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Abstract: Security measures are urgently required to mitigate the recent rapid
increase in network security attacks. Although methods employing machine
learning have been researched and developed to detect various network attacks
effectively, these are passive approaches that cannot protect the network from
attacks, but detect them after the end of the session. Since such passive
approaches cannot provide fundamental security solutions, we propose an
active approach that can prevent further damage by detecting and block-
ing attacks in real time before the session ends. The proposed technology
uses a two-level classifier structure: the first-stage classifier supports real-time
classification, and the second-stage classifier supports accurate classification.
Thus, the proposed approach can be used to determine whether an attack
has occurred with high accuracy, even under heavy traffic. Through extensive
evaluation, we confirm that our approach can provide a high detection rate
in real time. Furthermore, because the proposed approach is fast, light, and
easy to implement, it can be adopted in most existing network security equip-
ment. Finally, we hope to mitigate the limitations of existing security systems,
and expect to keep networks faster and safer from the increasing number of
cyber-attacks.

Keywords: Network intrusion detection; network intrusion prevention; real-
time; two-level classifier

1 Introduction

Recently, we have experienced a rapid increase in cybercrime [1]. With a growing number of
people working from home, the importance of network security has increased. Therefore, there is
an urgent need to develop new technology to keep networks and users safe from malicious attacks.
Early network security technology uses signature-based detection to discover network attacks
using specific patterns identified by analyzing previous attacks [2–4]. Signature-based detection can
significantly increase detection speed, thereby enabling network intrusion prevention in real time,
and intrusion detection in non-real time.
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However, signature-based methods are considerably vulnerable to variants of existing attacks
and to newly emerging attacks, especially zero-day attacks [5–7]. Therefore, machine learning-based
technology for detecting abnormal behaviors (instead of a pattern-dependent method) has recently
been developed to overcome these vulnerabilities. Although a number of studies are underway into
the proposed machine learning-based technologies, most of them focus on improving detection
accuracy; research on improving detection speed to achieve real-time detection is lacking [8]. This
is evident from the fact that machine learning-based technologies are applied only to intrusion
detection systems (IDSs). Thus far, intrusion prevention, which blocks intrusions in real time, does
not have applicable systems using machine learning.

There might be several reasons why a machine learning-based intrusion prevention system
(IPS) has not yet been developed; however, the most important reason is the complexity of the
machine learning algorithm itself. Most machine learning algorithms are trained on large amounts
of data, and classification is then performed by the generated models [9–14]. It requires a consid-
erably long time to train machine-learning models with large amounts of data, and this requires
huge amounts of memory and computing power. To solve these problems, various partitioning-
based machine learning techniques have been proposed, and some of the problems can be solved
by adopting external cloud systems to mitigate the lack of memory and computational power
required by training procedures.

However, classification by a learning model requires considerable computing power and fast
speeds. As a solution, high classification speed can be obtained by massively parallel processing
using expensive multiple GPUs. In this case, the CPU-GPU latency from transferring and process-
ing a large amount of data can be detrimental to a high-capacity network that needs to transmit
packets at high speed without delay [15].

Furthermore, the biggest reason why a machine learning-based IPS is difficult to implement
is that it takes too long to generate from network traffic the features used for machine learning.
There are several approaches to generating features; however, most studies generate features from
each session, rather than from single packets. In this case, features cannot be generated before the
session ends, and any attack is detected after the session ends [5–7,16,17]. Thus, attacks cannot
be detected in real time. Moreover, with the current approaches, it is even difficult to detect an
attack soon after the session ends because of poor classification performance.

Thus, in this study, we propose a method of generating features and detecting attacks in real
time before the session ends. In particular, this study makes the following contributions.

(1) A structure for generating features in real time

By presenting the structure for generating features in real time, the proposed method enables
early attack detection by determining whether an attack has occurred before the session ends.

(2) High accuracy and real time attack detection through a two-level classifier

To detect an attack in real time, we propose a unique two-level detection method. We designed
a first-stage classifier that can detect attacks at high speed; the second-stage classifier improves
detection accuracy. Thus, we implement a classifier with high accuracy while detecting attacks in
real time.
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(3) Low implementation costs

Although the proposed method uses a two-level classifier, it has the advantage of being
applicable to existing equipment because it uses the same classifier (or two similar classifiers) to
simplify implementation, compared to other hybrid methods or ensemble-based classifier methods.

The remainder of this manuscript is organized as follows. Section 2 identifies and compares
the features in existing work. Section 3 describes the proposed method in detail. Section 4 analyzes
the results of the performance evaluation. Finally, Section 5 concludes this study with a brief
summary.

2 Existing Work

Early network intrusion detection systems (NIDSs) use pattern-matching or threshold-based
approaches. Such NIDSs can support fast detection but reveal crucial limitations in detecting
zero-day attacks. Thus, a lot of research is focusing on machine learning-based approaches.
The early machine learning-based NIDS employed a single machine learning algorithm, so it
showed weakness in accurately detecting various network attacks. NIDS research using multiple
machine learning algorithms has been actively going on. Generally, machine learning-based IDSs
are classified into packet-based methods and session-based methods, where the former use packet
data for learning, and the latter use session data. The packet-based methods obtain features from
raw packet data without a feature extraction technique. The session-based methods require all
the session data in order to build features after the session is finished or has expired. Since the
information from one entire session is reduced to a small number of statistical values called
session features, it can support very high processing speeds.

In this section, we describe in detail the existing work, from early non-machine learning-based
approaches to various recent machine learning approaches. We also compare the pros and cons
of each approach.

2.1 The Non-Machine-Learning Algorithm
The signature-based approaches can be classified into two groups according to whether they

support real-time detection or not. One of the most well-known non-real-time detection methods
using the signature-based approach is the earliest IDS for monitoring multi-user systems. It can
detect some specific types of attack: intrusion attempts, unauthorized intrusions, data breaches,
DDoS, and suspicious use. The security policy is converted into rules and stored in a database,
and each flow is analyzed to determine whether it was an attack or not based on the data
registered in the database. After the flow closes, features are extracted from transmitted and
received packet data and are used for detection. Thus, this approach cannot support real-time
detection [2].

One of the NIDSs belonging to this category can provide real-time intrusion detection and
prevention using the Boyer–Moore pattern matching algorithm in a signature-based manner [2,18].
It compares the header, payload, and size of an incoming packet to pre-registered signatures
to identify malicious traffic. However, the system has some issues, such as processing overhead
and reliability. It needs to analyze every packet to create a new signature. Nonetheless, it cannot
guarantee the reliability of a signature.
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2.2 The Packet-Based Single-Machine-Learning Algorithm
This approach uses a single-machine-learning algorithm with features obtained from packet

data [2]. From the packet-based features, it can detect malicious code in packet payload data
similar to an early pattern-matching approach. However, it inherently cannot detect zero-day
attacks and attack variants, and the NIDS using this approach can be bypassed via packet
fragmentation to avoid detection. By collecting multiple packets of a session rather than a single
packet, such a weakness can be mitigated.

2.3 The Packet-Based Multiple-Machine-Learning Algorithm
This approach adopts multiple machine-learning algorithms to detect attacks [3]. Multiple

algorithms can greatly help increase classification performance but the classification speed can
deteriorate. Thus, the main disadvantage of this approach is that it is very difficult to use in large
networks because of the slow training and classification speeds [3].

2.4 The Session-Based Single-Machine-Learning Algorithm
This approach extracts features from each session and classifies each session to detect abnor-

mal traffic [9–14]. Early machine learning-based studies belong to this category. Since it does not
use packet data to generate features, but uses a fixed number of features (regardless of the session
length or packet size of each session), it can reduce memory usage and simplify the classification
algorithm, resulting in high training and classification speeds. Owing to such benefits, we can apply
this approach to large-scale networks. However, features can only be generated after the session
ends, so when it detects an attack, it has most likely already been completed.

2.5 The Session-Based Multiple-Machine-Learning Algorithm
This approach performs training and classification by using features extracted from a session

by using various classification algorithms. Ensemble and multi-layered methods are well-known
types in this category [17,19]. The ensemble method applies several algorithms and combines the
results from them. By doing so, it can significantly improve the detection performance, compared
to a single-machine-learning approach. The multi-layered method runs each algorithm serially,
based on the results after executing a specific algorithm. Generally, this approach adopts unsuper-
vised learning and supervised learning. One example applies k-nearest neighbors (kNN) at first,
to obtain multiple partitions, and then applies a decision tree (DT) algorithm to each partition.
A multiple-classification algorithm compensates for the weakness of each algorithm, reaching very
high classification accuracy. Instead, the classification speed becomes too slow to support real-
time attack detection because of the very high computational cost. For some algorithms in this
category, it is even impossible to apply them to a real network security system, because the overall
implementation cost is too high.

As of now, little research has been done to increase detection accuracy and speed simul-
taneously. Various approaches have been proposed for overcoming existing technical issues, but
real-time detection is still an open problem.

3 Proposed Algorithm

We propose a method for implementing an NIDS that can process packets received in real
time and determine whether an attack has occurred. The proposed algorithm generates the latest
features by updating the feature table for each session whenever a packet is received, and it
determines whether an attack has occurred using the features. As shown in Fig. 1, the proposed
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system is configured to simultaneously increase both classification speed and accuracy by utilizing
two classifiers. The proposed method has the following features.

• Early attack detection

The proposed method performs intrusion detection whenever a packet is received. Therefore,
it can detect intrusions without waiting until the session ends.

• Easy implementation

Although the proposed method is equipped with two classifiers, it is implemented using the
simple DT and its variants. Hence, it is considerably easy and simple to implement, and therefore,
it is possible to apply the proposed method, without high cost, to an existing system.

The proposed method consists of a classifier to apply whenever a packet is received, and
another classifier to apply when a session has ended. The classification executed whenever a packet
is received is done by the cumulative packet-based classifier (CPC), and the classification executed
after the session ends is done by the terminated flow-based classifier (TFC). A session is composed
of a series of two-way packets. Therefore, session f is denoted as f = {p1,p2, . . . ,pn} based on the
sequence of two-way packets received by the IDS. Here, f is a session consisting of n packets. The
session is defined based on a five-tuple, <sip, dip, sport, dport, protocol>, in which sip, dip, sport,
and dport denote the source IP, destination IP, source port, and destination port, respectively.
Thus, <ip1, ip2, port1, port2, protocol> and <ip2, ip1, port2, port1, protocol> are regarded as the
same session if the lifetimes overlap.

Whenever an IDS or IPS receives a packet, it creates and updates session statistics to generate
features for the relevant session. Now, suppose Fk is the feature vector generated using the
first k packets received. Assuming the total number of packets of the session is n, a total of
n pairs of feature vectors are created for the session (i.e., F1,F2, . . . ,Fn). Here, the CPC uses
F1,F2, . . . ,Fn, to classify whether the session is under attack, whereas the TFC uses only Fn to
estimate abnormality. It is common to remove sip and dip from the features used to train the
CPC and TFC. This is to prevent creation of a specific session-dependent model. Furthermore, in
the CPC, dport is excluded from the feature. Now, we describe in detail updating and generating
features whenever a new packet is received. We also show how the CPC and TFC work.

3.1 Incremental Feature Generation
Whenever a packet is received, the proposed algorithm updates information on the session to

which the packet belongs, and creates the features required for classification. As shown in Fig. 1,
the session information is stored in the feature table, which consists of internal session states
and session stateful features. Internal session states are not features, but rather, the information
necessary to create features. For example, Last Flow Timestamp (a field included in internal
session states) stores the time at which every packet is received. This value is then used to update
other values of internal session states or to create other features.

The internal session state is composed of bi-directional flow information and uni-directional
flow information, i.e., forward and backward flow information. Whenever a packet is received, the
corresponding fields for bi-directional flow information are always updated. Subsequently, fields
for forward or backward flow information are updated according to the direction of the packet.
Tab. 1 shows some selected fields for bi-directional flow information and shows how they are
updated whenever a packet is received. Similarly, Tab. 2 shows a partial set of the fields for
forward information, and how to update them. We omit fields for backward flow information since
they are almost identical to the forward ones.
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Figure 1: Overall procedures in incremental feature generation

Table 1: Partial list of bi-directional internal session states

No. Field name Calculation Explanation

1 Last Flow Timestamp = current packet timestamp Timestamp of the last
received packet

2 Flow IAT sqr = v + Flow IAT2 where Flow IAT’
= Last Flow Timestamp∗− Last Flow
Timestamp#

Total sum of IAT2

3 Pkt Len sqr = v + current packet size2 Total sum of packet
size2

4 Start Active Time = Last Flow Timestamp∗ if Flow
IAT∗ > 5 s

Start active time

5 Sub Flow Cnt = v + 1 if Flow IAT∗ > 1 s Total sub-flow count
. . . . . . . . . . . .

#The asterisk (∗) indicates a field value after the update. Therefore, Flow IAT and Flow IAT∗ are values before and after the update,
respectively. In addition, ‘v’ denotes a value before the update of the described field.

Table 2: Partial list of forward internal session states

No. Field name Calculation Explanation

1 Fwd Pkt Len sqr = v + current packet size2 if
current packet is sent forward

Total sum of packet size2 in
the forward direction

2 Fwd Last Timestamp = current packet timestamp if
current packet is sent forward

Timestamp of the last
received packet in the
forward direction

3 Fwd IAT sqr = v + Fwd IAT
∗2 where Fwd

IAT∗ = Fwd Last Timestamp∗−
Fwd Last Timestamp

Total sum of IAT2 in the
forward direction

4 Fwd Last Blk TS = current timestamp if no bulk
timestamp exists

Last bulk timestamp in the
forward direction

5 Fwd Blk Strt Hlpr = current timestamp if no bulk
timestamp exists

Current bulk timestamp
internally used in the forward
direction

. . . . . . . . . . . .
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We call information fields similar to the internal session state that work as features for
classification the session stateful features. In session stateful features, bi-directional, forward flow,
and backward flow information exists, and the corresponding fields are updated according to
the direction of the received packets. Tab. 3 provides some selected fields of bi-directional flow
information in session stateful features and shows how we update the fields.

Table 3: Partial list of bi-directional session stateful features

No. Field name Calculation Explanation

1 Flow Duration = v + Flow IAT∗ Flow duration
2 Flow IAT Mean = (v · (Tot Pkts-1) + Flow IAT∗)/Tot

Pkts
Mean time between two
packets in the flow

3 Flow IAT Max = max(v, Flow IAT∗) Maximum time between
two packets in the flow

4 Flow IAT Min = min(v, Flow IAT∗) Minimum time between
two packets in the flow

5 Pkt Len Min = min(v, current packet size) Minimum length of a
packet

. . . . . . . . . . . .

As mentioned earlier, internal session states and session stateful features are updated every
time a packet is received. Here, we should note that session stateful features do not include all
features required for machine learning and classification. It means that we need to create the
remaining features using internal session states and session stateful features. Such features are
called derived session features. They are not stored or maintained in the feature tables shown
in Fig. 1, and are temporarily generated through internal session states and session stateful
features whenever required. Derived session features contain fields for bi-directional, forward, and
backward flows.

Tab. 4 shows some typical bi-directional derived session features, and they are created by
using internal session states and session stateful features. This feature-generation approach allows
the system to progressively build session features. Whenever a packet is received, internal session
states and session stateful features are updated. When the entire feature set is needed, derived
session features are easily created without a high cost. Generally, we incur high overhead to create
the entire feature set after the session is terminated. However, incremental feature generation
distributes the overhead over time.

Table 4: Partial list of bi-directional derived session features

No. Field name Calculation Explanation

1 Flow Byts/s = (TotLen Fwd Pkts + TotLen Bwd
Pkts)/Flow Duration

Byte flow rate (number of bytes
transferred per second)

2 Flow Pkts/s = (Tot Fwd Pkts + Tot Bwd
Pkts)/Flow Duration

Packet flow rate (number of
packets transferred per second)

3 Flow IAT Std = sqrt( (Flow IAT sqr∗/Tot Pkts) −
Flow IAT Mean

∗2)
Standard deviation in the time
between two packets in the flow

4 Down/Up Ratio = Tot Fwd Pkts/Tot Bwd Pkts Download and upload ratio
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3.2 The Cumulative Packet-Based Classifier
If Fk (k< n) for a specific attack session partially reflects the characteristics of an attack, it

is possible to detect the attack using Fk. Here, the smaller the value of k, the faster the attack
can be classified; however, the probability of incorrect classification may also increase. The overall
characteristics of a session can be identified more accurately with an increase in k, but more time
is spent detecting attacks. Ultimately, it is necessary to decide when to perform classification for
the session. The session is no longer processed if it is classified as an attack in the CPC, and
the relevant packet and the subsequent packets received by the IDS are discarded. Therefore, it is
necessary to be cautious when classifying an attack in the CPC. In general, when machine learning
is employed to detect a network intrusion, the relationship between the sip and dip address values
should be used to create a feature (for example, by determining if they are the same). However,
sip and dip address values should be removed from the feature. To make the CPC more reliable
in detecting attacks, all features that can affect the creation of a model dependent on the session
itself should be removed. Hence, sip, dip, and dport are all removed in the proposed method,
whereas only sip and dip are removed in the conventional methods.

In general, class type and score are obtained as a result of CPC classification. The closer the
score is to 1, the more reliable it is, whereas the closer the score is to 0, the more unreliable it is.
Therefore, the minimum CPC score (MCS) should be determined—the higher the MCS, the lower
the rate of misclassification by the CPC. However, with an increase in the number of packets used
to generate features for classifying a session, it takes longer to detect an attack—the lower the
MCS, the quicker the detection in the CPC. However, this leads to an increase in the probability
of error. Therefore, in the proposed method, it is crucial to maintain high classification accuracy
and to improve speed at the same time by setting the MCS to an optimal value.

3.3 The Terminated Flow-Based Classifier
The TFC and CPC use basically the same feature structure; however, unlike the CPC, the

TFC performs classification after the session ends. Hence, there is no need to process the session
in real time. Therefore, unlike the CPC, it is more advantageous for the TFC to use a classifi-
cation algorithm with high accuracy rather than considering speed or computational complexity.
Furthermore, while the CPC performs learning and classification using all of Fk (k< n), the TFC
classifies only finished sessions. Therefore, in the TFC, learning and classification are performed
using only the Fn features generated based on all packets of the finished session. This method
uses the same features as those used in the CPC, but uses one more: dport.

3.4 Parameter Setting
As described above, the performance of the proposed method varies depending on the MCS.

Therefore, after training, the optimal MCS value is set based on the results from classifying
the training data. The proposed method uses decision tree algorithms for machine learning. In
general, the decision tree algorithm is suitable for an IDS that processes large amounts of data
owing to its fast training time, high classification speed, and low memory usage. Of the several
decision tree algorithms, the most appropriate should be selected. Therefore, by considering three
algorithms—DT, random forest (RF), and boosted DT (BDT)—we measure the F1-score while
increasing the MCS value from a combination of each algorithm. Using these results, the optimal
MCS for each algorithm was selected. The ISCXIDS2012 and CICIDS2017 datasets were used for
the experiment. For reference, the measurement results using the CICIDS2017 dataset are shown
in Fig. 2.
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Figure 2: Results of the performance comparison based on the MCS from the CICIDS2017
dataset (a) F1-score based on the MCS and (b) Average detection time

As seen in Fig. 2, the F1-score was the highest when RF and BDT were used among the
combinations of first- and second-level classifiers. Here, the F1-score was consistently maintained
when the MCS was 0.977 or higher; however, the average detection time increased significantly,
when the MCS was 0.998 or higher. Therefore, in the proposed method, we conducted experiments
by setting the MCS to 0.998 when using RF for the CPC and BDT for the TPC, and by setting it
to 1 when using DT and BDT. Similarly, the same method was used to select the best combination
of classifiers and the relevant MCS for the ISCXIDS2012 dataset. Thus, the MCS was set to
0.985 when using RF and BDT, and it was set to 1 when using DT and BDT.

3.5 Overall System Operation
The overall operation of the proposed IPS is as follows. When a packet arrives, the IPS first

determines whether to receive it or not according to the firewall policy. If the matched policy
returns deny, it is discarded. Otherwise, it is accepted, and the internal session states and session
stateful features are created or existing features are updated. After that, the system builds entire
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features for the packet after creating derived session features. It determines if the session for the
packet is benign or not through the CPC. If the classification score is higher than MCS, the
session is added to the firewall policy blacklist or whitelist based on the class type. Conversely,
if it is lower than MCS, the packet is forwarded regardless of the classification result. When the
session terminates, the internal session state and session stateful feature data for the session expire
and are removed after building the final features. The final determination about the session is
done by the TFC; the results are logged and the administrator is notified, if necessary. The overall
operation is in Algorithm 1.

Algorithm 1: Intrusion Prevention System
1 IF packet P is received THEN
2 Consult firewall to find the matching policy for P.
3 IF policy action is ‘deny’ THEN
4 Drop P and RETURN
5 END_IF
6 Update bi-directional internal session states & bi-directional session stateful
7 features.
8 IF P is in the forward direction THEN
9 Update forward internal session states and forward session stateful features.
10 ELSE
11 Update backward internal session states and backward session stateful features.
12 END_IF
13 Create derived session features and classify P using CPC.
14 IF score < MCS THEN
15 RETURN
16 END_IF
17 IF P is malicious THEN
18 Add P session to blacklist of firewall.
19 ELSE
20 Add P session to whitelist of firewall.
21 END_IF
22 ELSE IF expired session S is found THEN
23 Create derived session features for S.
24 Remove data for S from the session table.
25 Classify S using TFC.
26 IF S is malicious THEN
27 Notify the administrator and log the result.
28 END_IF

4 Performance Evaluation

4.1 The Environment
To evaluate the performance of the proposed method, we compared its performance using

various algorithms and two datasets: CICIDS2017 and ISCXIDS2012 [17,20]. For training and
testing, the datasets were split in a 6:4 ratio. We chose these datasets because packet and label-
ing data are available, and therefore, features can be generated using CICFlowMeter. We used
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80 features proposed in ISCXIDS2012. However, as described in Section 3, sip, dip, and dport
were excluded from the first-level classifier, but only sip and dip were excluded from the second-
level classifier. The size and characteristics of each dataset are summarized in Tab. 5.

Table 5: Characteristics for each dataset

ISCXIDS2012 Total pieces of data 163,806
Total number of classes 5
Ratio of the training and testing split 6:4

CICIDS2017 Total pieces of data 1,011,319
Total number of classes 11
Ratio of the training and testing split 6:4

For the performance comparison, we employed a 1D-CNN [21], LSTM [22], and TCN [23],
which are deep learning algorithms [24], along with DT and Naïve Bayes (DTNB) as a clustering-
based method [25], BDT as a boosted algorithm [26], and DT and RF [27], which are DT
categories [18]. The parameter settings for each algorithm are listed in Tab. 6.

Table 6: Parameter settings for each algorithm

Algorithm Parameter Value

Proposed MCS ISCXIDS2012: 1 s for (DT, BDT), 0.985 s for
(RF, BDT)
CICIDS2017: 0.998

Maximum depth Unlimited
Minimum samples to split 2
Minimum samples leaf 1
Maximum features 8
Maximum leaf nodes Unlimited
Number of trees RF: 10

BDT: 50
AdaBoost Learning rate: 1

Boosting algorithm: SAMME.R
1D-CNN Learning rate 0.001

Batch size 16
Epochs 5
Optimizer Adam
1-D convolution layer Number of filters: 128; kernel size: 3; stride: 1
Activation layer ReLU
Max pooling layer Pooling size: 2
1-D convolution layer Number of filters: 128; kernel size: 1; stride: 1
Activation layer ReLU
Max pooling layer Pooling size: 2

(Continued)
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Table 6: Continued

Algorithm Parameter Value

LSTM Learning rate 0.001
Batch size 32
Epochs 5
Optimizer Adam
Hidden layer Number of neurons: 128; time step: 1

TCN Learning rate 0.001
Batch size 1024
Epochs 100 (early stop enabled)
Optimizer Adam
Number of filters 64
Kernel size 2
Number of residual block stacks 1
Dilations [1, 2, 4, 8, 16, 32, 64]

DTNB Maximum depth Unlimited
Minimum samples to split 2
Minimum samples leaf 1
Maximum features 8
Maximum leaf nodes Unlimited

4.2 Comparison of Detection Rates
Of the various performance indicators in the classifiers used in the NIDS, the most crucial

factor is detection rate. If normal and attack sessions cannot be accurately classified, such an
algorithm is impractical for an NIDS, regardless of its high classification speed. In this experi-
ment, we measured accuracy, precision, recall, and F1-score to compare the detection performance
of each algorithm. The experimental results are shown in Figs. 3 and 4, which indicate that the
results are similar, regardless of the dataset type. As seen in the figures, the proposed method using
a combination of RF and BDT showed higher performance than the conventional competing
methods for all metrics. Furthermore, the method using DT and BDT achieved slightly lower
performance than the 1D-CNN and LSTM. In all cases, the proposed method using RF and BDT
showed the highest accuracy and F1-score. This clearly demonstrates that the proposed two-level
classifier structure is effective in improving accuracy.

4.3 Comparison of Detection Times
To detect an attack in real time, it should be possible to detect the attack before the session

ends. To evaluate this capability, we measured and compared the time taken from the start of
the session to detection of an attack. The shorter the time, the more effective the method is at
detecting and defending against an attack in real time. Tab. 7 shows the results from comparing
detection times for the proposed and comparison methods. Because all the competing methods
are session-based IDSs, classification and detection were performed after the sessions ended.
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Figure 3: Experimental results using the CICIDS2017 dataset

Figure 4: Experimental results using the ISCXIDS2012 dataset

Accordingly, in Tab. 7, the detection times of the session-based methods are expressed as the
session duration, assuming no additional processing time existed. In an actual implementation, the
comparison methods may take more time than the results shown in Tab. 7. The proposed method
indicates the time taken for accurate detection after the session started.

As shown in Tab. 7, the proposed method makes use of the CPC to detect attacks even before
the session ends. Hence, the speed at which an attack is detected by the CPC is a valid metric
to gauge the performance of the comparison methods. Tab. 7 indicates that the proposed method
can detect attacks significantly faster than the conventional methods. In particular, the (DT, BDT)
method was at least five times faster than the (RF, BDT) method. The proposed method based
on RF and BDT was almost three times faster than the conventional session-based methods. This
clearly shows that the proposed method can provide detection speed that is not achievable with
conventional methods. In particular, most session-based methods detect the session end using a
timeout value. For the TCP, the session end time can be determined by detecting the FIN packet;
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however, in the other protocols, such as a UDP session, the IDS cannot accurately detect the
session end time. Therefore, it needs to estimate the end time after no packets are transmitted
for predefined duration, which is generally set at 30 s to 120 s. For session-based IDSs in a
real environment, the sum of the session duration and the timeout value is defined as the total
detection time. Thus, the gap in the actual detection speed between the proposed method and a
conventional session-based method becomes larger than that shown in Tab. 7.

Table 7: Average detection time for each class in the CICIDS2017 dataset (in seconds)

Class Session-based
IDS

Proposed using
(RF, BDT)

Proposed using
(DT, BDT)

Benign 64.2 7.7 0.9
Bot 38.5 38.2 2.7
DDoS 76.9 4.2 0.02
DoS GoldenEye 83.5 20.6 16.0
DoS Hulk 117.1 55.3 1.6
DoS Slowhttptest 109.8 66.8 4.1
DoS slowloris 116.0 39.1 21.9
FTP-Patator 64.5 0.2 0.04
PortScan 60.1 59.8 18.9
SSH-Patator 36.1 30.2 0.001
Web Attack + Brute Force 61.1 59.9 3.6
Cumulative Average 77.8 27.2 4.1

To compare detection speeds more accurately, it is necessary to compare the speed for each
class. Tab. 7 also shows those detection speeds, and the proposed method detects each class much
faster than the conventional methods. In particular, the proposed method using (DT, BDT) can
significantly reduce the detection time, compared to the proposed method using (RF, BDT). As
seen in the previous experiment, the performance from (DT, BDT) is slightly lower than from (RF,
BDT) in terms of detection rate. Therefore, it is advantageous to use (RF, BDT) when detection
rate is more important than speed. Conversely, it is better to use (DT, BDT) when speed is more
critical than detection rate.

Tab. 8 shows the average detection time for each class in the ISCXIDS2012 dataset. As
with CICIDS2017, the detection time can be significantly reduced compared to the conventional
session-based methods, so it is more suitable to use (DT, BDT) instead of (RF, BDT) if high
detection speed is needed.

The detection time is affected by the inter-packet time in a session. That is, with an increase
in the inter-packet time in the same session, the detection time also increases. Therefore, instead
of measuring the relative detection time, we can compare the performance more accurately by
determining how many packets within each session are received before an attack is detected. Tab. 9
summarizes the average number of packets required to detect each class type in CICIDS2017.
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Table 8: Average detection time for each class in the ISCXIDS2012 dataset (in seconds)

Class Session-based
IDS

Proposed using
(RF, BDT)

Proposed using
(DT, BDT)

Benign 64.1 6.4 3.0
BruteForceSSH 40.1 0.8 0.4
DDoS 59.8 23.5 7.7
HTTPDoS 71.6 30.5 8.5
Infiltration 62.6 46.3 14.2
Cumulative Average 61.7 20.4 4.0

Table 9: Average number of packets before detection of each class in CICIDS2017

Class Session-based
IDS

Proposed using
(RF, BDT)

Proposed using
(DT, BDT)

Benign 23.9 1.5 1.3
Bot 6.1 3.9 2.1
DDoS 7.7 4.4 2.3
DoS GoldenEye 9.5 4.5 3.1
DoS Hulk 9.5 3.9 1.5
DoS Slowhttptest 6.6 5.4 3.3
DoS slowloris 8.1 3.6 3.0
FTP-Patator 13.3 3.4 2.9
PortScan 2.0 2.0 2.0
SSH-Patator 27.2 3.0 2.9
Web Attack + Brute Force 16.8 6.1 3.6
Cumulative Average 14.7 2.6 1.6

Tab. 9 indicates that the proposed method requires considerably fewer packets to detect an
attack than the conventional session-based methods. Moreover, we can see that the number of
packets required for (RF, BDT) is not significantly different from (DT, BDT). Tab. 10 summarizes
the results using ISCXIDS2012, which are similar to those for CICIDS2017.

Table 10: Average number of packets before detection of each class in ISCXIDS2012

Class Session-based
IDS

Proposed using
(RF, BDT)

Proposed using
(DT, BDT)

Benign 24.6 2.8 1.7
BruteForceSSH 10.1 3.6 1.0
DDoS 67.5 4.3 2.0
HTTPDoS 12.3 9.3 2.1
Infiltration 17.6 5.6 2.0
Cumulative Average 33.0 3.5 1.8
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4.4 System Load
The proposed NIDS should repeatedly classify the session whenever a new packet is received

until the class type of a specific session is detected. That is, unlike the conventional session-based
NIDS that requires a one-time classification for each session, the proposed NIDS performs more
classifications. This can result in significantly higher overhead in the system, compared to the
conventional method. Thus, such increased overhead can be an obstacle to real-time processing.
The number of packets needed to classify each session becomes the most crucial factor, and
should be minimized.

For a more accurate analysis of system loads, the total number of packets included in a
session, and the number of packets required before detection, are displayed for each session in
Fig. 5. The figure shows that the average number of packets required for detection is less than
five in most cases. In particular, for the sessions in which the total number of packets is very high
(>1000), the number of packets required for detection tends to stay consistently small, without a
significant increase.

Figure 5: Length of each session and the number of packets required before detecting an
attack. Vertical lines indicate the range of the number of packets. (a) CICIDS2017 (DT, BDT),
(b) CICIDS2017 (RF, BDT), (c) ISCXIDS2012 (DT, BDT) and (d) ISCXIDS2012 (RF, BDT)

For example, when using (DT, BDT) for the CICIDS2017 dataset, we observed that, even for
a session when the total number of packets was more than 100,000, it is possible to determine
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whether an attack has occurred with only the first two packets of the session. Thus, the proposed
method can classify normal and attacked sessions while maintaining low system loads regardless
of the session length. This is a significant characteristic for improving the performance of the
NIDS. This characteristic demonstrates that real-time IPS development is a real possibility.

5 Conclusion

We proposed a new approach that can detect cyberattacks in real time. It is composed of
two classifiers, one for processing packets in real time and the other for processing sessions in
non-real time, so it can simultaneously increase detection performance in terms of speed and
accuracy. In this research, we showed a promising solution enabling a machine learning-based
real-time IPS rather than a machine learning-based non-real-time IDS by providing incomparable
detection speed and accuracy. Of course, the proposed approach cannot process all the traffic and
detect any kind of attack in real time. The hardware platform costs are higher than conventional
IDSs since it requires almost twice the processing power, compared to the existing session-based
approaches. However, despite these limitations, it is of great significance, showing that it is possible
to implement real-time IPS-based rather than IDS-based machine learning algorithms. Future
research will find solutions to the shortcomings revealed by this research. In doing so, we believe
the proposed approach will improve so it is able to detect and defend against attacks in real
time, even on 100-gigabit networks. We also expect that it can protect networks and users from
malicious users and various network attacks.
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