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Abstract:Agriculture is a key facilitator of economic prosperity and nourishes
the huge global population. To achieve sustainable agriculture, several factors
should be considered, such as increasing nutrient and water efficiency and/or
improving soil health and quality. Using fertilizer is one of the fastest and
easiest ways to improve the quality of nutrients inland and increase the effec-
tiveness of crop yields. Fertilizer supplies most of the necessary nutrients for
plants, and it is estimated that at least 30%–50% of crop yields is attributable
to commercial fertilizer nutrient inputs. Fertilizer is always a major concern in
achieving sustainable and efficient agriculture. Applying reasonable and cus-
tomized fertilizers will require a significant increase in the number of formulae,
involving increasing costs and the accurate forecasting of the right time to
apply the suitable formulae. An alternative solution is given by two-stage pro-
duction planning under stochastic demand, which divides a planning schedule
into two stages. The primary stage has non-existing demand information, the
inputs of which are the proportion of raw materials needed for producing
fertilizer products, the cost for purchasing materials, and the production cost.
The total quantity of purchased material and produced products to be used
in the blending process must be defined to meet as small as possible a paid
cost. At the second stage, demand appears under multiple scenarios and their
respective possibilities. This stage will provide a solution for each occurring
scenario to achieve the best profit. The two-stage approach is presented in this
paper, the mathematical model of which is based on linear integer program-
ming. Considering the diversity of fertilizer types, themathematicalmodel can
advise manufacturers about which products will generate as much as profit as
possible. Specifically, two objectives are taken into account. First, the paper’s
thesis focuses on minimizing overall system costs, e.g., including inventory
cost, purchasing cost, unit cost, and ordering cost at Stage 1. Second, the thesis
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pays attention to maximizing total profit based on information from customer
demand, as well as being informed regarding concerns about system cost at
Stage 2.

Keywords: Two-stage stochastic programming; demand uncertainty; plan-
ning; blending; fertilizer

1 Introduction

For over 40 years, the blending of solid granular materials in appropriate proportions with
the purpose of producing a wide range of compound fertilizers has been well applied to fertilizer
manufacturing. This process, technically called fertilizer blending (bulk blending), is one in which
nutrients in a blend are mixed together physically. The three most important components needed
to produce fertilizer are nitrogen (N), phosphorus (P), and potassium (K). In addition, filler
material, which is added for chemical stabilization purposes and to prevent excessive fertilizer
spreading causing soil “burning,” is needed. For example, the NPK formula “15-30-10” means
that every 100 kilograms of this fertilizer contains 15 kg of nitrogen, 30 kg of phosphorus, and
10 kg of potassium, with 45 kg of filler.

Making an early production plan plays an important role in decreasing costs, procuring
lower material costs, and meeting customer demands and requires lower bound quantities from
governments with limited production capacity.

Fig. 1 shows the manufacturing planning period for the processes detailed in this paper. In
the first period, Stage 1, the material purchasing price is cheap, and there is more time for
manufacturing to produce products. However, the information on demand is unknown. After a
certain time passes, Stage 2 begins, which is closer to the selling time, so there is more information
on product demand, but the material price is more expensive than that in Stage 1. Stage 1 creates
an opportunity to gain a lower cost for material and more time for producing products, but if the
total quantity of purchasing material and product produced exceeded future demand, increased
inventory cost will be incurred. The proposed solution, a two-stage stochastic process, uses the
integer linear programming model in which the number of inputs and their quantity are treated
as decision variables, and the demand is unclear information in the beginning. It is difficult to
match the final demand of customers and a high inventory or holding cost is created because of
excessive inventory created when demand was overestimated. However, underestimating demand
leads to shortfalls and penalty costs.

Figure 1: Planning period
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In this research, the assigning of products for the production model is based on the percentage
of components as developed based on the previous work of Benhamou et al. [1]. This approach
has been upgraded by taking the profit from each product into account. The main objective of this
paper is, for fertilizer manufacturing, to determine a solution for the best amount of purchased
material due to the different price ranges in each stage, the total quantity of one-time ordering,
the total products that will be produced by each blending machine, and the setting level for each
machine.

2 Literature Review

Customer demand at the beginning is normally difficult to predict. Multiple optimization
models have been developed over time to solve the production planning problem under chang-
ing demands [2–11]. Gupta et al. [12] suggest that demand is one of the main sources of
unpredictability in any supply chain. If a supply chain fails to recognize demand fluctuations
and incorporate them into planning processes, it will suffer low customer satisfaction or exces-
sively high inventory level [13]. Uncertain demand can be modelled using probability distribution
[14–18]. Gao et al. [19] approach the changing-demand planning problem with a stochastic
dynamic programming model that allows delay-in-payment contracts. Huang et al. [20] propose
a joint sourcing strategy framework to deal with random demand surges. The objective of the
proposed framework is to minimize long-term cost while maintaining a certain target service level.
Peidro et al. [21] approach a supply-chain planning problem under uncertain demand with a fuzzy
mathematical programming model approach.

Weskamp et al. [22] suggest that unknown variables command attention, and propose a two-
stage method. At the primary stage, the focus is on decision variables for establishing production
without full information, which holds for all scenarios because restructuring this activity is costly
due to the high fixed cost. In the second stage, the random probability of events exists, so
then the number of materials for producing products is considered the decision variable used
to minimize the total cost for manufacturing, inventory, and penalty. According to Benhamou
et al. [1], a varying type of fertilizer exists to meet with customer demand. The increase in the
number of fertilizer formulae leads to an increase in inventory, transportation, and production.
They thus propose the reverse blending method, in which inputs are existing materials where
most of the fertilizer formulas are shared like N, P, and K. Their objective is to maximize mass
customization and minimize the total quantity of inputs. Emirhüseyinoğlu et al. [23] put forward
that precipitation is a major uncertain factor that affects nutrient loss. They predicted nutrient
reduction under stochastic precipitation rates.

Swaminathan et al. [24] present a stochastic programming model used to investigate the
optimal configuration of semi-finished products and inventory levels for a multi-period planning
horizon for one manufacturer. The determination of optimal differentiation points is additionally
studied by Hsu et al. [25], who suggest a dynamic programming model for multiple products
and unsure demand. However, their research does not consider more complex cost types, such
as trans-shipment costs, and focuses only on design decisions. Liu et al. [26] introduced a two-
stage mathematical optimization model to the supply-chain problem under uncertain demand. In
the first stage, the production quantity of each facility of the manufacturing network and the
production quantity to be transported between the network facilities are calculated. After the
uncertain demand is realized and observed, the inventory size and flow of product shipped to
customers are calculated in the second stage. The proposed model was implemented to solve a
planning problem for a light-emitting-diode manufacturing company to demonstrate the model’s
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feasibility. Shi et al. [27] approach the production planning problem of a multi-product closed-
loop system with uncertain demand and return with a mathematical programming model. The
proposed model was applied to a real-world case study to illustrate its feasibility.

In this paper, the supply-chain planning problem under volatile demand is approached with a
two-stage mathematical model with constraints on changing material price. The objectives of the
proposed model are to minimize material overstock and maximize profit.

3 Mathematical Model

An appropriate production plan in two time periods is advanced in this paper. The outcome
of the model will advise the user regarding the quantity that should be ordered at Stages 1 and
2 for each material and which blending machine is used at which level.

3.1 Assumptions
The mathematical model was developed based on the following assumptions.

The price of buying raw materials and ordering costs in Stage 1 is always cheaper than
purchasing in Stage 2.

The length of the planning schedule in Stage 1 is 3 months, and that in Stage 2 is 5 months
based on the company’s experience.

All blending machines have the same properties of all setting levels.

• The higher the setting level, the better the output and the higher the cost.

3.2 Model Development
3.2.1 Annotations

The annotations of the model are defined as follows:

• m: index of material m = 1. . .M
• p: index of output products p = 1. . .P
• r: index of price ranges r = 1. . .R
• e: index of scenarios e = 1. . .E
• j: index of ordering time j = 1. . .J
• b: index of blending machine b = 1. . .B
• i: index of setting i of blending machine i = 1. . .I

3.2.2 Parameters
The parameters of the model are defined as follows:

• Dpe: Demand of product p under scenarios e
• Dmax

p : Demand max of product p in all scenarios
• BigM: very large number
• αmp: number of material m for one product p
• sp: selling price for one product p

• O1
mr: the offer price of material m at price r in stage 1

• O2
mr: the offer price of material m at price r in stage 2

• LBmr: The lower bound for purchasing the material m at price r
• UBmr: The upper bound for purchasing the material m at price r in
• πe: The probability associating to scenario e
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• R1: Fixed cost for one time ordering in stage 1
• R2: Fixed cost for one time ordering in stage 2
• wi: Fixed cost for using blending machine at setting i
• HCp: Holding cost of product p
• tpi: time required for manufacturing one product p at setting i

• H1
b : number of available hours of blending machine b at stage 1

• H2
b : number of available hours of blending machine b at stage 2

3.2.3 Decision Variables
The decision variables of the model are defined as follows:

• X1
mrj: number of material m purchased at the jth time order at price range r in stage 1

• X2
mrje: number of material m purchased at the jth time order at price range r under scenarios

e in stage 2
• Y1

pbi: number of product p manufactured in blending machine b at setting i at stage 1

• Y2
pbie: number of product p manufactured in blending machine b at setting i under scenario

e in stage 2

• Z1
bi =

{
1
0

Binary variable. Z1
l = 1 if blending machine b at setting i is used in stage 1,

otherwise Z1
bi = 0

• Z2
bie =

{
1
0

Binary variable. Z2
bie = 1 if blending machine b at setting i is used under

scenarios e in stage 2, otherwise Z2
bie=0

3.2.4 Auxiliary Variables
The auxiliary variables of the model are defined as follows:

• V1
mrj =

{
0
1

Binary variable. V1
mrj = 1 if material m is purchased at the jth time order at

price range r in stage 1, otherwise V1
mrj = 0

• V2
mrje =

{
0
1

Binary variable. V2
mrje = 1 if material m is purchased at the jth time order at

price range r under scenarios e in stage 2, otherwise V2
mrje= 0

• Ipe: Income from selling product p under scenarios e.
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3.3 Optimization Model
3.3.1 Model’s Objectives

The mathematical model has two objectives:

• Objective 1: Minimize total cost:

Totalcost=
M∑
m=1

R∑
r=1

J∑
j=1

O1
mrX

1
mrj+R1

J∑
j=1

M∑
m=1

R∑
r=1

V1
mrj+

B∑
b=1

I∑
i=1

wiZ1
bi+

P∑
p=1

B∑
b=1

I∑
i=1

HCpY1
pbi

• Objective 2: Maximize profit

Profit=
E∑
e=1

πe

⎛
⎝ P∑
p=1

Ipe

⎞
⎠−

E∑
e=1

πe

⎛
⎝ M∑
m=1

R∑
r=1

J∑
j=1

O2
mrX

2
mrje+R2

J∑
j=1

M∑
m=1

R∑
r=1

V2
mrje+

B∑
b=1

I∑
i=1

wiZ2
bie

⎞
⎠

3.3.2 Model’s Constrains
The constrains of the mathematical model are given below:

Constraint (1)–(2) shows that the purchased material at each time ordering is either zero or
one at the one price range.

R∑
r=1

V1
mrj ≤ 1, ∀m= 1 . . .M, j= 1 . . .J (1)

R∑
r=1

V2
mrje ≤ 1, ∀m= 1 . . .M, j= 1 . . .J, e= 1 . . .E (2)

If V1
mrj or V

2
mrje= 1 then material m was purchased at price range r in the ordering time j at

stage 1 or stage 2.

Constraint (3)–(8) states that each price range has its own lower bound and upper bound for
the total quantity of one-time purchasing. At every ordering time belongs to price range r, the
total number of purchasing must beyond lower bound and upper bound.

Range for purchasing material m at price range r

LBmr ≤X1
mrj+BigM

(
1−V1

mrj

)
, ‘∀m= 1 . . .M, r= 1 . . .R, j= 1 . . .J (3)

X1
mrj ≤UBmr+BigM

(
1−V1

mrj

)
, ∀m= 1 . . .M, r= 1 . . .R, j= 1 . . .J (4)

X1
mrj ≤UBmrV1

mrj, ∀m= 1 . . .M, r= 1 . . .R, j= 1 . . .J (5)

LBmr ≤X2
mrje+BigM

(
1−V2

mrje

)
, ∀m= 1 . . .M, r= 1 . . .R, j= 1 . . .J, e= 1 . . .E (6)

X2
mrje ≤UBmr+BigM

(
1−V2

mrje

)
, ∀m= 1 . . .M, r= 1 . . .R, j= 1 . . .J, e= 1 . . .E (7)

X2
mrje ≤UBmrV2

mrje,∀m= 1 . . .M, r= 1 . . .R, j= 1 . . .J, e= 1 . . .E (8)
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Constraint (9) focuses on total quantity purchasing material in both stages which must
be smaller than the maximum usage of them in all scenarios du to prevent the unnecessary
redundant.

R∑
r=1

J∑
j=1

X1
mrj+

R∑
r=1

J∑
j=1

X2
mrje ≤

P∑
p=1

Dmax
pe αmp,∀m= 1 . . .M, e= 1 . . .E (9)

Constraint (10)–(11) presents the number of needed material m for producing product p at
stage 1 or stage 2 must be smaller than the total available of material m at that stage.

P∑
p=1

B∑
b=1

I∑
i=1

αmpY1
pbi ≤

R∑
r=1

J∑
j=1

X1
mrj,∀m= 1 . . .M (10)

P∑
p=1

B∑
b=1

I∑
i=1

αmpY1
pbi+

P∑
p=1

B∑
b=1

I∑
i=1

αmpY2
pbie≤

R∑
r=1

J∑
j=1

(X1
mrj+X2

mrje) (11)

With ∀m= 1 . . .M, e= 1 . . .E

Constraint (12)–(13) ensures that at stage 1 and stage 2 the total time producing of all
products on blending machine b must be smaller than the number of available hours of that
blending machine.

P∑
p=1

tpiY1
pbi ≤H1

bZ
1
bi,∀b= 1 . . .B, i= 1 . . . I (12)

P∑
p=1

tpiY2
pbie≤H2

bZ
2
bie,∀b= 1 . . .B, i= 1 . . . I , e= 1 . . .E (13)

Constraint (14)–(15) guarantee during production time at each stage, every blending machine
will fix at only one setting level due to the high cost of changeover:

I∑
i=1

Z1
bi ≤ 1,∀b= 1 . . .B (14)

I∑
i=1

Z2
bie≤ 1,∀b= 1 . . .B,∀e= 1 . . .E (15)

Constraint (16) defines the total income is the min of total producing product and demand
from customers. If products were produced less than the demand, income will be from the total
product selling. Otherwise, products were produced more than the needed, total income will come
from the total demand.

Ipe = spmin

(
B∑
b=1

I∑
i=1

Y1
pbi+

B∑
b=1

I∑
i=1

Y2
pbie,Dpe

)
,∀p= 1 . . .P, e= 1 . . .E (16)
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Z1
bi = 0 or 1, ∀b= 1 . . .B, i= 1 . . . I (17)

Z2
bie= 0 or 1, ∀b= 1 . . .B, i= 1 . . . I (18)

V1
mrj = 0 or 1, ∀m= 1 . . .M, r= 1 . . .R, j= 1 . . .J (19)

V2
mrje= 0 or 1, ∀m= 1 . . .M, r= 1 . . .R, j= 1 . . .J, e= 1 . . .E (20)

Constraint (17)–(20) are binary constraints.

4 Case Study

4.1 Data Collection
The company begins making production plans for the Fall selling season at the beginning of

January annually. Stage 1 is defined as the period from the first day of January to the first day of
April; Stage 2 is defined as the period between April and September. The initial manufacturing
parameters are shown in Tabs. 1–3:

Table 1: Total production time

Description Total

Total available hours for producing at stage 1 480 h
Total available hours for producing at stage 2 800 h

Table 2: The blending fertilizer’s composition and relative percentage

Fertilizer Percentage (%)

Nitrogen (N) Phosphorus (P) Potassium (K) Sulfur (S) Canxi (Ca) Filler

Ammonium
sulphate

21 0 0 24 0 55

Ammonium
nitrate

34 0 0 0 0 66

Urea 46 0 0 0 0 54
Potassium
nitrate

13 0 38 0 0 49

Single super-
phosphate

0 16 0 0.11 0.19 54

Double super-
phosphate

0 32 0 0.11 0.19 38

The quotations of 2 stages are shown in Tab. 4. Ordering costs at stage 1 and stage 2 are
120$ and 150$ per order, respectively. Tab. 5 enumerates the holding costs of all materials while
Tab. 6 describe the demands under three different scenarios.
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Table 3: Producing rate and cost per hours respective to each setting level

Parameters Set up 1 Set up 2 Set up 3

Producing rate (h/ton)

Ammonium sulphate 0.039 0.026 0.022
Ammonium nitrate 0.059 0.04 0.034
Urea 0.034 0.023 0.019
Potassium nitrate 0.02 0.013 0.011
Single superphosphate 0.091 0.067 0.059
Double superphosphate 0.1 0.072 0.062
Cost ($/h) 63 93 112

Table 4: Price quotation of raw material in stage 1 and stage 2

Material Unit LB × 103

(ton)
UB × 103

(ton)
Stage 1 Price
Offer ($/ton)

Stage 2 Price
Offer ($/ton)

Nitrogen Ton 1 5000 175 196
5001 15000 170 190
15001 25000 165 185

Phosphorus Ton 1 500 89 102
501 1500 85 97
1501 2500 83 95

Potassium Ton 1 2000 305 335
3001 5000 294 323
5001 10000 284 311

Sulfur Ton 1 2000 192 211
3001 5000 175 192
5001 10000 140 154

Calcium Ton 1 2000 215 236
3001 5000 210 231
5001 10000 205 225

Filler Ton 1 10000 52 60
10001 20000 45 52
20001 50000 33 38

4.2 Results
The quantity of materials that should be purchased in Stage 1 is proposed in Tab. 7. The

detailed Stage 1 production plan is presented in Tab. 8.

In this paper, only the results corresponding to Scenario 1, which has the highest probability
of occurrence, are presented. Tabs. 9 and 10 describe the optimal Scenario 1 production plan.
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Table 5: Fertilizer holding cost at stage 1

Fertilizer Holding cost($/ton)

Ammonium sulphate 22
Ammonium nitrate 19
Urea 54
Potassium nitrate 104
Single superphosphate 11
Double superphosphate 17

Table 6: Demand under different scenarios

Product Scenarios 1 Scenarios 2 Scenarios 3

Ammonium sulphate 23,000 53,000 55,000
Ammonium nitrate 38,000 30,000 50,000
Urea 70,000 30,000 40,000
Potassium nitrate 56,000 60,000 80,000
Single superphosphate 10,000 20,000 5,000
Double superphosphate 5,000 15,000 4,000
Possibilities 0.6 0.25 0.15

Table 7: Purchased quantity of raw material at stage 1

Material Price ($/ton) Quantity (Ton)

Nitrogen 165 17,229
165 25,000

Potassium 284 6,279
284 5,001
284 10,000

Sulfur 140 5,520
Calcium 205 32,969
Filler 33 50,000

33 20,001

Table 8: Setting level and produce product quantity at stage 1

Blending Machine Setting Level Product Quantity (ton)

1 3 Ammonium nitrate 14,117
2 2 Ammonium nitrate 12,000
3 3 Ammonium sulphate 14,728

Urea 3,882

Decision makers can use the results to make optimal procurement decisions. The case studied
thus demonstrates the feasibility and applicability of the proposed model to real-world problems.
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Table 9: Purchased quantity of raw material at stage 2 under scenario 1

Material Price ($/ton) Quantity (Ton)

Nitrogen 185 15,001

Table 10: Setting level and produce product quantity at stage 2 under scenario 1

Blending machine Setting level Product Quantity (ton)

1 3 Potassium nitrate 55,999
Ammonium nitrate 5,412

2 3 Ammonium nitrate 2,588
Urea 27,895
Ammonium sulphate 8,272

3 3 Urea 42,105

5 Conclusions

In this paper, a blending method and mathematical linear integer model approach are pre-
sented that comprise a decision-support tool for identifying the optimal purchased raw material
and allocating the appropriate capacity for manufacturing purposes in each stage of the entire
planning period for a fertilizer manufacturing planning problem. The proposed two-stage stochas-
tic mixed-integer program was formulated to quantify total cost and managerial decision support
regarding setting the levels of machines, production, and inventory. While previous research on
blending fertilizer only focuses on maximizing the production of products, attention was not paid
to the material or production costs. In the present study, the decision was made based on all
of the costs that will affect profit. The proposed model can be improved in future research by
considering other complications in the planning process such as adding output-dependent cost and
price, or applying the model with rolling planning horizons.
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