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Abstract: To provide Artificial Intelligence (AI) services such as object detec-
tion, Internet of Things (IoT) sensor devices should be able to send a large
amount of data such as images and videos. However, this inevitably causes
IoT networks to be severely overloaded. In this paper, therefore, we propose
a novel oneM2M-compliant Artificial Intelligence of Things (AIoT) system
for reducing overall data traffic and offering object detection. It consists of
some IoT sensor devices with random sampling functions controlled by a
compressed sensing (CS) rate, an IoT edge gateway with CS recovery and
domain transform functions related to compressed sensing, and a YOLOv5
deep learning function for object detection, and an IoT server. By analyzing
the effects of compressed sensing on data traffic reduction in terms of data
rate per IoT sensor device, we showed that the proposed AIoT system can
reduce the overall data traffic by changing compressed sensing rates of random
sampling functions in IoT sensor devices. In addition, we analyzed the effects
of the compressed sensing on YOLOv5 object detection in terms of perfor-
mance metrics such as recall, precision, mAP50, and mAP, and found that
recall slightly decreases but precision remains almost constant even though the
compressed sensing rate decreases and that mAP50 and mAP are gradually
degraded according to the decreased compressed sensing rate. Consequently,
if proper compressed sensing rates are chosen, the proposed AIoT system will
reduce the overall data traffic without significant performance degradation of
YOLOv5.
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1 Introduction

Internet of Things (IoT) is a dynamic global network infrastructure with self-configuration
capabilities based on standards and interoperable communication protocols, in which the physical
and virtual things have their own identities and properties and are integrated into IoT net-
works through various wired and wireless interfaces [1]. The IoT networks mean interconnected
world-wide networks based on sensory, communication, networking, and information processing
technologies. Modern wireless technologies have extended the sensory capabilities of IoT devices
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and expanded the range of the IoT network significantly. Recently, some emerging technologies
such as artificial intelligence (AI), edge computing, and compressed sensing are being applied to
IoT to meet the needs of users and provide specific services [2,3]. Artificial Intelligence of Things
(AIoT) is a new technology enabling the IoT sensor devices to analyze their sensing data, make
decisions and act on the decisions without human involvement [2]. To incorporate compressed
sensing (CS), often called compressive sensing, in IoT applications, some pieces of literature were
reviewed in [4].

The IoT networks includes wireless local area networks (WLANs) and low power wide area
networks (LPWANs). Wireless fidelity (WiFi) is one of WLANs following the IEEE 802.11
standards and it is one of widespread access networks for providing wireless connectivity to
IoT devices [5]. It has infrastructure and ad-hoc modes provided by all versions of the WiFi
standard family. IEEE 802.11n and 802.11ac can offer a maximum data rate of 600 Mbps and
7 Gbps, respectively. Next, Long-term evolution machine (LTE-M) and narrowband IoT (NB-
IoT) as LPWANs have been presented since 3GPP Release 12 and Release 13 to support massive
machine-type communications (mMTC) [6]. The requirements for mMTC are almost identical
to those for LTE-M and NB-IoT [7]. A low-complexity User Equipment (UE) Category M1 as
LTE-M in Release 13 was presented to enable low-cost devices, extended discontinuous reception
cycles for reduced power consumption, and coverage enhancement mode operation. NB-IoT was
also introduced to offer the flexibility of deployment by allowing the user of a small portion of
the available spectrum in the LTE bands and coexisting with LTE and global system for mobile
communication (GSM) in licensed frequency bands. Note that LTE-M supports the peak data rate
of 1 Mbps for both downlink and uplink, and NB-IoT supports the data rate of 200 kbps for
downlink and 20 kbps for uplink [8]. The IoT edge gateway plays an important role in hetero-
geneous IoT networks [9], whose main function is to forward the data from IoT sensor devices
to a destination node, namely an IoT server through existing wireless communication protocols
such as WiFi, LTE-M, NB-IoT, ZigBee, Bluetooth, etc. In recent years, IoT sensor devices have
been forced to send a large amount of data such as images, videos, and voices for providing
AI services such as object detection using deep learning in IoT applications [10]. Inevitably, IoT
networks are facing severe data traffic overload problems. For Instance, it may cause time delay
or latency due to limited bandwidth and unstable channel conditions (e.g., congestion, collisions,
and interference) and leads to delayed decision-making for time-sensitive operations. Moreover, the
centralized IoT server becomes inefficient and expensive for storing and processing a large amount
of data from various types of IoT sensor devices. Jung et al. [3] proposed an oneM2M-compliant
AIoT monitoring system where an AIoT edge device extracted video frame images from a CCTV
camera in a pig house, detected multiple pigs in the images by a faster region-based convolutional
neural network model, and tracked them by an object center-point tracking algorithm. However,
they did not consider the data traffic problem. Although Djelouat et al. [4] reviewed CS-based
IoT applications and highlighted emerging trends and identified avenues for future CS-based IoT
research, they did not present any CS-based IoT system model and its experimental results. In [11],
the authors proposed a gradient CS method for image data reduction in unmanned aerial vehicles
(UAVs) where a surveillance center reconstructed decreased amount of image pixels received from
the UAVs and then performed an image processing method for suspicious objects detection.
However, they did not consider an AIoT system model using object detection based on deep
learning. Moreover, they did not analyze the effects of compressed sensing rate on an AIoT system
model in detail.
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Therefore, in this paper, we propose an AIoT system model using compressed sensing to
solve the data traffic problem that occurs when transmitting a large amount of data through the
IoT network for an AI service such as YOLOv5 object detection. Our main contributions are as
follows: First, we suggest a practical AIoT system architecture for data traffic reduction between
IoT sensor devices and an IoT edge gateway through separating a random sampling matrix, a CS
recovery, and a transformation matrix of compressed sensing. Second, we analyze the effects of
compressed sensing on various aspects of the proposed AIoT system such as data traffic reduction
and object detection performance to provide a performance reference. The rest of this paper is
organized as follows. Section 2 introduces the configuration and operation of the proposed AIoT
system and explains functional separation of compressed sensing for data traffic reduction and
YOLOv5 object detection. Section 3 analyzes some experimental results to show the effects of
the compressed sensing on YOLOv5 object detection. Finally, concluding remarks are presented
in Section 4.

2 Data Traffic Reduction in an AIoT System

2.1 Proposed AIoT System Model
The proposed AIoT system model is illustrated in Fig. 1 where there are some IoT sensor

devices with random sampling functions for compressed sensing, an IoT edge gateway with CS
recovery and domain transform functions for compressed sensing and a YOLOv5 deep learning
function for object detection, and an IoT server. The IoT sensor device extracts a large data, e.g.,
an M×N image f , from a high definition (HD) camera sensor and compresses the image by using
a K ×M random sampling matrix � according to a compressed sensing rate α= K/M in order
to obtain a K × N compressed image b. Then it uploads the compressed image b and interact
with the IoT edge middleware (MW) [12] via the IoT client application modeled as an application
dedicated node-application entity (ADN-AE) in oneM2M specifications [13].

Figure 1: Proposed AIoT system model with IoT sensor devices, an IoT edge gateway, and an IoT
server

In the IoT edge gateway, the IoT edge MW modeled as a middle node-common service entity
(MN-CSE) in [13] temporarily stores the compressed image b and feeds it to the CS recovery.
The CS recovery produces the sparse transform domain representation x̂ of the original image f
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through L1 minimization. The domain transform matrix � produces the recovered image f̂ by

inverse transforming x̂. In addition, YOLOv5 performs object detection in the recovered image f̂
and forwards information for object detection results to the IoT edge MW. The IoT edge MW will
store and send the information to the IoT server MW modeled as an infrastructure node-common
service entity (IN-CSE) in [13]. Note that all the IoT client application, the IoT edge MW and
the IoT server MW were implemented based on an oneM2M-compliant IoT device and server
platforms called nCube and Mobius [14].

2.2 Compressed Sensing for Data Traffic Reduction
Compressed sensing is known as a signal sampling framework for improving sampling effi-

ciency by sampling sparse signals at a rate much lower than the Nyquist rate [15,16]. It accurately
recovers the original high-dimensional sparse signal from low-dimensional measurement vectors
with high probability by solving an optimization problem with a scarcity attribute. For random
sampling in compressed sensing, single pixel, Gaussian, Bernoulli, and sparse random matrices are
usually used and among them we choose a random single pixel matrix [17]. In addition, there are
a lot of optimization methods for CS recovery such as L1 minimization, L2 minimization, least
absolute shrinkage and selection operator (LASSO), restricted isometry property (RIP), etc. but
we consider the basic L1 minimization method [18]. Then, we will review the random sampling
matrix and the L1 minimization method for compressed sensing in our AIoT system model and
numerically analyze the effects of compressed sensing on data traffic reduction.

As mentioned before, each IoT sensor device performs the compressed sensing that can be
given as

b=�f (1)

where � is the random sampling matrix randomly selecting the pixels of the original image f
according to the compressed sensing rate α. Note that this can significantly reduce the data traffic
because it transmits the compressed image b instead of the original image f . For instance, if the
compressed sensing rate α= 0.5, we only transmit a 320×320 compressed image b compared with
an original 640× 640 image f .

The IoT edge gateway performs the CS recovery in order to find the optimal sparse transform
domain representation x̂ of the original image f by using the L1 minimization method which is
represented as

x̂= argmin
x

‖x1‖ subject to Ax= b (2)

where A ≡ �� has both sampling (�) and transformation (�) functions and ‖x1‖ = ∑n
k=0 |xk|

denotes the L1 norm. The 2-dimensional (2D) inverse discrete cosine transform (IDCT) matrix

� transforms the image from the spectral domain (x̂) to the temporal domain (f̂ ) that can be
represented as follows.

f̂ =�x̂ (3)

where the entries of f̂ is defined as

[f̂ ]mn=
M−1∑
p=0

N−1∑
q=0

αpαq[x̂]pqcos
π(2m+ 1)p

2M
cos

π(2n+ 1)q
2N

(4)
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where 0≤m≤M − 1 and 0≤ n≤N− 1. Also, αp and αq are represented by

αp =

⎧⎪⎪⎨
⎪⎪⎩

1√
M

, p= 0
√

2
M

, 1≤ p≤M − 1

and αq=

⎧⎪⎪⎨
⎪⎪⎩

1√
N
, q= 0

√
2
N
, 1≤ q≤N − 1

(5)

In Fig. 2, we explain the effects of compressed sensing on data traffic reduction in terms
of data rate per IoT sensor device and number of IoT sensor devices through simple analytical
results.

Figure 2: Effects of compressed sensing on data traffic reduction in terms of data rate per IoT
sensor device and number of IoT sensor devices according to compressed sensing rate α

We assume that an IoT network between IoT sensor devices and an IoT edge gateway is
IEEE 802.11n WLAN whose maximum data rate is 600 megabits per second (Mbps). If the size
of the original image or frame is 640× 640 pixels and the frame rate is 30 frames per second
(fps) for an HD camera sensor, the data rate per IoT sensor device without compressed sensing
will be about 30× 640× 640× 8 = 98 Mbps. In addition, we assume that the same compressed
sensing rare α is used for all IoT sensor devices. When the compressed sensing rate α is 100,
only six IoT sensor devices can transmit their data at the same time over the IoT network. If the
compressed sensing rate α is 90, the data rate for each IoT sensor device becomes 88.2 Mbps and
the overall data traffic is consequently reduced from 600 Mbps to about 541 Mbps. In case of
the compressed sensing rate α= 50, the data rate for each IoT sensor device is 49 Mbps and the
overall data traffic is 306 Mbps. In other words, we are able to increase the number of IoT sensor
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devices from six to twelve under the assumption that the overall data traffic is 600 Mbps. As
the compressed sensing rate α decreases, the overall data traffic decreases or the number of IoT
sensor devices increases. Accordingly, however, the performance of the CS recovery will decrease
and then the performance of object detection based on the images resulting from the CS recovery
will decrease as well. Therefore, for compressed sensing to be useful to reduce data traffic, we
need to ultimately analyze the performance of object detection that will be covered in Section 3.

2.3 Object Detection with YOLOv5
We consider the YOLOv5 model, the latest release of the YOLO series for object detection

in the IoT edge gateway. Because the YOLO series integrated target area prediction and category
determination into a single neural network model [19–21], it can solve a speed problem critical
to implementation of the IoT edge gateway. Especially, the execution speed of YOLOv5 has
been greatly improved even compared with YOLOv4. Also, YOLOv5 is about 88% smaller than
YOLOv4. Thus, it is suitable to be installed on the IoT edge gateway and it has higher accuracy
and better ability to detect small objects.

In Fig. 3, YOLOv5 uses a backbone architecture, referred to CSPDarknet, for feature extrac-
tion by incorporating cross stage partial network (CSPNet) into Darknet. The CSPNet partitions
a feature map of the base layer into two parts and then merging them through a cross-stage
hierarchy to make the gradient flow propagate through different network paths. By integrating the
gradient changes into the feature map, it decreases model parameters and floating point operations
per second, thereby reducing model size as well as ensuring inference speed and accuracy [22].
Next, YOLOv5 exploits path aggregation network (PANet) for feature fusion, which adopts a fea-
ture pyramid network (FPN) structure with enhanced bottom-up path to improve the propagation
of low-level features. Simultaneously, the PANet performs adaptive feature pooling which links
feature grid and all feature levels for making useful information in each feature level propagate
directly to the following subnetwork. This can improve the location accuracy of the object. Finally,
the YOLO layer is used for producing detection results such as class, score, location, and size. It
generates three feature maps with 18× 18, 36× 36, 72× 72 sizes to achieve multi-scale prediction
and handle small, medium, and big objects.

For training the YOLOv5 network, a binary cross-entropy with logits loss, which combines
a sigmoid function and a binary cross-entropy loss in one single class [23], is utilized as the loss
function given by

L=− 1
N

N−1∑
n=0

[yn · log σ(ŷn)+ (1− yn) · log (1− σ(ŷn))] (6)

where N is the batch size, yn and ŷn denote the ground truth and the predicted possibility of
nth element of an array in the batch, respectively. σ(x) denotes the element-wise sigmoid function
represented by

σ(x)= 1
1+ exp(−x) (7)

The stochastic gradient descent (SGD) optimizer is considered for minimizing the loss func-
tion. It repeats the process of obtaining the gradient and updating the model parameters for each
training sample rather than obtaining an accurate gradient using the entire training data [24–26].
YOLOv5 has four different versions with a small (s), a medium (m), a large (l), and an
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extra-large (x) model. YOLOv5s has the lowest performance but the highest frame rate, whereas
YOLOv5x has the best performance but the lowest frame rate. We will use the YOLOv5x model
with the best performance.

Figure 3: YOLOv5 network architecture with CSPDarknet, PANet, and YOLO Layer [22]

3 Experimental Results

We describe experimental results to evaluate the performance of the proposed AIoT system
model in terms of the effects of the compressed sensing on object detection. First, we developed
each IoT sensor device with a Raspberry Pi 4 Model B, where the random sampling function
and IoT client application were implemented based on [14,27], respectively. Instead of real-time
images from a C270 HD webcam attached on the Raspberry Pi 4, 128 images of the COCO
dataset were fed into the IoT sensor device for objective performance evaluation. Next, we
conducted the IoT edge gateway on a personal computer with an NVIDIA GeForce GTX 960,
CUDA 10.2, cuDNN 7.6.5, in which the IoT edge middleware, CS recovery and YOLOv5x were
implemented based on [14,27,28], respectively. Especially, Pytorch 1.6.0 running on Ubuntu 18.04.4
was employed as an open source machine learning framework for YOLOv5x. Finally, the IoT
server was implemented but not used since it was not necessary for performance evaluation.

Fig. 4 shows the detection results of YOLOv5 model for an original image f and recovered

images f̂ with different compressed sensing rates α. As mentioned before, assuming that the com-
pressed sensing rate is 70, only 70% pixels randomly selected from the original image are sent to
the IoT edge gateway which will produce recovered images through the YOLOv5 model following
the CS recovery. Compared with the original image, recovered images have many contaminated
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pixels. As the compressed sensing rate decreases, contaminated pixels tend to increase. However,
it seems that there is no significant difference between them in instantaneous performances of
bounding box regression and multi-labeled classification of YOLOv5.

Figure 4: Detection results of YOLOv5 model: (a) original image, (b) compressed sensing rate of
90%, (c) compressed sensing rate of 70% and (d) compressed sensing rate of 50%

We compare recall and precision performances according to compressed sensing rates in
Fig. 5. Recall and precision is generally defined as [29]

Recall= TP
TP+FN

(8)

Precision= TP
TP+FP

(9)

where TP is true positive, FN is false negative, and FP is false positive. Recall denotes the ratio
of the number of correctly detected objects (TP) to the total number of actual objects (TP+FN),
namely ground truth. It gradually decreases because the number of correctly detected objects
decreases as the compressed sensing rate decreases. Precision denotes the ratio of the number
of correctly detected objects (TP) to the total number of detected objects (TP+FP). It remains
almost constant although the compressed sensing rate decreases, because the number of correctly
detected objects (TP) and the total number of detected objects (TP+FN) decrease together.
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Figure 5: Recall and precision performances according to compressed sensing rate α

We compare mean average precision 50 (mAP50) and mAP performances according to com-
pressed sensing rates in Fig. 6. As a performance metric in measuring the accuracy of object
detection models, AP is the precision averages across all recall values between 0 and 1 at various
Intersection over Union (IoU) thresholds and is interpreted as the area under the curve of the
precision-recall curve. mAP corresponds to the AP averaged over all classes for IoU ratio values
ranging from 0.5 to 0.95 with a step size of 0.05, and mAP50 denotes mAP at IoU = 0.5 [30].
Note that the IoU is a ratio of the intersecting area of the predicted bounding box and the
ground-truth bounding box to the total area of them combined. In general, if the IoU value is
more than 0.5, it is judged as being detected properly. Otherwise, it is judged as being incorrect.
At the compressed sensing rate α = 100, equivalent to the original image, mAP50 is 0.691 and
this serves as a reference. It becomes 0.667 at α= 90, 0.656 at α= 80, and 0.598 at α= 50. Even
though the compressed sensing rate decreases, there is little degradation in mAP50 performance.
The case of mAP also shows a similar tendency for performance degradation.

By analyzing experimental results in Figs. 2 and 6 together, we can draw a meaningful
conclusion. When compressed sensing rate α= 100, the value of mAP50 is the same as the value
of mAP50 in [28] considered as a counterpart method without using compressed sensing. The
counterpart method shows the overall data traffic (588 Mbps) and the value of mAP50 (0.691)
as two reference points for performance comparison. For instance, if the compressed sensing rate
α = 80, we can reduce about 19.6 Mbps data rate for each IoT sensor device of six IoT sensor
devices, thus reducing overall data traffic by about 117.6 Mbps (20%) or adding one more IoT
sensor device. However, from the point of view of performance degradation, the value of mAP50
is only reduced by 0.035 (5%). Assuming the compressed sensing rate α = 50, we can reduce



1778 CMC, 2022, vol.70, no.1

overall data traffic by 294 Mbps (50%) or adding six more IoT sensor devices, but the value of
mAP50 is reduced by 0.093 (13.5%).

Figure 6: mAP50 and mAP performances according to compressed sensing rate α

4 Conclusion

In this paper, we proposed an oneM2M-compliant AIoT system in which there are some
IoT sensor devices with random sampling functions for compressed sensing, an IoT edge gateway
with CS recovery and domain transform functions for compressed sensing, and a YOLOv5 deep
learning function for object detection, and an IoT server. This AIoT system was able to reduce
its overall data traffic or add more IoT sensor devices by changing compressed sensing rates of
random sampling functions in IoT sensor devices. To analyze the effects of the compressed sensing
on YOLOv5 object detection in the IoT edge gateway, recall and precision performances were
first investigated, and we found that recall slightly decreases but precision remains almost constant
even though the compressed sensing rate decreases. Furthermore, after analyzing mAP50 and mAP
performances, we found that mAP50 and mAP are gradually degraded as the compressed sensing
rate decreases. Therefore, if proper compressed sensing rates of IoT sensor devices are chosen, the
proposed AIoT system will reduce the overall data traffic or increase the number of IoT sensor
devices without significant performance degradation of YOLOv5.
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