂(i) − x̂)= · · · = (−(D+L)−1LH)i+1(x̂(0) − x̂), (14)

where the x̂ = Z−1x is the exact solution with inversion of the gram matrix. Eq. (14) can be
rewritten as follows,

x̂(i+1) − x̂=Mi+1(x̂(0) − x̂), (15)

where M=−(D+L)−1LH is the iteration matrix. Since the small approximation error means fast
convergence, the convergence rate accelerates when Frobenius norm of M is small [19].

5 Simulation Results

The error and throughput performances for the HGS are evaluated and compared with
the conventional GS scheme. The Rayleigh flat fading channel is used and the perfect channel
estimation is assumed. All elements of the channel matrices have independent complex Gaussian
random variables with zero mean and unit variance. The system which has much larger number
of transmit antennas compared to the number of receive antennas is considered. The number of
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transmit antennas is 80 or 100. The number of antennas for each user is 1 and total number
of receive antennas is 10. The used modulation is 16-quadrature amplitude modulation (QAM).
The number of GS iterations is 2 or 3. The number of precoding symbols which are computed
parallelly at HGS is 0, 2 or 5. The bit error rate (BER) performances for the HGS are evaluated
with various number of parallelly calculated symbols. Tab. 2 shows the simulation parameters.

Table 2: Simulation parameters for HGS

Number of transmit antennas NT = 80, 100
Number of receive antennas NR = 10
Number of users K = 10
Modulation 16QAM
Symbol size 128
Number of GS iterations 2, 3
Channel Rayleigh flat fading

The BER and throughput performances for the HGS are shown in Figs. 5–8. The enhance-
ment of the BER performance at HGS is obtained by ordering the gram matrix of the channel.
The performances with 2 GS iterations are shown in Fig. 5. Since the performance enhancement is
occurred by ordering gram matrix but the performance degradation of parallel calculation is not
occurred, the HGS without parallel calculation (HGS-0) has the best performance. Therefore, the
throughput of HGS-0 is larger than other schemes in Fig. 7a. In Fig. 7b, the gap of throughput
between the schemes except HGS-5 is small. However, the HGS without parallel calculation has
the same required time for obtaining precoding symbol as conventional GS. The HGS with 2 sym-
bols which are parallelly computed (HGS-2) has better performance compared to the conventional
GS. In Fig. 7a, HGS-2 achieves the maximum throughput rapidly compared to the conventional
GS. In addition, the required time for calculating precoding symbol is reduced compared to the
conventional GS due to the parallel calculation. However, since the number of feedback at HGS-2
is smaller than the feedback at HGS-0, the BER performance of HGS-2 is poorer than HGS-0.
The throughput of HGS-2 is slightly smaller than HGS-0 in Fig. 7a. However, the throughput per-
formances of HGS-0 and HGS-2 are almost same in Fig. 7b. When the number of symbols which
are computed parallelly is larger than K

2 , the performance degradation of parallel calculation is
larger than the performance enhancement of ordering gram matrix. Therefore, the performance
of HGS with 5 symbols which are computed parallelly is poorer than the conventional GS. In
Fig. 5b, since the number of transmit antennas grows to 100, the channel becomes more diagonal
dominant. Therefore, the performances of all schemes are improved due to the diagonal dominant
channel. Even though all schemes except HGS-5 has almost same throughput performance due to
the diagonal dominant channel in Fig. 7b, the HGS-0 has poorer throughput performance because
of the large number of parallelly computed symbols.
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Figure 5: BER performance comparison with 2 GS iterations between the GS and the proposed
HGS. (a) 2 GS iterations and (NT ×NR) = (80× 10), (b) 2 GS iterations and (NT ×NR) =
(80× 10)

Figure 6: BER performance comparison with 3 GS iterations between the GS and the proposed
HGS. (a) 3 GS iterations and (NT ×NR) = (80× 10), (b) 3 GS iterations and (NT ×NR) =
(80× 10)

The BER and throughput performances with 3 GS iterations are shown in Figs. 6 and 8.
Since the 1 GS iteration is added, the approximate solution becomes close to the exact solution.
Therefore, the performances of all schemes with 3 GS iterations are better than the performances
of all schemes with 2 GS iteration. In addition, the GS, HGS-0 and HGS-2 have almost optimal
BER performance. However, the HGS-5 has poorer performance compared to other schemes due
to parallel calculation of many symbols in Fig. 6a. The HGS-5 has almost similar performance
with other schemes due to diagonal dominant channel in Fig. 6b. The all schemes have almost
optimal throughput performance due to added GS iteration in Fig. 8.
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Figure 7: Throughput performance comparison with 2 GS iterations between the GS and the pro-
posed HGS. (a) 2 GS iterations and (NT ×NR)= (80× 10), (b) 2 GS iterations and (NT ×NR)=
(80× 10)

Figure 8: Throughput performance comparison with 3 GS iterations between the GS and the pro-
posed HGS. (a) 3 GS iterations and (NT ×NR)= (80× 10), (b) 3 GS iterations and (NT ×NR)=
(80× 10)

The comparison of Frobenius norm is shown in Fig. 9. Since precoding symbols of the GS
and HGS-0 are calculated with whole lower and upper triangular matrix for sequential calcula-
tion, the GS and HGS-0 have the smallest Frobenius norm. In addition, since the HGS-0 has
performance enhancement by sorting the gram matrix, the HGS-0 has better BER performance
compared to conventional GS. Since the lower triangular matrix without 2 rows is used at
calculation, the HGS-2 has slightly large Frobenius norm compared to GS and HGS-0. However,
the HGS-2 overcomes the reduced Frobenius norm by sorting the gram matrix. Therefore, the
performance of HGS-2 is better than the GS although the Frobenius norm of the HGS-2 is larger
than GS. Since the HGS-5 has too many symbols which are calculated parallelly, the difference of
Frobenius norm between GS and HGS-5 becomes large. Therefore, the HGS-5 can not overcome
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the reduced Frobenius norm even though the HGS-5 uses the ordered gram matrix. The BER
performance of HGS-5 is poorer than the GS because of the reduced Frobenius norm.

Figure 9: Comparison of Frobenius norm with K = 10

6 Conclusion

Massive MIMO system is a key component of future wireless communication in terms of high
data rate over a limited frequency resource. In MIMO broadcast channel, IUI occurs inevitably
at each device. Therefore, the BS has to utilize precoding schemes for IUI reduction.

The HGS with parallel operation is proposed to reduce the required time for obtaining the
precoding symbol in massive MIMO systems. The conventional GS method has performance
enhancement due to the sequential calculation which uses previous results as feedback. It means
that the required time for obtaining the precoding symbols is too long. When the required time for
obtaining one precoding symbol is t, the total required time at GS is Kt because of sequential cal-
culation. Therefore, in HGS, some symbols are parallelly computed without feedback to reduce the
required time. When the number of symbols which are parallelly calculated is s, the total required
time is reduced to (K − s)t. However, the parallel calculation without feedback in HGS gives bad
influence to BER performance. Therefore, the gram matrix which is sorted by interference of other
channel is used to overcome the performance degradation of parallel calculation in HGS. When
the number of symbols which are parallelly calculated is under K

2 , the BER performance of HGS
is better than the conventional GS. However, the performance degradation of parallel calculation
has serious impact on the performance compared to the performance enhancement of ordered
gram matrix when the number of parallelly calculated symbol is larger than K

2 . Therefore, the
performance of HGS with too many parallelly calculated symbols is poorer than the GS. The way
to overcome performance degradation which is occurred when the number of parallelly calculated
symbols is larger than K

2 has to be studied. In this paper, the proposed HGS scheme is proposed
for reducing the required time by using parallel calculation.
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