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Abstract: Like the Covid-19 pandemic, smallpox virus infection broke out in
the last century, wherein 500 million deaths were reported along with enor-
mous economic loss. But unlike smallpox, the Covid-19 recorded a low expo-
nential infection rate andmortality rate due to advancement inmedical aid and
diagnostics. Data analytics, machine learning, and automation techniques can
help in early diagnostics and supporting treatments of many reported patients.
This paper proposes a robust and efficient methodology for the early detec-
tion of COVID-19 from Chest X-Ray scans utilizing enhanced deep learning
techniques. Our study suggests that using the Prediction and Deconvolutional
Modules in combination with the SSD architecture can improve the perfor-
mance of the model trained at this task. We used a publicly open CXR image
dataset and implemented the detectionmodel with task-specific pre-processing
and near 80:20 split. This achieved a competitive specificity of 0.9474 and
a sensibility/accuracy of 0.9597, which shall help better decision-making for
various aspects of identification and treat the infection.

Keywords: Machine learning; deep learning; object detection; chest X-ray;
medical images; Covid-19

1 Introduction

The novel Covid-19 infection pandemic recorded a rapid spread on the community level in
different parts of the globe. As of 4th May 2021, 152,875,054 COVID-19 infection cases were
reported along with 3,202,762 deaths indicating a mortality rate of near 2.1%. The R number
reported by some researchers in the range of 4.7–6.6. As confirmed by World Health Organization
(WHO) reports on COVID-19, patients are facing difficulty in breathing, loss of speech/movement
and chest pain/pressure with associated fever, dry cough, tiredness and aches/pains, diarrhea, sore
throat, conjunctivitis, a rash on the skin, or discoloration of fingers/toes [1]. To date, the source
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of the outbreak is confidently unidentified, though the first cases with symptoms like fever, dry
cough and tiredness were reported in early December 2019. The Covid-19 strain (SARS-CoV-2)
infection affected the economy of approximately all countries. As per the International Monetary
Fund’s predictions (IMF), the global economy was expected to be shrinking by 3% in 2020.

1.1 Detection Methods Adopted
The need to develop swift diagnostic tools to investigate cases of potential COVID-19 with

competitive sensitivity and specificity measures is urgent. Polymerase Chain Reaction (PCR) and
Reverse Transcription PCR (RT-PCR) are drug-based standards sample collection techniques.
In the initial phase of the epidemic, RT-PCR exhibited 30%–70% sensitive, whereas chest CT
was reported appreciably more sensitive. However, additional testing results from different labs
and studies show that the 2nd generation COVID RT-PCR studies have greater sensitivity, so
more than 90%. The RT-PCR has been preferred over the chest scan since it was faster with
an acceptable accuracy level. To diagnose the extent of the infection, medical personnel have to
rely on CT (computerized tomography)/X-Rays Scans that happen to be accurate but slow and
costly. This leads to the need for real-time, fast, efficient and accurate diagnostic techniques. Until
recently, many major U.S. radiology companies have released statements that clarified the sparring
use of CT (computerized tomography) images to impact the management positively. There is
an urgent requirement in the present scenario that healthcare providers and AI, ML researchers
should work together to develop an imaging-based real-time cheaper but effective and acceptable
diagnostic of the infection.

1.2 Chest-Imaging Findings
As reported in [2,3], the trademark of COVID-19 is the two-sided distribution of patchy

shadows and conspicuous ground-glass opacity (GGO) lesions in peripheral and posterior lungs,
with the GGO being the most common finding. In the GGO, certain parts of the lung appear like
a hazy shade of gray, as seen in Figs. 1a and 1b instead of black with fine white lung outlines
for blood vessels. It appears like a frosted window in winters that suggest a partial filling of air
spaces or alveoli in the lungs by fluids. In severe or more advanced infections, more fluid buildup
in the lungs and the appearance of GGO becomes “Solid White Consolidation” (SWC), as shown
in Figs. 1e and 1f. In the same context, there is a finding called “Crazy Paving Pattern” (CPP),
as reflected in Figs. 1c and 1d, which occurs because of the swelling of interstitial space on lung
lobules’ walls while making walls look denser like white lines contrary to hazy GGO background.
The design is identical to an odd-shaped stone used to pave the driveway.

The 3 CT findings GGO, SWC and CPP, can be seen in isolation or combination. The
first symbol is normally GGO, followed by one or more (SWC, CPP). Although the COVID-19
detection. The Chest CT is very sensitive, but the basic findings like GGO could be related to
other causes of viral pneumonia such as influenza and adenovirus. The same is observed in
numerous non-infectious interstitial lung diseases, which implies that routine COVID-19 chest CT
for diagnosis is sensitive but not very specific.

As per Cellina et al. [4] in their research on Chest X-Ray Scans of COVID-19 patients and
the discussion above made that the lung abnormalities in both types of infections are visually very
similar to human perception, which made it difficult for radiologists to differentiate COVID-19
from other viral pneumonia without any drug examination. These difficulties and errors in diag-
nosis motivate the development of an AI/ML-based tool for auto-detection in real-time with
increased specificity.
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Figure 1: Shows chest CT scan: (a, b) Hazy opacities in both lungs (arrows), (c, d) The crazy
paving pattern (arrow), (e, f) Widespread solid consolidations [5]

1.3 Previous Works
The AI-based detection models can help tremendously conduct major highly performing

screening programs in various regions worldwide. Many attempts on deep learning-based tech-
niques for the diagnosis of diseases using images have been made previously. Many of them utilize
the Convolutional Neural Networks (CNN) based classification and detection models. One such
study conducted by Kang et al. [6] utilizes the Inception migration-learning model to train 217
Computed Tomography (CT) scans. The random selection of the Regions of Interest (ROIs) was
followed, and they achieved a specificity of 0.805 and a sensitivity of 0.84 for validation with an
accuracy of 83%.

Wang et al. [7] proposed a CNN-based architecture, COVID-Net, which resulted in a sen-
sitivity of 0.80, specificity of 0.889 and accuracy of 92.4%. This is also one of the first
open-source networks to discover COVID-19. Shouman et al. [8] obtained f 1 scores of 0.91 and
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0.89 for COVID-19 and regular case detection, respectively, by considering another study, the
COVIDx-Net, which provides a controlled analysis of seven major architectures of deep convo-
lutional neural networks, namely the VGG19, ResNet-V2, DenseNet121, Inception-V3, Xception,
InceptionResNet-V2 and the MobileNet-V2. The work experimentally claims that the VGG19 and
DenseNet perform the best among other deep learning classifiers.

In a similar context, Bhattacharya et al. [9] presented a detailed survey, summarized the
state-of-the-art research works related to deep learning applications for COVID-19 medical image
processing and provided an overview of deep learning and its applications to healthcare found
in the last decade. Oztoprak et al. [10] collected 717 CT images of 350 patients from a medical
research facility and used a CNN-based network that suppresses noise to remove interference from
low-dose CT images. They provided lung segmentation from CT images and applied quantum
Fourier transform while preprocessing stage, and achieved 99.5%, 99.2%, 99.0%, 99.7%, and 99.1%
in the context of performance criteria viz., accuracy, precision, sensitivity, specificity, and f1 score,
respectively. In similar interest, Ismail et al. [11] used techniques like deep feature extraction using
pre-trained CNN models like ResNet (18, 50, 101), VGG (16, 19), fine-tuning the pre-trained
CNNs, and the Support Vector Machine (SVM) as the classification head with varying kernel
functions like Linear, Quadratic, Cubic and the Gaussian over a dataset of 180 COVID-19 and
200 healthy chest X-Ray images. The highest all accuracy score of 94.7% was achieved with a
sensitivity of 91% and a specificity of 98.89%. Alshazly et al. [12] experimented with Explainable
COVID-19 detection upon two different CT image datasets, namely the SARS-Cov-2 CT scan and
the COVID19-CT and achieved average accuracy, precision, sensitivity, specificity, and F1-score
values of 92.9%, 91.3%, 93.7%, 92.2%, and 92.5% on the COVID19-CT dataset. The authors
explored and visualized the learned features using the t-SNE algorithm, where the resulting visual-
izations showed well-separated clusters for COVID-19 and non-COVID-19 cases. Aslan et al. [13]
explored deep learning architectures for COVID-19 infection detection with ANN-based segmenta-
tion onto chest scan images in the first stage, data augmentation to improve generalization ability.
With 85% of images as training data, the authors implemented pretrained modified AlexNet and
one with BiLSTM layer, thus considering the temporal features into the image and achieved a
classification accuracy of 98.14% and 98.7% for both architectures, respectively.

Saiz et al. [14] used the VGG16 with the SSD300 and some pre-processing techniques on
the images and got to the specificity of 0.92 and a sensibility of 0.9492. The work suggested a
need to experiment with the other variants of SSD for such image-based diagnostics. We also
experimented with this proposal using the SSD512, replacing the conventional VGG16 with the
Residual Network101, while introducing the prediction modules. With a bigger dataset but the
same pre-processing methods, we achieved a specificity of 0.926267 and a sensibility of 0.949485.
Although this was an improvement, it required further improvisations for a practical possibility,
as discussed in the following sections.

2 Methodology

This study uses a robust detection network aimed particularly for the COVID-19 detection.
The model proposed implements the Deconvolutional Single Shot Detector (DSSD) [15] in which
SSD [16] along with Residual-101 [17] is augmented with deconvolution layers. In object detection
for small objects, the accuracy was observed to improve when the additional large-scale context
was introduced. The training data images were also pre-processed using the Contrast Limited
Adaptive Histogram Equalization (CLAHE) [18], and extensive augmentation techniques like
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Random Cropping, Random Flipping and photometric distortion were also applied before training
for effective and acceptable results.

In this section, we will first confer about the choices made like the choice of DSSD over
SSD as detector network, drawbacks of conventional SSD and how modifications can help. The
detailed methodology and pre-processing steps have been discussed in Section 3. Section 4 will
analyze the structure of the dataset used, the model’s training, hyper-parameter selection, and the
results obtained. Lastly, we will estate the concluding remarks and further possibilities for the
model.

2.1 DSSD Over SSD
The SSD is constructed on top of a base network and is docked with some convolution

layers at the end and a series of increasingly smaller Conv layers to make multiple-scale detection
predictions, as added in blue in Fig. 2. For every feature map cell, several priors or default boxes
of variable scales and aspect ratios are generated by the input map’s regular tiling. These boxes are
equivalent to the “Anchors” in the study of Faster R-CNN [19]. These priors are matched with
the Ground Truth Boxes using the Jaccard Index threshold and classified as negative or positive
samples.

Figure 2: Shows DSSD layers and convolutional layers

The model incorporates multi-scale function maps and default boundary boxes to classify
objects on various scales. At each function map cell, offsets are calculated relative to default box
shapes in the cell and per-unit ratings, which signify the location of the class instance in each
of these boxes. Non-Maximum Suppression (NMS) is used for post-prediction analysis, and final
identification tests are obtained.
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2.2 Proposed Model’s Focus
For the detection of COVID-19 from Chest X-Ray (CXR) Images, as per discussion done in

Section 1.2, it can be concluded that the prime focus of the proposed model should be to learn
to differentiate between CXR scans of common pneumonia and the COVID-19 pneumonia. Since
the visuals are similar to a large extent, it’s difficult for humans to diagnose. Since the pixel values
in the regions with these indications (GGO, SWC, CPP) can never be exactly similar in CXR
scans of both the infections.

Expecting differences in both types of scans at smaller levels, which is the ‘worth focusing part
of a model, we propose a Deconvolutional SSD with some tasks-specific pre-processing model
for the detection. It should be well noted that the size of the ground truth boxes won’t shrink
much; instead, the model will be able to learn the differences with higher precision with the help
of DSSD as it is chosen primarily so to ‘not dilate’ the features’ information in the image that is
essential to learn the said difference.

2.3 Drawbacks of SSD
In a CNN, the receptive fields are different for nodes in different layers. Also, the smaller

regions of an input map (image/feature map) would shrink tremendously after passing through
multiple pooling layers. Hence, the layers with larger receptive fields, also called higher/later layers,
should predict larger objects and vice-versa for small objects. The SSD architecture distributes
multi-scale (MS) default boxes to multiple layers, thereby compelling predictions for a certain
scale to each layer in the ConvNet. Hence SSD doesn’t make relatively good predictions for small
objects.

Their study on MS-CNN [20] applied deconvolution over multiple layers before region pro-
posals and feature pooling to scale up the feature’s map resolution. It is concluded that layers
with small receptive fields (shallow layers) and dense feature maps need to be used as information
sources for better detection of small objects. Since the shallow layers don’t incorporate much
semantic information about objects, just using these can result in low performance.

2.4 Proposed Solution
A possible solution to above-mentioned issues is using the same deconvolution operations

onto dense feature maps and injecting more semantic information into them. The proposed
solution will solve the shrunken-resolution-of-feature maps-problem (by deconvolution), and the
shallow layers will contain rich context information (by Deconvolution Modules). This approach
is also implemented in the Multi-Region CNN study [21]. The authors tried to pool features from
pre-defined regions such as half-parts, center, border and context area, and the region proposal.

The model proposed for better COVID-19 diagnosis utilizes the DSSD and an unbalanced
encoder-decoder hourglass structure to pass context information before any predictions. The base
network chosen is the ResNet101 which is also an optimal choice as the skip networks between
convolutional blocks help diminish the effects of disappearing gradient, allowing the network to
go deeper.

3 Proposed Model

3.1 Prediction Module
The primary structure over which the DSSD is developed, i.e., SSD + ResNet101, isn’t a

major improvement in itself. The study on DSSD has shown that adding a Prediction Module
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increases the performance significantly and verified this from an ablation study as in Tab. 1. While
studying MS-CNN, the accuracy can be improved by modifying the subnetwork for each task.
The SSD feature extraction layers have to learn to generate maps representing spatial, semantic
information and the right transformations. Also, it has to undo previous transformations before
selecting the best for a scale.

But adding Prediction Modules (PMs) to the network would now require feature extraction
layers to learn representing information from an image, and PMs are now able to learn the
transformations. In their study on DSSD, the researchers have also convinced well in Tab. 1
that the Prediction Module 3c as in Fig. 3c outperforms the other three, i.e., conventional SSD
approach shown by block in Fig. 3a, version of the residual block with skip connection as in
Fig. 3b and two sequential residual blocks are shown in Fig. 3d. Following this and DSSD, we
use one residual block, as shown in Fig. 3c, for the individual prediction layer.

Table 1: (Effects of various prediction modules on Pascal VOC 2007 test). PM-prediction module
in Fig. 3

Method mAP

SSD 321 76.4
SSD 321 + PM (b) 76.9
SSD 321 + PM (c) 77.1
SSD 321 + PM (d) 77.0

Figure 3: Shows different variants of prediction modules (PM)
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3.2 Deconvolution Module
The Deconvolution Modules (DMs) are used to integrate information from earlier deconvo-

lution layers and feature maps to solve the problem, as discussed in Section 2.3. Solid circles
in Fig. 2 show the DM module. Learned transposed convolution (or deconvolution) layers are
used for optimum results instead of just a deconvolution operation by convolution layer before
sampling. As shown in Fig. 4, other than implementing learned deconvolution, the DMs’ mod-
ifications add batch-normalization layer after every convolution layer and use the element-wise
product (Eltw: p) instead of the sum experimentally claimed using Tab. 2.

Figure 4: Shows deconvolution module

Table 2: (Effects of various deconvolution and prediction modules on Pascal VOC 2007 test). PM:
prediction module in Fig. 3, Dm: feature combination (from studies as in DSSD)

Method mAP

SSD 321 + PM (c) + DM (Eltw-sum) 78.4
SSD 321 + PM (c) + DM (Eltw-prod) 78.6
SSD 321 + PM (c) + DM (Eltw-prod) + Stage 2 77.1

3.3 Preprocessing
In research done by Basha et al. [22], some liberated electrons, due to thermionic emission,

get electrically attracted towards the anode. This collision onto the target (tungsten) results in
photons’ emission in X-Ray Spectrum, thereby forming the basis of X-Ray Image formation.
The important point is that the filament gets heated (resulting in thermionic emission) due to
current flow. That means the visual measures of an X-Ray Image are directly affected by the
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Voltage Spikes. Hence, all of the X-Ray Scans worldwide can’t be synchronized in terms of these
parameters. Another factor affecting the contrast of these images is the Exposure Time which
refers to the time interval through which the X-Rays are produced.

In work done on improving contrast for images in X-ray imaging, low-level exposure is main-
tained until the scanning process for the region of interest (ROI) is completed. Hence, the images
so-obtained are often with a low signal-to-noise ratio. It is now clear that all the X-Ray images
are needed to be combined in contrast. Therefore, the Contrast Limited Adaptive Histogram
Equalization (CLAHE) is used before training over the dataset’s input images. In Contrast Limited
Adaptive Histogram Equalization, contrast amplification is limited due to the adaptive histogram
equalization. This algorithm is applied to an X-Ray image by dividing the image into equal size
as in Fig. 5.

Figure 5: Shows original x-ray image on left and CLAHE processed image on right

It has been observed that applying CLAHE to images before training improves the model-
performance measurements (accuracy, sensibility, specificity) by a considerable amount. This can
be realized from Tab. 3. Also, since ResNet101, a much deeper network than the VGG-Net,
is used, the image size was set to be larger, i.e., [512, 512]. This model was implemented on
MATLAB; a part of the code for reference can be read in Fig. 6. Extensive data augmentation
techniques like randomly flipping, cropping, and photo-metric distortion, are also used.

Table 3: Effect of CLAHE processing on model performance

Image Class CLAHE Total images True detection Accuracy

NON-COVID-19 NO 1069 995 93.077
NON-COVID-19 YES 1069 1026 95.977
COVID-19 NO 323 287 88.854
COVID-19 YES 323 306 94.737
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Figure 6: Shows the code-snippet implementing resizing and CLAHE pre-processing on MATLAB
for reference

3.4 Summary of Modifications
As explained in previous sections, the proposed model uses ideas from numerous previous

studies. We used the Deconvolution Modules (DM) and the Prediction Modules (PM) as a
potentially good modification, but not for detecting small-sized images like in its study on DSSD
itself. Instead, we use their concept of Transposed Convolution and feature injection to address
the problem of similarity in visual findings, as explained in Section 1.2. Secondly, we increased the
image input size to help various factors, including deep base-network. The Pre-processing methods
are also very particular to the problem-in hand. Lastly, the decision to select hyper-parameters, as
discussed in the next section, was done after insights from studies like DSSD and similar. None of
the models proposed previously, one of them being the conventional SSD300 + VGG16, combine
these modifications and implementations, proving the validity of the idea proposed.

4 Training, Results and Discussion

As already discussed in Sections 1.2 and 2.2, a COVID-19 detection model needs to learn the
differences in imaging features for both types of infections. Hence, the image dataset to be used
has to constitute images of both classes. This way, the model will result in fewer false positives
while inference.

The COVIDx Dataset [23] has been set to be the direct source. There are five different open-
source chest radiography datasets [24–28] as this source’s constituents. There are about 473 C:
X-Ray Images of COVID-19 cases. The number of images of Pneumonia cases is higher than
‘required.’ These images of class Pneumonia need to be shuffled randomly and select several
images for our model to maintain a balance between images in both categories. We merged this
dataset with [29] for enlarging the dataset.

The split of the dataset was done as follows-

(a) Balancing the image dataset for both categories with a difference in several image instances
is roughly not more than 10%.
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(b) For the training and validation dataset, roughly (78 ± 2)% of available COVID-19 X-Ray
images and (73 ± 2)% of selected Pneumonia X-Ray images to be used.

(c) For the testing dataset, roughly 20% of available COVID-19 X-Ray Images and (25 ±
1.5)% of available Pneumonia X-Ray images to be used.

This should be certainly observable that there are more images of class Pneumonia in the test
dataset. This is for getting better insights into the model’s performance, as it should distinguish
between both classes by giving fewer false positives. The training steps followed are-

(a) Implement the conventional SSD training approach, i.e., match a set of anchors to target
ground truth boxes using Jaccard index, selecting non-matched samples. Their ratio with
matched is 3:1 and finally minimizes the joint localization and confidence losses.

(b) Next, use this trained SSD as a pre-trained model for DSSD, as in the original work.
Freeze the SSD side, and train the deconvolution side only for this stage.

(c) Finally, fine-tune the entire network.
(d) The batch size is 16/32, preferably.
(e) All of the training is done in two steps, with a decrease in the learning rate.
(f) Choose the anchor boxes based on the specific training data as discussed below.

We estimated the anchor boxes from the training data using the IoU distance metric. The
number of anchor boxes was chosen empirically, i.e., using the measure of mean IoU of boxes
in each cluster via k-means clustering with IoU. The trade-off between the mean IoU and the
number of anchors is shown in Fig. 7. Empirically, we determined the optimal number of anchor
boxes be 9.

Figure 7: Trade-off between mean IoU and no. of anchors

The architecture of the proposal as a flow chart can be studied from Fig. 8 below.

As also represented in Fig. 8, the images are augmented for the training part and preprocessed
for both the training and testing portions after splitting the images with ground truth data. Then,
after allowing the SSD-Conv layers to learn, pass the training stage to the DSSD-layers while
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subsequently freezing the SSD-layers. Finally, after fine-tuning this entire network, it is ready to
be fed by the augmented testing images’ dataset, producing the detection output.

Figure 8: Shows flow chart of the proposed architecture

4.1 Results Obtained
We also did a similar study with SSD512 + ResNet101 and prediction modules earlier

and achieved a sensitivity of 94.95% and a specificity of 92.47% with considerable accuracy
relative to previous works in the domain. With the proposed methodology in this study, with
the said-hyperparameters, we achieve 95.97% of sensitivity and 94.74% specificity, clearly claiming
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improvement over the previous model. The comparison in both and the result of this study
are displayed in Tab. 4. It can be analyzed from this data that the inclusion of methodology
elements like the Deconvolution modules helps enhance the model’s performance; hence, it is the
right choice combined with the technical proof of necessity in previous sections. Particularly, the
specificity measure jumps with a considerable margin, making the model a potential candidate for
a solution to the problem of similarity in Viral Pneumonia and CoVID-19 on images as discussed
in previous sections.

Table 4: Comparison between the previous study on SSD + RESNET101 and DSSD

Metric Operation Value

Using SSD Sensitivity 1015/1015 + 54 0.949485
Specificity 307/307 + 25 0.92469

Using DSSD Sensitivity 1026/1026 + 43 0.95977
Specificity 306/306 + 17 0.94737

With near 95% of sensitivity and specificity, our study suggests that this model will not only
predict the COVID-19 cases correctly with high precision but also be performing comparatively
well in case of detecting a Non-COVID-19 case, which highlights that our model performs com-
paratively better at recognizing the difference between COVID-19 and other viral infections like
the Pneumonia, which as discussed in the previous sections, was a major problem. The simulation
results as inflow of True Positive Rate vs. False Negative Rate to analyze the robustness of the
proposed model can be studied from the plot in Fig. 9 below.

Figure 9: Shows relation between true positive and false positive rate

We also tabulated prediction results from two previous studies using Deep-Learning based
methods at the same task in Tab. 5 below. Undoubtedly, the four other studies compared in Tab. 5
used distinct and varying techniques in their methodology. As clear from the metric values, our
study almost outperforms competitively, thereby further improving the study’s credibility for the
task.
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Table 5: Comparison between our proposal and previous studies

Study Metric Value

Our study Sensitivity 0.95977
Specificity 0.94737

Study by Oztoprak et al. [10] Sensitivity 0.99
Specificity 0.997

Study by Ismail et al. [11] Sensitivity 0.91
Specificity 0.9889

Study by Alshazly et al. [12] Sensitivity 0.937
Specificity 0.922

Study by Saiz et al. [14] Sensitivity 0.9492
Specificity 0.920

5 Conclusion and Future Work

As already discussed above, this model utilizes the DSSD approach extensively while address-
ing the should-be focus of any detection models for COVID-19, unlike previous works. Also, it
results in competitive model performance metrics concerning previous studies. We implemented
various preprocessing techniques like CLAHE, augmentation, etc. and chose hyperparameters of
the model, particularly focusing on Deep Learning-based models at this task. Furthermore, we
utilized the idea of transposed convolution, prediction modules and information injection into the
DSSD network with the ResNet101 as its base network. The competitive results demonstrate the
highly potent use of Deep-Learning techniques in Computer Vision/Medical Imaging.

The proposed methodology certainly performs better than most of the existing ones at this
task. Yet, there are margins of further development, in the sense that mere COVID-19 detection
models like these won’t be able to interpret the severity of a positively infected patient. Surely,
diagnosis of any infection, by its definition, includes both the disease detection as well as analysis
of its severity, in case it is present. Also, as discussed previously and as proved by various
medical studies, the severity of these types of infections depends upon the intensity of the
lesion/markings on the Chest X-Ray/Chest CT images. Hence, Machine Learning/Deep Learning
entirely can simultaneously also predict the severity of a patient. This can also help medical
professionals prioritize the patients complaining about the infection. Secondly, there are several
variants/extensions to DSSD, like the Multi-Scale DSSD [30]. These can also experiment with
the increasing number in the image dataset. Another important aspect of being developed is the
potential use of the technology for tasks like a prediction of some other infection/disease from
visual data, particularly in cases where a similar problem arises, i.e., its ideally harsh for any model
to distinguish between two classes which differ only at smaller-level. Clearly, with the uprising
of Deep Learning based methods in the Medical Diagnosis Industry, such methodologies might
prove to be meeting the criteria for practical implementation.
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