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Abstract: As video compression is one of the core technologies required to
enable seamless medical data streaming in mobile healthcare applications,
there is a need to develop powerful media codecs that can achieve minimum
bitrates while maintaining high perceptual quality. Versatile Video Coding
(VVC) is the latest video coding standard that can provide powerful cod-
ing performance with a similar visual quality compared to the previously
developed method that is High Efficiency Video Coding (HEVC). In order to
achieve this improved coding performance, VVC adopted various advanced
coding tools, such as flexible Multi-type Tree (MTT) block structure which
uses Binary Tree (BT) split and Ternary Tree (TT) split. However, VVC
encoder requires heavy computational complexity due to the excessive Rate-
distortionOptimization (RDO) processes used to determine the optimalMTT
block mode. In this paper, we propose a fast MTT decision method with two
Lightweight Neural Networks (LNNs) using Multi-layer Perceptron (MLP),
which are applied to determine the early termination of the TT split within
the encoding process. Experimental results show that the proposed method
significantly reduced the encoding complexity up to 26% with unnoticeable
coding loss compared to the VVC Test Model (VTM).

Keywords: Mobile healthcare; video coding; complexity reduction; multi-
layer perceptron; VVC; intra prediction; multi-type tree; ternary tree;
neural network

1 Introduction

Image or video compression is widely used to facilitate real-time medical data communication
in mobile healthcare applications. This technology has several applications, including remote
diagnostics and emergency incidence responses, as shown in Fig. 1 [1]. Mobile healthcare is one
of the key aspects of telemedicine in which clinicians perform a broad range of clinical tasks
remotely. At the same time, patients communicate with clinicians on hand-held devices with a
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limited hardware platform. Therefore, there is a need to develop a low-complexity video codec that
achieves minimum bitrates with better coding performance while still maintaining high perceptual
quality for seamless delivery of medical data within a constrained network bandwidth.

Figure 1: Visual representation of remote healthcare applications [1]

The state of the art video coding standard, Versatile Video Coding (VVC) [2] has been
developed by the Joint Video Experts Team (JVET) of ITU-T Video Coding Experts Group
(VCEG) and ISO/IEC Moving Picture Experts Group (MPEG) in 2020. It can significantly
improve the coding performance compared with High-Efficiency Video Coding (HEVC) [3].
According to [4], VVC test model (VTM) has higher compression performance by 25% when
compared with HEVC test model (HM) under the All Intra (AI) configuration recommended
by JVET Common Test Conditions (CTC) [5]. This improvement was achieved as a result of
newly adopted coding tools, such as flexible block structure, Position Dependent intra Prediction
Combination (PDPC) [6], Cross Component Linear Model intra prediction (CCLM) [7], Wide
Angular Prediction (WAP) [8], and Matrix weighted Intra Prediction (MIP) [9]. Although VVC
can significantly improve the coding performance, the encoder’s computational complexity also
substantially increased by approximately 26 times [10] compared to HEVC. Therefore, it is essen-
tial to reduce the encoding complexity of VVC to facilitate its real-time implementation in low-end
mobile devices.

One of the main differences between HEVC and VVC is the block structure scheme. Both
HEVC and VVC commonly specify Coding Tree Unit (CTU) as a basic coding unit with an
interchangeable size based on the encoder configuration. In addition, to adapt to the various block
properties, CTU could be split into four Coding Units (CUs) using a Quad-Tree (QT) structure.
In HEVC, a leaf CU could be further partitioned into one, two, or seven Prediction Units (PUs)
according to the PU partitioning types. After obtaining the residual block derived from the PU
level using either intra or inter prediction, a leaf CU can be further partitioned into multiple
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Transform Units (TUs) according to a Residual Quad-Tree (RQT) that is structurally similar to
that of the CU split. Therefore, the block structure of HEVC has multiple partition concepts,
including CU, PU, and TU, as shown in Fig. 2 [11].

Figure 2: Multiple partition concepts for the coding unit (CU), prediction unit (PU), and trans-
form unit (TU) in HEVC [11]

On the other hand, VVC replaces the concepts of multiple partition unit types (CU, PU,
and TU) of HEVC with another block structure, named QT-based Multi-type Tree (QTMTT). In
VVC, a MTT can be partitioned into either Binary Tree (BT) or Ternary Tree (TT) to support
more flexible CU shapes. As shown in Fig. 3, VVC specifies a single QT split type and four MTT
split types. These include quad-tree split (SPLIT_QT), vertical binary split (SPLIT_BT_VER),
horizontal binary split (SPLIT_BT_HOR), vertical ternary split (SPLIT_TT_VER), and horizontal
ternary split (SPLIT_TT_HOR), respectively. While the minimum BT and TT sizes are both 4×
4, the maximum BT and TT sizes are 128× 128 and 64× 64, respectively. Note that a QT node
with a square shape can be further partitioned into either sub QT or MTT node, while a MTT
node can be only partitioned into MTT node, as shown in Fig. 4 [11]. Here, a QT or a MTT leaf
node is considered as a CU, and it is used in the unit of the prediction and transform processes
without any further partitioning schemes. It means that a CU in VVC can have either a square
or a rectangular shape, while a CU in HEVC always has a square shape.

Although the block structure of VVC is superior to that of HEVC in terms of the flexibility
of CU shapes, it causes heavy computational complexity on VVC encoder due to the excessive
Rate-distortion Optimization (RDO) calculations required to search for the optimal QT, BT, and
TT block mode decision. Furthermore, VVC adopted a dual-tree structure in the intra-frame so
that a CTU can have different block structures according to the color of each component. It
means that a luma CTU and a chroma CTU can have their own QTMTT structures. This dual-
tree concept significantly improves the coding performance in the chroma components but comes
at the cost of increasing the computational complexity [12]. Therefore, we propose a fast MTT
decision method with two Lightweight Neural Networks (LNNs) using Multi-layer Perceptron
(MLP), which are applied to determine the Early Termination (ET) of the TT split within the
encoding process. In this paper, we implemented two LNNs before the RDO process of the TT



2016 CMC, 2022, vol.70, no.1

split. These are denoted as HTS-LNN and VTS-LNN for the ET of the horizontal and the
vertical TT split, respectively.

(a) (b) (c)

Figure 3: VVC block structure consisting of a quad-tree (QT) and a multi-type tree (MTT) where
MTT is classified into binary tree (BT) and ternary tree (TT) splits in the horizontal and vertical
direction. (a) QT split (b) BT split (c) TT split

Figure 4: CU partitions corresponding to the QT or MTT node in VVC [11]

In this study, we investigated four input features to use as an input vector on the proposed
two LNNs with MLP structure. With the proposed four input features, two LNNs were designed
to provide high accuracy with the lowest complexity. In addition, various ablation works were
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performed to evaluate their effectiveness how these features would affect the accuracy of the pro-
posed LNNs. We then proposed a fast MTT decision method using the two LNNs to determine
the early termination of the horizontal and the vertical TT splits required in the CU encoding
process. Finally, we implemented the proposed method on top of the VTM and evaluated the
trade-off between the complexity reduction and the coding loss on medical sequences as well as
JVET test sequences.

The remainder of this paper is organized as follows. In Section 2, we review the related fast
encoding schemes used to reduce the complexity of the video encoder. Then, the proposed method
is described in Section 3. Finally, experimental results and conclusions are given in Sections 4 and
Section 5, respectively.

2 Related Works

Several methods have been proposed to reduce the computational complexity of HEVC and
VVC encoders. Shen et al. proposed a fast CU size decision algorithm for HEVC intra prediction,
which exploited RD costs and intra mode correlations among previously encoded CUs [13].
Goswami et al. [14] designed a fast block mode decision method using the Markov-Chain-Monte-
Carlo model and the Bayesian classifier to determine the optimal CU partitioning shapes. Min
et al. [15] proposed a fast CU partition algorithm based on the analysis of edge complexity. As
described in [16], Min et al. addressed a fast QTBT decision method based on the RD costs
of the previously encoded CUs in VVC. Yang et al. [17] also proposed a fast QTBT decision
method using the properties of intra prediction mode. Cho et al. proposed a fast CU splitting
and pruning method for sub-optimal CU partitioning with Bayes decision rules in the intra
prediction of HEVC [18]. In [19,20], the proposed schemes exploited both texture properties and
spatial correlations derived from neighboring CUs. In [21], a fast CU mode decision method was
proposed to estimate the optimal prediction mode in HEVC. Recently, Park et al. [22] proposed
a context-based fast TT decision (named C-TTD) method using the correlation according to the
directional information between BTs and TTs. Saldanha et al. [23] proposed a novel fast partition-
ing decision scheme for VVC intra coding to reduce the complexity of the QTMT structure. This
scheme is composed of two strategies that explore the correlation of the intra prediction modes
and samples of the current CU for deciding the split direction of binary and ternary partitions.
Fu et al. designed two fast encoding schemes to speed up the CU splitting procedure for VVC
intra-frame coding [24]. Lei et al. [25] proposed a look-ahead prediction based on a CU size
pruning algorithm to cut down redundant MTT partitions. Wu et al. [26] investigated a support
vector machine (SVM) based fast CU partitioning algorithm for VVC intra coding designed to
terminate redundant partitions by using CU texture information. Fan et al. [27] proposed a fast
QTMT partition algorithm using the texture properties such as variance and gradient to reduce
the computational complexity of VVC CU partitions. This method exploited RD costs obtained
from the previously encoded CU data based by using a probabilistic approach.

While the aforementioned methods evaluated statistical coding correlations between a current
CU and neighboring CUs, recent researches have studied new fast decision schemes using Convo-
lutional Neural Network (CNN) or Multi-layer Perceptron (MLP) to avoid the redundant block
partitioning within video encoding processes. Xu et al. [28] defined a Hierarchical CU Partition
Map (HCPM) with nine convolutional layers in order to determine the optimal CU partition
structure in HEVC. Kim et al. [29] designed simple neural networks using MLP to estimate the
optimal CU depth in HEVC. Galpin et al. [30] proposed a CNN-based block partitioning method
for fast intra prediction in HEVC by exploiting texture analysis of CTU blocks to predict the most
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probable splits inside each potential sub-block. Wang et al. [31] proposed a QTBT partitioning
decision in order to determine the optimal CU depth as a multi-classification problem in the
inter prediction. Jin et al. [32] proposed a fast QTBT partition method with a CNN model to
predict the depth range of QTBT according to the inherent texture richness of the image. Li
et al. [33] addressed a deep learning approach to predict QTMT-based CU partition to accelerate
the encoding process in the intra prediction of VVC. Lin et al. [34] proposed a CNN-based intra
mode decision method with two convolutional layers and a fully connected layer. Zhao et al. [35]
developed an adaptive CU split decision method with the deep learning and multi-featured fusion.
Zaki et al. [36] also proposed a CtuNet framework to support CTU partitioning using deep
learning techniques. As the aforementioned methods are mainly focused on speeding up QT or
BT, fast encoding schemes for the TT split are still needed in VVC.

3 Proposed Method

The RD-based encoding procedures for the current CU are illustrated in Fig. 5, whereby the
gray rectangles represent the newly adopted MTT (BT and TT) block structures in VVC. In order
to find the optimal block structure, the encoder conducts the RD competitions for all MTT split
types, including QT split according to the order illustrated in Fig. 5. In this paper, we propose a
fast MTT decision method to determine the early termination of the TT split in the CU encoding
process. Note that the proposed method can only be applied for cases wherein a further MTT split
is allowed. For the implementation of the proposed method, we deployed two early termination
networks for the horizontal and vertical TT splits, which are denoted as HTS-LNN and VTS-
LNN, respectively.

As shown in Fig. 6, the proposed method has two modules which are feature aggregation and
early TT decision consisting of HTS-LNN and VTS-LNN. In the feature aggregation module, the
Network Input Features (NIF) of the two LNNs are extracted halfway through encoding processes
according to the TT direction. These are then fed into the two LNNs in order to be used as the
input vectors, which are denoted as x̄h, NIF and x̄v, NIF , respectively. Finally, the horizontal and
vertical TT splits are determined by the neurons (yh and yv) output values of LNNs.

3.1 Feature Aggregation
In this paper, we defined the relationship between the parent CU and current CUs used to

extract the network input features. The parent CU can be either a QT node with a square shape
or a MTT node with either a square or a rectangular shape covering the area of the current CU.
For example, the divided QT, BT, and TT CUs can have the same parent CU, which is the QT
node with 2 N × 2 N, as illustrated in Fig. 7a. Similarly, a MTT node is also regarded as a parent
CU for further partitioned sub-MTT nodes, as depicted in Fig. 7b.

Because CNN generally requires heavy convolution operations between input features and
filter weights, the proposed LNNs were designed to use fewer input features that can be easily
extracted during the current CU encoding process. In this paper, we proposed four input features
which are named as Ratio of Block Size (RBS), Optimal BT Direction (OBD), Ratio of the
Number of Direction (RND), and TT Indication (TTI), respectively, as described in Tab. 1.
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Figure 5: CU encoding procedures of VVC

3.2 Early TT Decision with LNNs
We implemented two LNNs with MLP architectures before the TT split, defined as HTS-

LNN and VTS-LNN, according to the early termination of the horizontal and vertical TT splits,
respectively. Through feature aggregation, a 1-dimensional (1D) column vector with four features
as an input vector was identified for both HTS-LNN and VTS-LNN. As shown in Fig. 8, HTS-
LNN consisted of four input nodes, one hidden layer with 15 hidden nodes, and one output node.
Conversely, VTS-LNN consisted of four input nodes, two hidden layers with 30 and 15 hidden
nodes, and one output node. The value of the output node finally determined the horizontal or
vertical TT splits.

We implemented both HTS-LNN and VTS-LNN on PyCharm 2020.3.2 using the Keras
library. In the process of network training, the output of the jth neuron were computed by Eq. (1):

hj = f

(∑
i

w̄jix̄i+ bj

)
, where j= 1, . . . , ϕ (1)

where x̄i, w̄j,i, bj, ϕ and f (·) denote the ith input feature, the filter weight corresponding to the jth

neuron of the ith input feature, the bias value of the jth neuron, the number of neurons within
each layer, and the logistic sigmoid function as an activation function, respectively. The output of
each network (yh or yv) had a value between 0 and 1, and it determined whether the TT split of
the current CU could be skipped or not with a predefined threshold value. Note that when the
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output values of the models are close to 1, then the TT should be split and vice versa. Since the
threshold value was set to 0.5 in this paper, the encoder performed the TT split when the value
of the output neuron was larger than the threshold value.

Figure 6: Proposed CU encoding procedures. The gray rectangles represent the proposed feature
aggregation and early TT decision

Tab. 2 shows the measured weight and bias parameters as well as the total memory size.
Since the parameters were stored as a 4-byte floating number, the total memory of the proposed
networks was less than 3 KB.

Under the AI configuration of JVET CTC [5], we collected training datasets halfway through
the encoding by VTM 10.0 [4] to train the proposed networks. A Quantization Parameter (QP) of
30 was selected to separate the training conditions from the testing conditions. The input features
were then extracted with the type of floating number, which ranged from 0 to 1. The total numbers
of input vectors for the training HTS-LNN and VTS-LNN were 185,988 and 209,337, respectively.
In addition, 20% of them were used as the validation set. Note that the training datasets had to
be extracted evenly for both the TT non-split and the TT split because the TT split was rarely
encoded as the best block.
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The selected hyperparameters are presented in Tab. 3. The weight values of the proposed
networks were optimized using a Stochastic Gradient Descent (SGD) with a momentum value of
0.9 and a weight decay of 1e-6 [37]. The batch size and learning rate were set at 128 and 0.01,
respectively. The initialization of all MLP weights was performed according to Xavier’s normalized
initialization procedure [38], whereby the optimized model parameters were updated iteratively
within the predefined epoch number, and the Mean Squared Error (MSE) was used as a loss
function. Finally, we implemented the trained models on top of VTM 10.0.

Figure 7: Graphical representation of the parent and current CUs. (a) An example of regarding
QT as a parent CU (b) An example of regarding MTT as a parent CU
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4 Experimental Results

All experiments were run on an Intel Xeon Gold 6138 40-cores 2.00 GHz processors having
256GB RAM operated by the 64-bit Windows server 2016. In the class A (3,840× 2,160) and B
(1,920× 1,080) sequences of JVET CTC, the proposed method was evaluated under AI configu-
ration and we compared our method with the previous method [22], where VTM 10.0 was used
as an anchor.

Table 1: Input features used in the proposed networks

Input features Description

Ratio of block size (RBS) Depending on the TT direction, RBS is
computed as follows:
[HTS-LNN] H/(W + H) for
SPLIT_TT_HOR.
[VTS-LNN] W/(W + H) for
SPLIT_TT_VER,
where W and H are the width and the
height of parent CU, respectively.

Optimal BT direction (OBD) The boolean value indicates whether the
optimal direction among the two BTs is the
same as that of the current TT.

Ratio of the number of direction (RND) The ratio of the horizontal (h) and vertical
(v) number splits in the QT or MTT block
with the lowest RD cost.
[HTS-LNN] h/(h+ v) for SPLIT_TT_HOR.
[VTS-LNN] v/(h+ v) for SPLIT_TT_VER.

TT split indication (TTI) TTI is an accumulated value according to
the comparisons of RD costs in the block
mode decision process. For reference, TTI is
initialized at 0.
[HTS-LNN] when one of the BTs has a
lower RD cost than the QT, the TTI is set
at 0.5, meaning that when all the BTs have
lower RD costs than that of QT, it is set
at 1.
[VTS-LNN] whenever one of the BTs has a
lower RD cost than the QT, the TTI is
increased by 0.25. In addition, when the
SPLIT_TT_HOR is lower than the RD cost
of the QT, it is increased by 0.5.
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Figure 8: Proposed LNN architectures. (a) HTS-LNN with one hidden layer having 15 nodes (b)
VTS-LNN with two hidden layers having 30 and 15 nodes

Table 2: Memory analysis of the proposed networks

Category HTS-LNN VTS-LNN

Layer Total
parameter

Memory
(KB)

Layer Total
parameter

Memory
(KB)

2 3 2 3 4

Weight 4× 15 15× 1 75 0.30 4× 30 30× 15 15× 1 585 2.34
Bias 15 1 16 0.06 30 15 1 46 0.18

Table 3: Hyperparameters of the proposed methods

Optimizer Stochastic Gradient Descent (SGD)
Activation function Sigmoid
Loss function Mean Squared Error (MSE)
Learning rate 0.01
Momentum 0.9
Weight decay 1e-6
Number of epochs 5,000
Batch size 128
Initial weight Xavier
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4.1 Performance Measurements
In order to evaluate the coding loss, we measured the Bjontegaard Delta Bit Rate

(BDBR) [39]. In general, a BDBR increase of 1% corresponds to a BD-PSNR decrease of
0.05 dB where the positive increment of BDBR indicates the coding loss. Eq. (2) represents the
weighted average BDBR of Y, U, and V color components in the test sequences recommended by
JVET CTC. For comparison of the computational complexity, we measured time-saving (�T) as
expressed by Eq. (3):

BDBRYUV = 6×BDBRY +BDBRU +BDBRV
8

(2)

�T = 1
4

∑
QPi∈{22, 27, 32, 37}

Torg(QPi)−Tfast(QPi)

Torg(QPi)
(3)

where Torg and Tfast denote the total encoding time of the anchor and the fast encoding methods,
respectively. In terms of BDBRYUV and �T , performance comparisons between the proposed
method and the compared method [22] are measured in Tab. 4. Compared to the anchor, the
proposed method achieved an average time saving of 26%. In particular, the maximal time saving
of 30% was obtained in the Tango2 sequence. Furthermore, the proposed method enhances the
time saving up to 10% on average compared to the previous method [22]. The effectiveness of this
technique was further verified on 29 colonoscopy medical sequences obtained from the Computer
Vision Center-Clinic Database (CVC-ClinicDB) [40]. As shown in Tab. 5, the results had similar
trends to those obtained from the JVET test sequences, whereby an average time saving of up to
35% was noted with almost the same visual quality as the anchor, as shown in Fig. 9.

Table 4: Performance comparisons on JVET CTC [5]

Class Sequence C-TTD [22] Proposed method

BDBRY BDBRU BDBRV BDBRYUV �T BDBRY BDBRU BDBRV BDBRYUV �T

A Tango2 0.17% 0.09% 0.30% 0.17% 14% 0.28% 0.03% 0.11% 0.23% 30%
FoodMarket4 0.16% 0.14% 0.14% 0.15% 13% 0.27% 0.15% 0.02% 0.22% 27%
Campfire 0.27% 0.35% 0.58% 0.32% 17% 0.38% 0.10% 0.45% 0.36% 26%
CatRobot 0.36% 0.56% 0.49% 0.40% 14% 0.50% 0.21% 0.20% 0.43% 26%
DatlighRoad2 0.44% 0.99% 0.77% 0.55% 18% 0.59% 0.50% 0.37% 0.55% 26%
ParkRunning3 0.15% 0.35% 0.32% 0.19% 16% 0.26% 0.20% 0.18% 0.24% 22%

B MarketPlace 0.18% 0.44% 0.28% 0.23% 16% 0.33% 0.28% -0.03% 0.28% 29%
RitualDance 0.33% 0.56% 0.41% 0.37% 18% 0.53% 0.41% 0.23% 0.48% 27%
Cactus 0.38% 0.49% 0.71% 0.44% 20% 0.51% 0.10% 0.39% 0.44% 26%
BasketballDrive 0.39% 0.66% 0.60% 0.45% 15% 0.50% 0.14% 0.18% 0.42% 24%
BQTerrace 0.34% 0.89% 0.94% 0.48% 18% 0.44% 0.58% 0.45% 0.46% 21%
Average 0.29% 0.50% 0.50% 0.34% 16% 0.42% 0.25% 0.23% 0.37% 26%

4.2 Ablation Works
In order to optimize the proposed network architecture, it is essential to determine the valid

input features, the number of hidden layers, and the number of nodes per hidden layer. Tool-off
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tests on both validation and training datasets were performed to measure the effectiveness of the
four input features. This test involved measuring the efficacy of all input features combined (“all
features”) and then by subsequently omitting one of the four input features. The results of the
tool-off tests are illustrated in Tabs. 6 and 7. Since the “all features” input exhibited the best
accuracy and the lowest coding loss, the effectiveness of each of the tool-off tests was determined
as a proportion of the “all feature” category. Based on these findings, we confirmed that the
proposed four input features affected the performance of our networks in different ways. In
particular, the TTI and RND were identified as the most effective input features in the HTS-LNN
and VTS-LNN, respectively.

Table 5: Performance comparisons on medical images

CVC-ClinicDB [40] C-TTD [22] Proposed method

BDBRY �T BDBRY �T

2nd sequence 0.42% 25% 0.44% 33%
3rd sequence 0.31% 26% 0.40% 34%
10th sequence 0.44% 31% 0.62% 36%
12th sequence 0.29% 30% 0.31% 39%
25th sequence 0.28% 28% 0.44% 34%
Average 0.35% 28% 0.44% 35%

Figure 9: Visual comparison on CVC-ClinicDB [40]. (a) 2nd sequence (b) 6th sequence
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Table 6: Tool-off tests on the HTS-LNN input features

Category HTS-LNN

Training datasets Validation datasets

Accuracy Loss Accuracy Loss

All features 0.752 0.176 0.752 0.176
RBS tool-off 0.734 0.185 0.733 0.185
OBD tool-off 0.716 0.191 0.716 0.191
RND tool-off 0.747 0.180 0.746 0.181
TTI tool-off 0.682 0.204 0.681 0.204

Table 7: Tool-off tests on the VTS-LNN input features

Category VTS-LNN

Training datasets Validation datasets

Accuracy Loss Accuracy Loss

All features 0.713 0.193 0.716 0.192
RBS tool-off 0.670 0.211 0.669 0.211
OBD tool-off 0.682 0.205 0.684 0.205
RND tool-off 0.645 0.221 0.644 0.221
TTI tool-off 0.660 0.218 0.663 0.217

In terms of the number of hidden layers and the number of nodes per hidden layer, we
investigated a few neural network models using different numbers of nodes and hidden layers, as
shown in Tabs. 8 and 9. Note that the maximum number of hidden layers was set to two for all
the lightweight network designs. After considering both the accuracy and the loss of networks,
HTS-LNN was optimized under one hidden layer with 15 nodes. On the other hand, VTS-LNN
was optimized under two hidden layers with 30 nodes in one of the layers and 15 nodes in the
second layer.

Table 8: Verification of the numbers of hidden layers and nodes in HTS-LNN. The best results
of accuracy and loss are shown in bold

Category HTS-LNN (4× 15× 1)

Training datasets Validation datasets

Accuracy Loss Accuracy Loss

4× 15× 1 0.752 0.176 0.753 0.176
4× 30× 1 0.752 0.177 0.753 0.177
4× 45× 1 0.753 0.176 0.748 0.178
4× 30× 15× 1 0.752 0.176 0.751 0.176
4× 45× 30× 1 0.752 0.176 0.752 0.176
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Table 9: Verification of the numbers of hidden layers and nodes in VTS-LNN. The best results
of accuracy and loss are shown in bold

Category VTS-LNN (4× 30× 15× 1)

Training datasets Validation datasets

Accuracy Loss Accuracy Loss

4× 15× 1 0.710 0.195 0.714 0.193
4× 30× 1 0.710 0.197 0.709 0.197
4× 45× 1 0.711 0.195 0.710 0.194
4× 30× 15× 1 0.713 0.193 0.716 0.192
4× 45× 30× 1 0.713 0.193 0.714 0.193

5 Conclusions

In this paper, we proposed two LNNs with MLP architectures to determine the early termi-
nation of the TT split in the encoding process, namely HTS-LNN and VTS-LNN for the early
termination of the horizontal and vertical TT splits, respectively. HTS-LNN consisted of four
input nodes, one hidden layer with 15 hidden nodes, and one output node. On the other hand,
VTS-LNN consisted of four input nodes, two hidden layers with 30 and 15 hidden nodes, and
one output node. The various verification tests of those networks were conducted to determine
the optimal network structure. In order to identify the effectiveness of this method for the
transfer of medical images, we evaluated the performance of our approach using colonoscopy
medical sequences obtained from the CVC-ClinicDB and JVET CTC sequences. Our experimental
results indicate that the proposed method can significantly reduce the average encoding complex-
ity by 26% and 10% with unnoticeable coding loss compared to the anchor and the previous
method, respectively. Through visual comparison, we demonstrated that the proposed method
could provide almost the same visual quality compared to the anchor.
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