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Abstract: Many respiratory infections around the world have been caused by
coronaviruses. COVID-19 is one of the most serious coronaviruses due to its
rapid spread between people and the lowest survival rate. There is a high need
for computer-assisted diagnostics (CAD) in the area of artificial intelligence
to help doctors and radiologists identify COVID-19 patients in cloud systems.
Machine learning (ML) has been used to examine chest X-ray frames. In
this paper, a new transfer learning-based optimized extreme deep learning
paradigm is proposed to identify the chest X-ray picture into three classes,
a pneumonia patient, a COVID-19 patient, or a normal person. First, three
different pre-trainedConvolutionalNeuralNetwork (CNN)models (resnet18,
resnet25, densenet201) are employed for deep feature extraction. Second, each
feature vector is passed through the binary Butterfly optimization algorithm
(bBOA) to reduce the redundant features and extract the most representative
ones, and enhance the performance of the CNN models. These selective fea-
tures are then passed to an improved Extreme learning machine (ELM) using
a BOA to classify the chest X-ray images. The proposed paradigm achieves a
99.48% accuracy in detecting covid-19 cases.

Keywords: Butterfly optimization algorithm (BOA); covid-19; chest X-ray
images; convolutional neural network (CNN); extreme learning machine
(ELM); feature selection

1 Introduction

The novel outbreak of coronavirus has come from Wuhan, China, and since January 2020,
it has spread extensively across the globe [1]. Health practitioners worldwide are conducting
extensive studies to find an effective treatment for the disease. The virus will cause people with
compromised immune systems to die [2]. COVID-19 is spread primarily through direct touch from
person to person. As the second wave of COVID-19 begins and the number of infected individuals
grows, the need for fast diagnostic methods increases. These methods prevent the rapid spread
of this virus by detecting infected people as soon as possible and putting them in isolation. The
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traditional way to diagnose infection is Polymerase chain reaction (PCR), but this method takes
a lot of time and is more costly.

Chest X-Ray (CXR) is an effective therapeutic addition that plays an important part in the
preliminary inquiry of lung abnormalities [3]. CT scans and chest rays can detect the disease,
especially without the existence of symptoms. It is a time-consuming procedure to read the X-ray
and CT scans of many patients manually. Computer-Aided Diagnosis (CAD) are systems that
assist doctors in the risk identification of medical images. A CAD system has been developed to
assist radiologists in diagnosing COVID-19.

Deep learning (DL) has proved its promising performance to diagnose different diseases
using computer-aided detection models [4,5]. DL, an artificial intelligence (AI) subfield, facilitates
the development of end-to-end models to produce promising results using input data without
manual extraction of features [6,7]. Many disease detection systems have effectively applied deep
learning strategies such as arrhythmia discovery [8,9], skin cancer classification [10,11], brain
disease classification [12], chest X-ray pneumonia detection [13], fundus image segmentation [14].

The features should be extracted from CXR images before utilizing a detection system. The
key objective of extracted features is to obtain a feature set from the CXR images used in the
classification phase to predict the diseases [15] correctly. Various feature extraction techniques have
been utilized, such as texture features, Gabor features, co-occurrence matrix features, and wavelet
transform-based features [16]. Convolutional Neural Network (CNN) is the robust method that is
most widely used for feature extraction and learning. Big data is required to train a CNN from
scratch. But it is challenging to acquire a large amount of labeled medical images. In this case,
the pre-trained CNN models trained on an extensive database like ImageNet can be utilized [17].
Pre-trained deep networks were successfully utilized in diagnosing prostate cancer [18], brain
diseases [19], leukemia [20], to name a few. Pre-trained CNNs have also successfully recognized the
COVID-19 [21,22]. The extracted feature set may carry redundant or irrelevant information [23].
Therefore, it is required to eliminate irrelevant information before the classification phase [24]. The
most relevant feature set obtains accurate classification results for the COVID-19 disease with the
minimum time consumption. Different ML techniques have been utilized in literature to recognize
COVID-19 patients and include support vector machine (SVM), and several others.

The extreme learning machine (ELM) [25] is widely used in recognition systems because of
its fast-learning capability and adequate generalization [26]. Generally, in the basic ELM model,
the random initialization of the input weights and hidden biases can put the ELM solution
models closest to local minima [27]. The generalization ability of ELM can be enhanced by
combining this model with other techniques [28,29]. In some studies, researchers have successfully
optimized the ELM using nature-inspired algorithms. Mohapatra et al. [30] introduced the ELM
model optimized by cuckoo search to organize medical datasets. Satapathy et al. [31] suggested
another optimized ELM by firefly algorithm. The hybrid firefly-ELM model was then applied to
a photovoltaic interactive microgrid for stability analysis. Researchers in [32] enhanced the ELM
using a whale optimization algorithm and then utilized it to evaluate the ageing degree of the
insulated gate bipolar transistor. The comparison of optimized ELM and singleton ELM proved
that the optimized ELM produces reasonable recognition.

Butterfly optimization algorithm (BOA) [33] is a new meta-heuristic swarm intelligence tech-
nique motivated by the food foraging butterflies’ behavior. Based on random exploration and
improvement by exploitation, the BOA can solve complex problems. Authors in [33] have observed
that mostly BOA perform better on the unimodal and multimodal benchmark functions. The
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exploitation and high convergence rate are the exceptional strength of BOA, based on elitism and
employed random movement. The appealing behaviors of BOA allow researchers to implement
BOA in several other applications (e.g., function selection dependent on wrapping algorithms). A
binary Butterfly optimization algorithm (bBOA) is presented by Arora et al. [34] to resolve the
feature selection issues. The bBOA selects robust features that enhance the classification accuracy.
The bBOA also possesses a good convergence rate and produces the optimal solution.

This study presents an end-to-end ML-based system to identify COVID-19 from CXR scans
automatically. Pre-trained CNN models, which are Resnet18 [35], Resnet50 [35], densenet201 [36],
were applied to CXR images for extracting the discriminative features. The bBOA algorithm
was then used to pick the most informative features from the collected deep features. These
features, then, were combined and were applied as the input to an optimized ELM model (ELM-
BOA). Briefly, this study demonstrates that combining the deep characteristics extracted from the
common levels of different CNN architectures enhances the efficiency of the classification process.
The contributions of this study are recapitulated as follow:

— The proposed framework uses several pre-trained CNNs for feature extraction.
— The framework uses a butterfly optimization algorithm (BOA) for feature selection and

optimizing the ELM model for classification.
— Evaluate and equate the output of the proposed methodology with state-of-the-art

approaches.

The remainder of the paper is broken down into this structure. Section 2 describes the
literature review of previous studies. Methods are explained in Section 3. Section 4 describes the
proposed model. The obtained results and their detailed analysis are discussed in Section 5. In
Section 6, the paper is concluded.

2 Literature Review

Recently, various methods have been developed for the identification of COVID-19 patients
from their X-ray and CT images. These methods utilized computer vision (CV) based machine
learning (ML) algorithms. Apostolopoulos et al. [37] executed transfer learning on X-ray images
dataset using different Convolutional Neural Network (CNN) models. They evaluate their tech-
nique on two datasets. The datasets include confirming COVID-19, bacterial pneumonia, and
normal cases. The maximum accuracy achieved on MobileNetv2 is 96.78% on 2-class and 94.72%
on 3-class. Researchers in [38], introduced a novel DL model (COVNet) for the detection of
COVID-19 disease from chest CT frames. This model achieved sensitivity and specificity of 90%
and 96%, respectively. Ghoshal et al. [39] conducted a study to investigate uncertainty in DL
models to identify COVID-19 in chest X-ray images. They estimated the uncertainty by performing
transfer learning on the Bayesian DL classifier.

Narin et al. [40] performed experiments on three CNN models including ResNet50, Inception-
ResNetV2, and InceptionV3 to identify the COVID-19 patients from chest X-ray images. Accord-
ing to their experiments, ResNet50 produced the highest performance with 98% classification
accuracy. In [41], a DL-based COVIDX-Net was proposed for automatic detection of COVID-19
in X-ray images. This COVIDX-Net model is based on seven different CNN models including
VGG19, DenseNet201, InceptionV3, ResNetV2, InceptionResNetV2, Xception, and MobileNetV2.
This technique achieved a 0.91 F1-score on VGG19 and DenseNet201. Wang et al. [42] proposed
a DL-based method to predict the COVID-19 disease in CT images. They fine-tuned the modified
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Inception architecture and extract the CNN features for classification. This method achieved an
accuracy of 82.9% and AUC 0.90.

A new artificial neural network based CapsNet [43] was introduced for coronavirus detec-
tion in chest X-Ray image dataset. Researchers tested their network on binary and multi-class
classification. The achieved recognition accuracy on binary class, and multi-class classification is
97.24%, and 84.22% respectively. A dual-branch combination network (DCN) [44] was introduced
to identify and risk identification the COVID-19 in chest CT scans. First, researchers segment the
lesion area to gain more accurate results in the classification phase. The DCN model achieved
96.74% accuracy. Horry et al. [45] utilized the TL approach for COVID-19 determination in
Ultrasound, X-Ray, and CT frames. To perform TL, they selected the VGG-19 network and
make appropriate changes in the parameters to fine-tune the model. The capabilities of the
presented technique were measured using precision and achieved 100%, 86%, 84% precision rate
for Ultrasound, X-Ray, and CT scans, respectively.

COVIDiagnosis-Net [46] is a deep learning model based on the SqueezNet with Bayesian
optimization. This developed model was trained and estimated on a dataset that contains a little
number of X-ray images for COVID-19 cases and produced a 100% accuracy for detection of
COVID-19 class and overall accuracy of 98.26%. Rahimzadeh et al. [47] merged the features pro-
duced by two pre-trained networks: Xception and ResNet50 V2. But this merge made the model’s
size up to 560 MB, which is unsuitable for practical implementation for real-time detection. The
model was trained using 3783 CXR images and tested on 11302 CXR images. The model achieved
an overall accuracy of 99.5 and 91.4 in the COVID-19 class. The authors compared the results
obtained from a model that used concatenated features, and the results produced by models that
use features come from a single CNN. Moreover, they proved that using concatenated features
achieves better results.

Shaban et al. [48] achieved a high accuracy of 96% by exploiting the advantages of genetic
algorithm in feature selection and using an enhanced K-nearest neighbor as a classifier. This
model is tested on chest CT images for identification of infected and non-infected people and
achieved results better than other recent models. A medical model of COVID-19 detection was
proposed by Nour et al. [49] to support clinical applications. It is constructed on deep learning
and Bayesian optimization. The CNN model automatically extracts features, which are often
processed using various machine learning methods, including KNN, SVM, and Decision Tree.
Data augmentation was applied to increase COVID-19 class samples. The proposed system’s
efficiency was assessed using 70% and 30% of the data set for training and testing, respectively.
The introduced technique obtained an accuracy of 97.14%.

Deep learning models have gained significant importance in detecting patients infected by a
coronavirus from the chest X-ray images. The detection model for COVID-19 can be enhanced
by using deep learning models as feature extractors or by fine-tuning deep learning models. Thus,
our work’s primary goal is to develop a deep learning-based methodology for the recognition of
COVID-19 affected patients.

3 Methods and Methodologies

3.1 Convolutional Neural Network (CNN)
Deep learning techniques help extract meaningful features in some data types, such as images

and videos. In Medical research, a Convolutional Neural network (CNN) is significantly utilized
in extracting these features from a large volume of medical images such as X-ray images and
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computerized tomography (CT) images. Besides, it achieves high accuracy and lowers computa-
tional cost, which provides generous support in improving health community research [50]. “Deep”
refers to the large numbers of layers in the network. This type of architecture helps these networks
to find complex features while the simple networks cannot. CNN’s primary fundamental is to
gain local features at beginning layers and merge them at last layers to form more complex
features [51].

Transfer learning is an efficient technique that takes advantage of a formerly learned
model’s knowledge to solve another probably related job by demand minimal re-training or
fine-tuning [52]. Deep learning algorithms require two essential requirements to work effectively:
a massive amount of labeled data and mighty computing power. Forming a large-scale and
high-quality dataset is very difficult and complicated [53]. While providing a powerful device to
implement deep learning techniques require Equipped laboratories or large fund [54]. Hence, Deep
Transfer Learning (DTL) attempts to solve this issue.

The first shape of transfer learning is using the pre-trained CNN as a fixed feature extrac-
tor [55]. This approach preserves the primary architecture and all learned weights. After CNN
extracts features, it is inserted into a new network to perform the classification tasks. In the second
and more complex shape called fine-tuning [56], some particular modifications are applied to the
pre-trained CNN to achieve better results. These modifications involve architecture adjustment
and parameter tuning. Besides, some New parameters are inserted into the network and demand
training on a relatively significant amount of data to be more beneficial.

3.2 Extreme Learning Machine (ELM)
ELM is a learning model for a single hidden layer feed-forward neural network (SLFN).

Also, it is classified as a neural network with random weights (NNRW). It was presented by
Haung et al. [57]. The ELM was introduced to avoid over-fitting problems and reduce the training
time. ELM is a learning model for a single hidden layer feed-forward neural network (SLFN).
Also, it is classified as a neural network with random weights (NNRW). It was presented by
Haung et al. [57]. The ELM was introduced to avoid over-fitting problems and reduce the training
time. NNRW is preferable than the traditional artificial neural networks (ANN), because ANN
has several drawbacks due to its training mechanism (error backpropagation) and the number of
hidden layers, such as slow convergence, time-consuming, and local minima problems [58]. The
ELM was introduced to avoid the over-fitting problems, reduce the training time, and solve all
problems that traditional ANN have. This method randomly initializes the connection weights
between the input and hidden layers and hidden biases. Then output weights are computed to
connect the hidden layer with the output layer. This training mechanism allows ELM to be
faster than traditional ANN. To determine the impact of the random parameters on ELM, Cao
et al. [59] organized an experimental framework and studied the relationship between parameters
(e.g., the number of neurons in the hidden layer, the threshold randomization range between the
hidden nodes, the randomization range of the weights between the input layer and hidden layer,
and the activation function types) and the optimal performance of ELM. They found that all the
parameters mentioned above performs a dominant role in the stability of the model.

Let for Z distinct samples, the training data is {(pi, qi)}, where pi = [pi1, pi2, . . . , pim]S ∈R
m is

the input data, qi = [qi1, qi2, . . . , qin]S ∈ R
n is the output data, and i= 1, 2, . . . , Y, j= 1, 2, . . . , Z.
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For the activation function g(p), the ELM model can be given as

Y∑
i=1

γig
(
αi.pj+ bi

) = tj (1)

where αi = [αi1, αi2, . . . , αim] is the input weight, bi denotes the bias for the ith hidden neu-
ron, the output weight is γi = [γi1, γi2, . . . , γin], and the network output is represented by tj =
[t1j, t2j, . . . , tnj]S. The equation for the ELM model can be simplified and represented in matrix
form as

Dγ =T ′ (2)

where γ = [γ1, γ2, . . . , γY ]S, T = [t1, t2, . . . , tZ], and T ′ denotes the transpose of matrix T .
D denotes the hidden layer output matrix of and can be given as

D=

⎡
⎢⎢⎢⎣

g (α1.p1+ b1) · · · g (αY .p1+ bY )

... · · · ...

g (α1.pZ+ b1) · · · g (αY .pZ+ bY )

⎤
⎥⎥⎥⎦
Z×Y

(3)

γ̂ can be determined using the Moore-Penrose (MP) inverse function as given below.

γ̂ =D+T ′ (4)

3.3 Butterfly Optimization Algorithm (BOA)
Butterfly optimization algorithm (BOA) [33] is a new meta-heuristic swarm intelligence tech-

nique motivated by the food foraging butterflies’ behavior. Based on random exploration and
improvement by exploitation, the BOA can solve complex problems.

In the BOA, a butterfly has its unique fragrance. Mathematically, the fragrance of the butterfly
can be defined as follow:

pfi = cIa (5)

where pfi denotes the perceived magnitude of fragrance, which is the intensity of fragrance of
the ith butterfly, detected by other butterflies, I represents the fragrance intensity, c represents the
sensor modality, and the power exponent a accounts for the varying degree of absorption and
dependent on modality. The BOA, consists of three phases as follow:

Phase 1: Initialization phase. This phase consists of three steps:

— Step 1: The values are assigned for the algorithm’s parameters.
— Step 2: The fitness function and its solution space are defined
— Step 3: An initial population of butterflies is generated.

Phase 2: Iteration phase. In this phase, the search is performed by the algorithm with the
artificial butterflies generated in the initialization phase. This phase consists of the following
steps:

— Step 1: Each butterfly produces fragrance at its position and can be calculated by Eq. (5).
— Step 2: The fitness value of each butterfly in the search space is computed.
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— Step 3: In the current iteration, the best butterfly/solution X∗ is found among all the
solutions.

— Step 4: Initialize random number r, where r ∈ [0, 1].
— Step 5: The position of butterflies is updated. There are two critical strategies for updating

butterflies’ position, i.e., global search strategy and local search strategy. It must be a
balance between the global and the local search procedures.

— Global search algorithm: If the butterfly can sense the fragrance of the fittest butter-
fly/solution X∗, it moves toward that solution X∗ which is given in Eq. (6)

xt+1
i = xti +

(
r2×X∗ −xti

)
× fi (6)

where the ith butterfly has the solution vector xi in iteration t and denoted by xti . The
fragrance of ith butterfly is denoted by fi and r is a random value within the range
[0, 1].

— Local search algorithm: In this process, the butterflies fail to feel the scent of the other
butterflies, they randomly change their position in the search space. This process can
be defined as follow.

xt+1
i = xti +

(
r2× xtj −xtk

)
× fi (7)

where xtj and xtk are jth and kth butterflies from the search space.

Phase 3: Termination phase. The iteration phase continues until the stopping criteria (Ex.
maximum number of iterations, a specific value of error rate, etc) are reached.

4 Proposed Framework

Briefly, the proposed framework is done in four stages as shown in Fig. 1. First, the chosen
and collected dataset crosses the pre-processing stage to make it suitable as input for the CNN
network. Then, the pre-processed images are fed to the next stage to compute features from each
input image. After that, the feature set go through the feature selection stage to choose the most
relevant features. Finally, the selected features are forwarded to the classification model to decide
which class these features belong to.

4.1 Pre-processing
The prepared dataset must pass through some pre-processing steps before fed to CNN pre-

trained models. First, images are resized to the pre-trained model acceptable size, which is 224 ×
224 pixels in this experiment. And then are transformed to RGB with 24-bit depth.

4.2 CNN Feature Extraction Using Transfer Learning
Resnet18, Resnet50, and Densenet201 used for feature extraction in this work. We extract the

features from the fully connected layer with 1000 features of the pre-trained CNN models. The
full feature set obtained from each pre-trained CNN model is size n× 1000, where n denotes the
total number of X-ray images in the dataset.

4.3 Binary Butterfly Optimization Algorithm (bBOA) for Feature Selection
The binary optimization problems perform feature selection between the binary values

{0, 1} only. These feature optimization problems are multi-objective optimization problems. These
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algorithms’ fundamental goals are to be achieved: selecting the smaller number of features and
obtaining the maximum recognition accuracy. The best solution is obtained when the optimization
algorithm achieves the best performance results with few features.

Figure 1: Proposed framework

In our proposed framework, the bBOA is utilized to select the most informative features to
increase the recognition accuracy and reduces the computational time for Covid-19 prediction.
Each feature subset in the bBOA is presented as a butterfly or solution. Each solution is specified
as a single-dimensional vector, and the number of features in the dataset defined the dimension
of the feature vector. The feature vector cells consist of two values, 1 or 0. The value 1 represents
that the relevant features are selected, while the value 0 shows that the feature is not chosen.

Firstly, the butterflies are randomly initialized, and their fitness value can be computed
by Eq. (5). The butterflies sense the fragrance, when a butterfly feel the fragrance of the best
butterfly in the search space, the butterfly step towards the butterfly containing best traits, and this
movement is given by Eq. (6). This phase is known as the global search. If the butterflies do not
sense fragrance, this is known as the local search phase. Eq. (7) described the local search phase
as random strides. After the local or global search phase, the butterflies change their positions and
continuous solutions. The values of continuous solutions are converted into relative binary values.
The transformation into binary values is carried out by implementing squashing of continuous
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solutions. The squashing is performed utilizing a transfer function name Sigmoidal (S-shaped).
The Sigmoidal function forcefully moves the butterflies in a binary search space. The Sigmoidal
function is described in Eq. (8).

S
(
Fk
i (t)

)
= 1

1+ e−Fk
i (t)

(8)

where Fki representing the fragrance with a continuous value of ith butterfly in kth element during
the iteration t. The transfer functions can fluently map the infinite input values to a finite output.
The S-shaped transfer function produces the output continuously; therefore, a threshold is defined
to obtain the binary-valued output. The applied threshold is given in Eq. (9) to obtain the binary
solution.

xki (t+ 1)=

⎧⎪⎨
⎪⎩
0 if rand < S

(
Fki (t)

)

1 if rand > S
(
Fki (t)

) (9)

where xki (t) and Fki (t) designate the position and fragrance respectively, during the iteration t of
ith butterfly in the kth element.

A fitness function is specified based on the KNN classifier to evaluate each solution. The
fitness function measures the exactness to define the selected functions. Mathematically, the
suggested fitness function is defined as.

Fitness=α× ERR (D)+β
|R|
|N| (10)

where ERR(D) represents the error rate (calculated using the KNN classifier), |N| represents the
original feature set, and |R| shows the selected features. The parameters α and β can be selected
within the range [0, 1]. α and β are the weights of error rate and the selection ratio respectively
where α is the complement of β.

In the proposed framework, the multi-CNN feature vectors after bBOA are combined to
obtain a feature set. The moral behind the concatenation of feature sets is to exploit each CNN’s
capabilities in extracting useful features.

4.4 Hybrid ELM-BOA Model for Classification
ELM model randomly initializes the input weights and hidden biases and systematically

calculates the output weights using the MP inverse technique [23]. However, the assignment of
random weights and biases, ELM has some limitations such as long training time and weak
generalization ability. In this study, ELM is optimized to overcome these problems using the BOA,
and a new hybrid model ELM-BOA is presented (Fig. 2). The BOA is mainly used to find the
optimal set of weights and biases to improve the learning performance of ELM. In the ELM-BOA
model’s network structure consists of m inputs and K hidden nodes, the particle’s length (L) can
be determined in Eq. (11).

L=m×K +K (11)

In this study, we select the minimization of the Root Mean Square Error (RMSE) value as a
fitness function to assess each generated solution’s performance by the BOA. The learning method
of the ELM-BOA model is described as following:
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(1) A learning sample is set, including the input vector and the output vector.
(2) The ELM-BOA neural network’s topology is established as the number of inputs, hidden

and output layer neurons are determined, and the activation function is selected.
(3) Randomly generating the swarm of BOA butterflies. Each butterfly consists of the input

weights and hidden biases, which are optimized and represent a candidate ELM. Here, the
butterfly randomly initialized values for the elements within the range [−1, 1].

(4) Calculating the fitness value of each butterfly in the swarm. To evaluate the fitness value,
the output weights of the ELM are generated using Eq. (4) after formulating the SLFN
using the butterfly elements and computing the matrix D using Eq. (3).

(5) Determining the best butterfly with the highest fitness X∗.
(6) Applying the BOA algorithm to update the position of each butterfly using Eqs. (6)

and (7).
(7) The iteration is terminated when the algorithm is reached to the stopping criteria and

output the best butterfly X∗. The ELM-BOA model is applied to test the obtained model’s
generalization performance; otherwise, this process again starts from Step 5.

Figure 2: ELM-BOA model flowchart

5 Experiments

In this section, we present the used datasets, the parameter setting for methods, experimental
design.
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5.1 Datasets Description
In this experiment, the proposed model is trained and tested in a balanced CXR dataset

composed of three different classes: normal, pneumonia, and COVID-19. Out of 3885 CXR
images, there are 1295 COVID-19 images, 1295 normal images, and 1295 pneumonia images.
Normal and pneumonia classes are extracted from one source: COVID-19 Radiography Database
on the Kaggle website [60]. While the COVID-19 class, due to the disease’s novelty, is obtained
from various open-source image databases, it is organized as 800 already augmented images were
collected from Alqudah et al. [61] and 495 images from Cohen et al. [62].

5.2 Parameter Settings
In this study, all experiments are carried out in MATLAB R2020a software on a PC with a

2.60 GHz CPU Intel (R) Core (TM) i7-4510U and 8 GB RAM, and Windows 10 (64 bit). The
images dataset is split up into a 70:30 ratio, 70% for training and 30% for testing. The transfer
learning approach was performed on the pre-trained deep networks to utilize them for a new task.
The pre-trained CNN training parameters used in these experiments are presented in Tab. 1.

Table 1: CNN models parameters values

Software used Model Image size Validation
frequency

Max
epochs

Mini batch Learning rate

MATLAB Resnet18
Resnet50
Densenet201

224∗224∗3 5 8 64 Le-4

The presented ELM-BOA performance is compared with SVM, KNN, and ELM. The param-
eter setting of ELM, GA, PSO, GWO, and BOA are shown in Tab. 2. The five algorithms all
have 100 iterations. The average experimental results are obtained after running the algorithm 20
times.

Table 2: parameter settings

Algorithm Parameter values Algorithm Parameter values

ELM No of hidden
layer neurons

30 PSO C1 & C2 2

Activation
function

Sigmoid Inertia weight [0.2–0.8]

GA Crossover rate 0.8 GWO a [0, 2]
Mutation rate 0.2 BOA Power exponent (a) 0.1
Selection Roulette

wheel
Sensory modality (c) [0.01–0.25]
Switch probability (p) 0.5
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5.3 Experiments Design
To evaluate the proposed automated COVID-19 detection and classification system, the

following experiments were formulated:

• Experiment 1—The three CNN models were applied to the dataset to evaluate the classifi-
cation performance.

• Experiment 2—The 1000 features from the FC1000 layer of each CNN model were
extracted, and classification performance was evaluated using four machine learning classi-
fiers and the proposed ELM-BOA model.

• Experiment 3—The BOA algorithm was applied to the feature set obtained from the
FC1000 layer, combined different feature sets from CNN models, and evaluated perfor-
mance.

• Experiment 4—The ELM-BOA classification performance was assessed and compared with
the other optimized ELM model.

6 Results and Discussion

6.1 Performance Measures
The performance of the proposed COVID-19 detection and classification model is measured

by computing the four major performance measures: true positives (TP), false positives (FP),
true negatives (TN), and false negatives (FN). Following measures are utilized to evaluate the
functioning of the proposed framework.

Accuracy= TP+FN
TP+TN +FP+FN

Precision= TP
TP+FP

Sensitivity= TP
TP+FN

F-Score= 2×TP
2×TP+FP+FN

Specificity= TN
TN+FP

FPR= FP
TN+FP

6.2 Results
In this study, the evaluation of the proposed framework is demonstrated through four exper-

iments. In the first experiment, the original three pre-trained CNN models were applied to
classify the COVID-19 images. The features were extracted first from the dataset’s images in each
model, and then the SoftMax classifier was used to classify the image to a predefined class.
Tab. 3 presents the results for the experimental analysis. The best result was obtained using the
descent201 model with an accuracy of 96.66 % and a training time of 670 min. As seen in Tab. 3,
the three CNN models’ training and validation processes were completed with high accuracy;
however, the training time was very high. In such a scheme, transfer learning can be used for
feature extraction, leverage the power of CNNs, and reduce the computational costs, as illustrated
in the next experiments.

In the second step, the dataset is processed by the three CNN models, and 1000 features were
extracted from the FC1000 layer of each model. The results of the four machine learning models
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and the proposed ELM-BOA model are shown in Tab. 4. The proposed ELM-BOA classifier was
superior to traditional ELM, SVM, and KNN machine learning methods. It was observed that
the ELM-BOA model guarantees an enhancement in the automated detection task for COVID-
19. Contrary to what was observed, the classification performance was significantly reduced when
KNN and SVM performed the classification task. The best performance was obtained on the
ELM-BOA classifier when that classifier fed with the Densenet201 features.

Table 3: Classification results for the three pre-trained CNN models and training time

Accuracy
(%)

Sensitivity
(%)

Precision
(%)

F1-Score
(%)

Specificity
(%)

FPR Time
(min)

Resnet18 96.05 96.18 96.10 96.13 98.01 0.0199 51
Resnet50 96.48 96.58 96.59 96.58 98.22 0.0178 288
Densenet201 96.66 96.72 96.77 96.74 98.30 0.0170 670

Table 4: Classification results by applying CNN models with four ML classifiers and ELM-BOA

Experiments Classifier Measures

CNNModels # of
feature
(bBOA)

Accuracy Sensitivity Precision F1-score Specificity FPR

Resnet18 1000 SVM 95.7 95.80 95.80 95.80 97.83 0.0217
KNN 93.9 94.03 94.13 94.07 96.90 0.0310
ELM 95.79 95.90 95.98 95.93 97.85 0.0215
ELM-BOA 97.08 97.14 97.16 97.14 98.52 0.0148

Resnet50 1000 SVM 96.65 96.75 96.74 96.68 98.33 0.0167
KNN 93.91 94.00 94.18 94.08 96.90 0.0310
ELM 95.88 95.97 95.79 95.91 97.95 0.0205
ELM-BOA 96.82 96.87 96.92 96.89 98.39 0.0161

DenseNet201 1000 SVM 97.08 97.15 97.15 97.14 98.53 0.0147
KNN 96.05 96.15 96.21 96.18 97.99 0.0201
ELM 97.08 97.11 97.14 97.13 98.52 0.0148
ELM-BOA 97.42 97.56 97.57 97.55 98.68 0.0132

In the third experiment, the bBOA method was utilized to select the most relevant features.
As compared to the results in Tabs. 4–6 show that the bBOA produces better classification results
with fewer features. The best performance was ensured by combining the three deep CNN models,
as shown in Tab. 6. The 601 selected features achieved the best results. The maximum recognition
rate was 99.48% computed by the ELM-BOA classifier.

In the fourth experiment, we used the original dataset to analyze the presented framework.
30% data was designated as the test data. By utilizing the bBOA technique, we combined the
robust features extracted from the CNNs, and a new feature set is obtained with 601 features.
The next process is the classification performed using the proposed ELM-BOA compared with
ELM optimized with different metaheuristics algorithms such as Gray wolf optimization (GWO)
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algorithm, Genetic algorithm (GA), and particle swarm optimization (PSO). The classification
accuracy results are shown in Tab. 7. In this step, the best-achieved recognition rate is 99.48% on
the ELM-BOA method with training time of 34 s.

Table 5: Classification results obtained by applying the bBOA method

Experiments Classifier Measures

CNNModels # of
feature
(bBOA)

Accuracy Sensitivity Precision F1-score Specificity FPR

Resnet18 186 SVM 96.74 96.85 96.80 96.82 98.35 0.0165
KNN 94.85 94.98 95.05 95.01 97.38 0.0262
ELM 97.25 97.40 97.41 97.39 98.59 0.0141
ELM-BOA 97.77 97.80 97.89 97.83 98.86 0.0114

Resnet50 240 SVM 97.08 97.14 97.16 97.14 98.52 0.0148
KNN 94.59 94.68 94.85 94.75 97.25 0.0275
ELM 97.08 97.16 97.11 97.13 98.53 0.0147
ELM-BOA 97.77 97.83 97.85 97.83 98.87 0.0113

DenseNet201 175 SVM 97.25 97.32 97.37 97.33 98.61 0.0139
KNN 96.22 96.31 96.38 96.34 98.08 0.0192
ELM 97.34 97.37 97.34 97.40 98.65 0.0135
ELM-BOA 98.11 98.14 98.20 98.16 99.04 0.0096

Table 6: The classification results obtained by combining features obtained from CNN models

Experiments Classifier Measures

CNNModels # of
feature
(bBOA)

Accuracy Sensitivity Precision F1-score Specificity FPR

Resnet18 &
Resnet50

426 SVM 97.77 97.78 97.83 97.80 98.87 0.0113
KNN 95.02 95.10 95.22 95.16 97.47 0.0253
ELM 96.47 96.82 96.91 96.83 98.34 0.0166
ELM-BOA 98.28 98.38 98.37 98.35 99.13 0.0087

Resnet18 &
DenseNet201

361 SVM 97.77 97.78 97.83 97.80 98.87 0.0113
KNN 96.91 96.99 97.04 97.01 98.43 0.0157
ELM 97.60 97.65 97.74 97.68 98.77 0.0123
ELM-BOA 98.11 98.17 98.21 98.18 99.03 0.0097

Resnet50 &
DenseNet201

415 SVM 97.85 97.90 97.94 97.91 98.91 0.0109
KNN 95.11 95.17 95.36 95.25 97.51 0.0249
ELM 97.42 97.53 97.53 97.53 98.68 0.0132
ELM-BOA 98.03 98.11 98.12 98.12 98.99 0.0101

Resnet18 &
Resnet50 &
DenseNet201

601 SVM 97.94 98.00 98.03 98.01 98.95 0.0105
KNN 95.36 95.44 95.59 95.50 97.64 0.0236
ELM 97.94 98.02 98.04 98.01 98.95 0.0105
ELM-BOA 99.48 99.49 99.46 99.47 99.75 0.0025
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Table 7: ELM-BOA model performance compared with other optimized Elm models

Model # No. of features Accuracy Time (s)

ELM-GA 601 97.52 51.6
ELM-PSO 601 98.11 48.5
ELM-GWO 601 98.02 59.3
ELM-BOA 601 99.48 34.42

6.3 Discussion
The COVID-19 has infected several people. But the large-scale labeled databases still not

available. Different datasets are combined to perform the computational work on the automated
COVID-19 detection model. Recently, researchers concentrated on chest X-ray images to develop
the automated systems for the clinical assessment of COVID-19 disease. Several COVID-19
computational models have been introduced based on CNN models. As compared to traditional
machine learning techniques, CNN-based models perform well in terms of efficiency and accuracy.
These models extract robust features and produce good results in the classification phase. In this
respect, our proposed technique consists of innovative components.

In this work, we exploited the advantages of the CNN models’ end-to-end learning scheme.
We extracted the deep features and performed transfer learning on Resnet18, Resnet50, and
Densenet201 models. After the selection of robust features, the final feature vector fed to the
ELM-BOA classifier for the recognition of disease. For a fair comparison, we used a balanced
dataset with the same number of images for normal, pneumonia, and COVID-19. Besides, we
utilized the feature selection method (bBOA) to obtain the robust feature set that yields better
results compared with other studies [Tab. 8]. We also improve the time efficiency and classification
accuracy. The best classification accuracy achieved is 99.48%. We conclude that the second shape
of transfer learning used in our system outperforms the first shape (which was tested in the first
experiment) in terms of efficiency.

Table 8: Comparison with some previous studies

Study Methodology/technique # of classes Acc (%)

Apostolopoulos
et al. [37]

MobileNet v2 model 3 93.48

Gao et al. [44] Dual-branch combination network (DCN) 3 96.74
Ucar et al. [46] COVIDiagnosis-Net 3 98.26
Rahimzadeh
et al. [47]

Modified CNN: concatenation of Xception
and ResNet50V2

3 99.5

Nour et al. [49] CNN models: A novel CNN model,
training from scratch strategy, deep feature
extraction, Classifier: SVM

3 98.97

Proposed Model CNN models: Concatenation of Resnet18,
Resnet50 & Densenet201, Feature selection,
optimized ELM model

3 99.48
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7 Conclusion

This study’s main objective is to establish an accurate and rapid AI-diagnostic method that
can categorize patients into COVID-19 or regular or pneumonia. We use multi-class classification
to decide whether the respiratory infections are caused by coronavirus or other viruses (pneu-
monia). Consequently, the hospital’s workload will be reduced significantly. We aimed to have
an equal number of images in each class in the dataset, which improved our proposed model’s
robustness and effectiveness. We based our model on multi-CNN, which concatenate deep features
resulting from each network after passing a feature selection step using a butterfly optimization
algorithm. Then, we used the optimized ELM model (ELM-BOA) as a classifier due to its ability
to learn and modify weights, which led to a decrease in the error between actual and predicted
output and achieves an accuracy of 99.48%. To prevent overfitting, 5-fold cross-validation is used.
It is evident from experimental results that the proposed methodology outperforms competitive
techniques, as shown in Tab. 7. The drawback of this approach is that when the patient is in a
critical condition and is unable to attend X-ray scanning. In future work, we aim to develop our
proposed model as a mobile application to increase reliability and availability.
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